基于SDH新一代数字微波传输关键技术与应用分析
SDH数字微波传输系统原理及应用

步字节复用 , 从而形成 了速率为 6200k i 2 8 b ̄s的 S M- T 4和
一
图 1 通 信 网 中 的数 字 传 输 系 统 框 图
速率为24830ki 的 S M一1, 2 b 8  ̄s T 6 以及更高速率的 S M— T N。
S M设备除了可作为复用器 和线路终端设备外 , 可以组成 T 还 分插 复用设 备 和数 字 交叉 连 接设 备 。以它们 为基 础 构成 S H传送 网。 D
平具有一定意义。
关键词 :D S H数 字微波传输 系统 ;编码 ;解码 ;多进制 正交幅度调整 ;分复接
中 图分 类 号 :N 1.3 T 9432 文 献标 识 码 : A
1 数 字微 波传输 系统原 理
信号 复用或适配为 15Mb ̄s在 15Mb 5 i , 5 i  ̄s信号帧 中预留 了相 当多 的比特开销 , 15Mb 从 5 i  ̄s往上 , 则完全 采用 了同
图2 D S H复用原理框图
S H采 用的信 息结构 等级称 为 同步传送 模块 S M —N D T
( yc rnu rnp a, Snh osTaso N=1 4 1 ,4) 最 基 本 的模 块 为 o , ,6 6 , S M一14个 S M —l同步复用构成 S M一4 1 T , T T ,6个 S M 一1 T 或 4个 S M一 T 4同步复用 构成 S M 一1 ;T 同步 传送模 T 6 S M( 块 ) S H系统 的基本 设备 。它 的第一 级称 为 S M 一1 实 是 D T , 际上是一个带 有线 路终 端功 能的 准同步 数字 复 用器 , 将 它 6 3个 2Mb ̄s i 信号或 3个 3 i 信 号或 1个 10 M i 4Mb  ̄s 4 b ̄s
SDH数字微波系统中的几个关键技术

当系统 采 用多 状 态 Q M 调 制 方 式 时 ,要 达 到 A IU—R所 规定 的性 能 指 标 ,对 多径 衰 落 必 须 采 取 T 相应 的对抗 措施 。考 虑 到 IU—R的新 建议 将 不 再 T
由于采用多状态调制技术 ,对传输通道,特别
的冗余度 比 T M低,编码器和解码器所需 的电路 C 规模 也 比 四 维 T M 要 小 ,因 为 大 多 数 级 不 编 码 , C
结 构也 比较 简单 。
8— 3
维普资讯
3 自适 应 时域均 衡技 术
X I 对干扰的抑制能力可达到 1d PC 8B左右。
l I ×SM—l 5 Q M,1Q M或 12 Q M 26 A 52 A 04 A
2 ,92 .53 l I 8 2 ,9 6 ,o ×SM—l 4 A 18 A 6 Q M,2 Q M或 26 A 5Q M
2 ,92 .53 2 I —l 18 A C )26 A C ) 8 2 ,9 6 ,o ×SM 2 Q M( C ,5 Q M(C 4 0 l I —l 3Q M,4 A ×SM 2 A 6 Q M
号相对应 ,这样 ,编码器 的运算 速度可 比符 号率 低。在解码时 ,也会有同样的效果。M C L M数字流
表 l IU—R推荐采 用 的调制方 式 ,表 中 为 T (O C )表 示采 用交叉 极 化 干扰 抵 消技 术 ( PC x I)实
现的交叉极化同波道传送方式。
麦卓平 :S H数 字微 波系统中的几个关键技 术 D
2 编码 调 制技术
微波是一种频 带频率配置内传输 S H信号,必须 D 采用更高状态 的调制技术 。例如 ,要 在 3M z 0 H 左 右波道间隔的系统 中传输 SM—l ,可选用 的调 T 时
SDN数字微波通信技术的特点及应用

SDN数字微波通信技术的特点及应用【摘要】SDH微波通信是一种新型的利用数字微波实现信息传递的传输体制,这种传输体制是通过微波作为整个传输过程的载体实现对数字信息传输,这种传输的优势在于聚集SDH微波通信和微波通信两者的优点。
将微波通信升级成为SDH微波通信已经是未来微波通信发展的必经之路,下面文章将会对SDN数字微波通信技术所具有的特点和应用进行详细的说明和介绍。
【关键词】SDN数字微波通信技术;特点;应用在对SDH微波通信进行使用后可以实现更多的数字数据的传播,传输更多的数字化电视节目,使得网络传输效率得到提升;将SDH数字微波和光纤微波网络作为备份,使得网络的使用安全能够得到提高;对SDN微波网络进行建设可以实现对多个平台的传送,网络承载力将会提高,例如移动电视、手机电视以及增值业务等业务都会得以实现。
一、SDH微波通信系统的组成数字微波传输线路主要是由主干线和分支组合而成,除了这种组合方式外还有一种组合方式趣味枢纽站分成多个分支,在线路两端分别有终端站,除此之外还有很多的继站和分路站,这些站结合之后形成了一个数字微波中继通信线路,组成部分的详细情况如下:1.数字终端机数字终端机的基本功能将交换机的多路信号进行转换,最终将该信号转换成时分多路信号,再将转变后的信号传输到数字微波传输信道,同时数字终端机还会将数字微波信道所接收到的时分多路信号进行转变最终变成交换机所需信号,最后将所需信号传输到交换机。
SDN系统在运行过程中所使用的设备为SDH数字设备,该设备中所具备的功能是由多个基本功能块进行灵活的组合,经过组合后就会成为类型不同的综合设备。
2. SDH微波站按工作性质不同,它可分成数字微波终端站、数字微波中继站和数字微波分路站,而数字微波枢纽站- - 般处在干线上,能完成数个方向的通信任务。
由SDH微波终端站的发送端完成主信号的发信基带处理(包括CMI/NRZ变换、SDH开销的插人与提取、微波帧开销的插人及旁路业务的提取等)、调制(包括纠错编码、扰码及发信差分编码等)、发信混频及发信功率放大等;由终端站的收信端完成主信号的低噪声接收(根据需要可含分集接收及分集合成)、解调(含中频频域均衡、基带或中频时域均衡、纠错译码等)、收信基带处理(含旁路业务的提取、微波帧开销的插人与提取等)。
广播电视SDH数字微波传输系统及其故障与处理建议

广播电视SDH数字微波传输系统及其故障与处理建议【摘要】本文介绍了广播电视SDH数字微波传输系统及其故障与处理建议。
在介绍了SDH数字微波传输系统的基本情况,强调了对其进行研究的重要性,并阐明研究的目的。
在正文部分首先介绍了SDH数字微波传输系统的组成,然后详细列举了其可能出现的故障种类以及常见故障的处理方法。
提出了故障预防措施和经验分享,有助于减少故障发生和提高处理效率。
在结论部分总结了SDH数字微波传输系统故障与处理建议,并展望了未来的发展方向。
通过本文的阐述,读者可以更加深入地了解SDH数字微波传输系统,并掌握相关故障处理技巧。
【关键词】SDH数字微波传输系统、故障、处理建议、重要性、组成、种类、常见故障、处理方法、预防措施、经验分享、总结、未来发展、结束语。
1. 引言1.1 介绍SDH数字微波传输系统SDH数字微波传输系统是一种基于同步数字层次(Synchronous Digital Hierarchy)技术的微波传输系统,用于在通信网络中传输高速数字信号。
通过将数字信号分层处理,SDH系统可以提供高容量、高速率和高可靠性的数据传输。
SDH数字微波传输系统使用光纤或微波链路来传输数据,具有较小的传输延迟和更大的带宽,适用于长距离、高容量的通信需求。
SDH数字微波传输系统在现代通信网络中扮演着重要的角色,它不仅可以提供高速数据传输服务,还可以支持多种传输协议和业务类型。
通过SDH系统,用户可以实现多点接入、灵活配置和远程监控等功能,从而满足不同应用场景的需求。
在日常运行中,SDH数字微波传输系统可能会出现各种故障,包括硬件故障、软件故障、信号干扰等。
为了确保系统的正常运行,及时排除故障至关重要。
深入了解SDH数字微波传输系统的组成结构、故障种类及处理方法,以及故障预防和处理经验分享,对于保障网络通信的稳定性和可靠性具有重要意义。
1.2 重要性SDH数字微波传输系统在现代通信领域起着至关重要的作用。
SDH数字微波通信技术特点及应用

SDH数字微波通信技术特点及应用
SDH(Synchronous Digital Hierarchy)数字微波通信技术是
一种高速、可靠、安全、灵活的通信技术。
它采用同步时隙复用技术,通过将多路低速数字信号进行同步、逐时隙复用,形成高速数
字信号,实现了基于光纤、微波、卫星等传输介质的大容量、高质
量数字通信。
SDH技术具有以下特点:
1. 高速可靠:SDH技术能够提供高速传输和高质量服务,最高
传输速率可达到155Mbps、622Mbps、2.5Gbps等级,传输速度和质
量十分稳定可靠,可满足各种应用场景的需求。
2. 灵活性强:SDH技术支持多种接口和拓扑结构,非常灵活,
满足不同应用需求。
SDH技术可与其他技术相结合,如ATM、IP等,形成更为完善的通信网络。
3. 安全性高:SDH技术具有较高的数据安全性,可提供多种加
密和保护机制,确保数据传输的安全性和完整性。
4. 维护管理方便:SDH技术具有完善的远程维护和管理功能,
操作简单,可随时监测网络运行状况,及时发现和处理故障和问题,提高网络的可靠性和稳定性。
SDH技术广泛应用于各种通信场景,如城市通信网、传输网、
接入网、移动通信网络、广播电视网等。
在提升传输带宽和质量、
增强网络安全性、提高网络的可靠性和维护管理效率方面,都发挥
着重要作用。
SDH数字微波通信技术是一种高速、可靠、安全、灵活的通信技术,有着广泛的应用前景和发展空间。
新型微波通信技术的发展及应用

Telecom Power Technology通信技术新型微波通信技术的发展及应用肖逸男(南京三乐集团有限公司,江苏南京微波通信技术是科技快速发展的产物。
我国科技水平不断提高,研发出了越来越多的新成果,新型微波通信技术作为其中之一,已经广泛应用在很多领域。
新型微波通信技术的发展推动了我国现代通信产业的进步,基于此主要分析了新型微波通信技术的发展和应用情况。
新型微波通信技术;数值微波中继通信;移动通信The Development and Application of New Microwave Communication TechnologyXIAO YinanNanjing Sanle Group Co.,Ltd.,NanjingMicrowave communication technology is the product of the rapid development of science and technology.s scientific and technological level in the context of continuous improvementnew microwave communication technology as one of themapplied in all areas of society.The development of new microwave communication technology has a very powerful role in 2020年10月10日第37卷第19期Telecom Power TechnologyOct. 10,2020,Vol. 37 No. 19 肖逸男:新型微波通信技术的发展及应用现多种功能。
新型微波通信设备IDU具有跟光传输设备对接的STM-N光接口和连接天馈线的中频接口,可以满足E1和FE业务直接传输的要求。
SDH数字微波通信关键技术及应用

探讨SDH数字微波通信的关键技术及应用摘要:本文主要介绍了sdh 数字微波通信系统的组成及其采用的关键技术,同时探讨了现代通信中数字微波的应用。
关键词:现代通信sdh数字微波关键技术一.引言sdh微波通信是新一代的数字微波传输体制。
在sdh数字微波通信中,微波只是作为一种载体,其主要任务就是传送数字信息到终端站,因其具有直线空间传输的特点,因此,sdh微波通信又称为视距数字微波中继通信。
本文主要介绍了sdh数字微波通信系统的组成及其采用的关键技术,同时探讨了现代通信中数字微波的应用。
二.sdh数字微波通信系统的组成数字微波中继通信线路示意图如图1所示,其中直线表示数字微波中继通信线路的主干线,其长可以达到几千公里;短划线表示中继线路的支线,在一条主干线上会出现若干条支线,而一条数字微波中继通信线路就是由主干线、若干支线、线路两端的终端站、大量中继站和分路站构成。
数字微波传输线路的组成形式也可以是一个微波枢纽站向若干方向分支。
微波站可分为数字微波终端站、数字微波中继站、数字微波分路站,但若微波站具有2个以上方向的上、下话路,则可称为数字微波枢纽站,这些都是由其工作性质的不同而分类的。
sdh 数字微波终端站具有相当多的功能,具体有:公务联络方面所具有的全线公务和选站公务2种能力;网络管理方面的网管系统配置管理及遥控、遥测指令,这个功能是通过软件将终端站设定为网管主站,然后将各站汇报过来的信息收集起来,再监视线路运行质量并执行,需要时还可通过q3接口与电信管理网(tmn)连接;另外还具有识别倒换基准、发送与接收倒换指令、启动与证实倒换动作等的备用倒换功能。
微波终端站的发送端与收信端的工作是不一致的,发送端的主要工作包括纠错编码、发信差分编码、扰码等调制工作,还包括提取旁路业务、插入微波帧开销、插入与提取sdh 开销以及变换cmi/nrz等主信号发送基带处理工作,以及放大发信混频与发信功率等。
而收信端的主要工作有含纠错译码、解扰码、收信差分译码、基带或中频时域均衡、中频频域均衡等的解调工作,完成主信号的低噪声接收(根据需要可含分集接收与分集合成),包含变换nrz/cmi、插入或提取sdh开销、插入或提取微波帧开销、提取旁路业务等处理收信基带工作。
分析SDH数字微波技术的特点及其应用

在S D H数字微 波传 播当 中, 微 波作为一种传输媒质 , 其 频带存在 着一定的局限性 。为避免这种传 播局限性,要采用 高状态 的调制技术 , 对频 带内的 S D H传输信 号进行处理。中 国对 于 4~ 1 1 G Hz频段会采用 2 8~ 3 0 MHz或者是 2 8~ 4 0 MH z的 频 道 间 隔 。
注 :C C 表示交叉极 化同波道传输方式是采用交叉极化干 扰抵消技术来 实现 的。
2 . 2 交叉 极化 干扰 抵 消( X P I C ) 技 术
在数字微波 系统当中, 一般会采用双 极化频率复用技术 , 可 以使系统 的容量 进一步地增加 。单波道 的数据传输技 术呈 现出快速增长 的趋 势,频谱 的利 用率也相应地得到提高 。然 而, 此 时却很容易出现交叉极化干扰 的现 象, 即为交叉极化鉴 别率 由于多径衰落而有所降低 。 此时, 就需要采取抗干扰措施。 干扰主要来 自于正交集 化信号 。安装 自适应交叉极化干 扰抵消器 , 可 以将干扰程度 降低 。其工作原 理是, 采用信 号累 加 的方式 ,将干扰信号抵消 。取 出干 扰信 号经过技术处理之 后, 为 了叠加在 有用信号之上 , 起 到抵消信号干扰 的作用 。
备上面 。 其作为上、 下话路的中继站, 主要的任务是完成信号 的 转发于双向接收工作。安装有调制与解调设备的中继站, 被称 为是“ 再生中继站” 。再生 中继站要具备遥控、 遥测等能力, 承担 着配置管理工作, 诸如线路运行质量 、 网管系统的运行状况等等。
2 S DH 数字 微 波采 用 的主 要技术
缩压缩处理之后 , 就可 以进入到容器 , 最 终形成广播 电视节 目 的视频和音频信号 , 在微波发射 的作用下 , 或者是通过 网线 网 络的传 输, 覆盖到指定 的范围内。 ’ S DH的传输速率 , 一般会选择 3 4 . 3 6 8 Mb i t / s 和1 3 9 . 2 6 4 Mb i t / s , 以使模拟广播电视信号传播效果更好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于SDH新一代数字微波传输的关键技术与应用分析摘要:sdh微波通信是新一代的数字微波传输体制,它兼有sdh 数字通信和微波通信两者的优点。
本文主要介绍了sdh 数字微波通信系统的组成及其采用的关键技术,同时探讨了现代通信中数字微波的应用。
关键词:通信;sdh数字微波 ;关键技术
一.引言
sdh微波通信是新一代的数字微波传输体制。
在sdh数字微波通信中,微波只是作为一种载体,其主要任务就是传送数字信息到终端站,因其具有直线空间传输的特点,因此,sdh微波通信又称为视距数字微波中继通信。
本文主要介绍了sdh数字微波通信系统的组成及其采用的关键技术,同时探讨了现代通信中数字微波的应用。
二.sdh数字微波通信系统的组成
数字微波中继通信线路示意图如图1所示,其中直线表示数字微波中继通信线路的主干线,其长可以达到几千公里;短划线表示中继线路的支线,在一条主干线上会出现若干条支线,而一条数字微波中继通信线路就是由主干线、若干支线、线路两端的终端站、大量中继站和分路站构成。
数字微波传输线路的组成形式也可以是一个微波枢纽站向若干方向分支。
微波站可分为数字微波终端站、数字微波中继站、数字微波分路站,但若微波站具有2个以上方向的上、下话路,则可称为数字微波枢纽站,这些都是由其工作性质
的不同而分类的。
sdh 数字微波终端站具有相当多的功能,具体有:公务联络方面所具有的全线公务和选站公务2种能力;网络管理方面的网管系统配置管理及遥控、遥测指令,这个功能是通过软件将终端站设定为网管主站,然后将各站汇报过来的信息收集起来,再监视线路运行质量并执行,需要时还可通过q3接口与电信管理网(tmn)连接;另外还具有识别倒换基准、发送与接收倒换指令、启动与证实倒换动作等的备用倒换功能。
微波终端站的发送端与收信端的工作是不一致的,发送端的主要工作包括纠错编码、发信差分编码、扰码等调制工作,还包括提取旁路业务、插入微波帧开销、插入与提取sdh 开销以及变换cmi/nrz等主信号发送基带处理工作,以及放大发信混频与发信功率等。
而收信端的主要工作有含纠错译码、解扰码、收信差分译码、基带或中频时域均衡、中频频域均衡等的解调工作,完成主信号的低噪声接收(根据需要可含分集接收与分集合成),包含变换nrz/cmi、插入或提取sdh开销、插入或提取微波帧开销、提取旁路业务等处理收信基带工作。
当终端站基带接口与sdh复用设备连接时,可用于上、下低价支路信号。
微波分路站是指需要上、下话路的中继站,其必须与sdh 的分插复用设备连接。
信号的双向接收和转发是微波中继站所应完成的主要任务。
再生中继站是指有调制与解调设备的中继站,其具有汇报站信息、线路运行质量至网管系统,全线公务联络,执行网管系统的配置管理,进行遥控、遥测等能力。
三.sdh数字微波采用的关键技术
sdh微波传输设备所采用的基本技术除了传输方式的特点不同,其他大致相同,以下是sdh所采用的关键技术:
(1)编码调制技术
微波是一种传输媒质,其频带是受到限制的。
根据itu-r建议,我国在4~11 ghz频段大都采用的波道间隔为28~30mhz及40mhz (itu-r相关的频率配置建议)。
只有采用更高状态的调制技术,才能使sdh信号在有限的频带内传输。
表1所反映的是在相同的波道间隔下sdh微波与pdh微波所需调制状态数的区别。
表1 sdh微波与pdh微波所需调制状态数的区别。
注:表中(cc)表示采用交叉极化干扰抵消技术实现交叉极化同波道传输方式。
(2)交叉极化干扰抵消(xpic)技术
交叉极化干扰是交叉极化鉴别率(xpd)在数字微波系统出现多径衰落时随之降低而产生的。
因此,为减少来自正交极化信号的干扰,我们需要一个交叉极化干扰抵消器。
交叉极化干扰抵消(xpic)技术是指适当处理取自所传输信号相正交的干扰信道中的部分信号,并与有用信号相加,以此来抵消叠加在有用信号上来自正交极化信号的干扰。
抵消干扰在射频、中频或基带上都可以进行,对干扰的抑制能力在使用xpic技术后可达15db左右。
(2)分集技术
分集技术是指合成或切换多个不同特性的收信信号,以对抗多径衰落和降雨衰落的影响,最终得到良好信号。
因此,对抗多径衰落、提高数字微波电路传输质量的重要手段即为分集接收。
路由分集、角度分集、空间分集和频率分集是几种常用的分集技术。
在sdh 微波系统中,分集接收的应用比中小容量数字微波和模拟微波要来得更加广泛的原因是,它们对频率选择性衰落由于采用了多状态调制方式而显得更加敏感。
(4)自适应频域和时域均衡技术
当系统采用多状态qam调制方式的情况下,如果要达到itu-r
规定的指标,且额外的差错性能配额也不再提供给数字微波系统时,必须采取相应的且强有力的抗衰落措施。
而自适应均衡技术是除分集接收技术外最常用的抗衰落技术,其包括自适应频域均衡技术和自适应时域均衡技术。
若要减少频率选择性衰落的影响可使用频域均衡技术,而若要消除各种形式的码间干扰,可使用自适应时域均衡技术。
(5)2.5大规模专用集成电路(asic)设计技术
使用大量大规模专用集成电路(asic)设计技术可以帮助数字微波设备的体积大大减少,功能也相应地提高,且还可提高设备的安全性和稳定性,从而使设备的维护强度降低。
(6)高线性功率放大器和自动发射功率控制(atpc)
多状态调制技术对高功率放大器的线性等传输信道提出了严格的要求。
其对微波高功放采取输出回退措施及非线性补偿技术可满
足系统总传输性能的要求。
高线性功率放大器和自动发射功率控制技术的特点是当接收端接收电频发生变化时,微波发信机的输出功率在atpc 的控制范围内也自动地随之发生变化。
而非线性失真、电源消耗降低、多径衰落对系统影响的减少及同一路由相邻系统干扰的减少等是atpc所具有的独特优点。
四.在广播电视网中sdh微波的应用
在广播电视网络中,sdh微波起着相当重要的作用。
sdh微波网虽然在容量方面没有光纤传输网好,但其仍是光纤网中不可缺少的补充和保护手段。
在现有模拟和pdh微波网的基础设施建设中,sdh 微波网可以应用的方式有:自成链路或环路;可使光纤电信网形成闭合环路;保护sdh光纤网,解决整个通信网的安全保护问题;与sdh光线系统串接使用等。
五.结语
sdh数字微波通信具有大容量、灵活组网、传输质量好、低成本、建设速度快等特点,其灵活性、移动性、抗灾性都是光线通信无法比拟的,在通信领域占据着重要地位。
目前,数字微波通信已广泛应用于广播电视、电信部门,并且已逐渐进入公路管理系统、港航企业、海事管理部门、边远地区及一些大型企业中。
参考文献:
[1]房少军编著.数字微波通信.北京:电子工业出版社,2008
[2]范寿嗣,等编著.有线电视模拟- 数字光纤与微波传输技术.北京:中国广播电视出版社,2000
郭志领。