圆锥曲线的几何性质
圆锥曲线所有知识点和二级结论

圆锥曲线是解析几何学中的重要内容,它包括椭圆、双曲线和抛物线三种基本形式。
它们在数学、物理、工程等领域均有重要应用,具有广泛的研究价值。
下面将从几何、代数、物理等多个角度对圆锥曲线进行系统介绍和分析。
一、圆锥曲线的概念圆锥曲线的定义:在平面上依旧定点F到平面上所有定点P的距离的比值(|PF|/|PM|)为常数e(e>1)的动点M所得的轨迹即为双曲线。
在平面上的直线l与定点F的距离与到定点P的距离的比值始终为常数e(0<e<1)时,动点P所得的轨迹即为椭圆。
在平面上的直线上的所有点P到定点F的距离与到直线l的距离的差始终为常数e时,点P的轨迹即为抛物线。
二、椭圆的知识点1. 定义及表示:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的所有点P的集合。
2. 几何性质:椭圆有等轴对称性、焦点F1和F2为椭圆的两个焦点、平行于长轴或短轴的弦都过椭圆的焦点、焦距等于长轴长度、离心率等于c/a(c为焦距,a为长轴半径)等。
3. 参数方程:椭圆的参数方程为x = a*cos(t), y = b*sin(t),其中t为参数。
4. 离心率:离心率e的定义,离心率与长短轴的关系。
三、双曲线的知识点1. 定义及表示:双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点P的集合。
2. 几何性质:双曲线有两条渐近线、两个焦点F1和F2、两个顶点、离心率等于c/a(c为焦距,a为顶点到中心的距离)等。
3. 参数方程:双曲线的参数方程为x = a * cosh(t), y = b * sinh(t),其中t为参数。
4. 离心率:离心率e的定义,离心率与距离关系。
四、抛物线的知识点1. 定义及表示:抛物线是平面上到定点F和直线l的距离相等的点P 的集合。
2. 几何性质:抛物线有顶点、准直线、对称轴、离心率等。
3. 参数方程:抛物线的参数方程为x = a * t^2, y = 2*a*t,其中t为参数。
常见的三种圆锥曲线的图像及几何性质

椭圆的参数方程可以表示 为$x = a cos theta, y = b sin theta$,其中 $theta$是参数。
椭圆的面积是$pi ab$, 周长是$4a$。
02 抛物线
定义与方程
定义
抛物线是一种二次曲线,它是由一个定点和一条定直线所决 定的平面曲线。这个定点称为抛物线的焦点,定直线称为抛 物线的准线。
常见的三种圆锥曲线的图像及几何 性质
目录
• 椭圆 • 抛物线 • 双曲线 • 三种圆锥曲线的对比与联系
01 椭圆
定义与方程
定义
椭圆是平面内与两个定点$F_1$和 $F_2$的距离之和等于常数(大于 $F_1$和$F_2$之间的距离)的点的 轨迹。
方程
对于中心在原点、焦点在x轴上的椭圆, 其标准方程为$frac{x^2}{a^2} + frac{y^2}{b^2} = 1$,其中$a$和$b$ 分别是椭圆的长半轴和短半轴。
方程
对于开口向右的抛物线,其标准方程为 $y^2 = 2px$($p > 0$);对于开口向左的抛物线,其标准方程为 $y^2 = -2px$ ($p > 0$)。
性质与特征
性质
抛物线具有对称性,其对称轴为直线 $x = -frac{p}{2}$。
特征
抛物线在焦点处的曲率最大,而在准 线处的曲率最小。抛物线的离心率等 于1。
04 三种圆锥曲线的对比与联 系
定义与方程的对比
椭圆
抛物线
双曲线
定义为平面内与两定点F1、F2 的距离之和等于常数(大于 F1F2)的点的轨迹。标准方程 为$frac{x^2}{a^2} + frac{y^2}{b^2} = 1$,其中 $a$和$b$是椭圆的半轴长,$c = sqrt{a^2 - b^2}$是焦距。
高三数学圆锥曲线知识点总结大全

高三数学圆锥曲线知识点总结大全在高三数学学习中,圆锥曲线是一个非常重要的知识点,它可以帮助我们更好地理解数学的几何性质和关系。
本文将对圆锥曲线的相关知识进行总结和归纳,希望可以帮助大家更好地掌握这一部分的内容。
一、什么是圆锥曲线圆锥曲线是以两条总称为焦点的直线为边界的平面曲线。
根据焦点的相对位置和离心率的不同,圆锥曲线可以分为四种类型:椭圆、双曲线、抛物线和圆。
二、椭圆1. 椭圆的定义:椭圆可由平面内的一动点 M 和两焦点 F1、F2的距离之和等于常数 2a 的点的轨迹定义。
2. 椭圆的性质:- 椭圆的离心率 e 小于 1,且焦点位于长轴上。
- 椭圆的长轴和短轴分别对应着两个标准方程的分子和分母。
- 椭圆的离心率越小,形状越趋于圆形。
- 椭圆的焦点到直角坐标轴的垂直距离分别为 a 和 b。
三、双曲线1. 双曲线的定义:双曲线可由平面内的一动点M 和两焦点F1、F2 的距离之差等于常数 2a 的点的轨迹定义。
2. 双曲线的性质:- 双曲线的离心率 e 大于 1,且焦点位于长轴上。
- 双曲线的长轴和短轴分别对应着两个标准方程的分子和分母。
- 双曲线的离心率越大,形状越扁平。
- 双曲线的焦点到直角坐标轴的垂直距离分别为 a 和 b。
四、抛物线1. 抛物线的定义:抛物线可由平面内的动点 M 和直线 l 的距离点 F 的距离等于焦距 PF 点的轨迹定义。
2. 抛物线的性质:- 抛物线的焦点位于焦线的中垂线上。
- 抛物线的顶点为最低点或最高点,轴称为准线,焦距 PF 的两倍称为参数。
- 抛物线的标准方程为 y² = 2px。
五、圆1. 圆的定义:圆可由平面内的一动点 M 到定点 O 的距离等于定长 r 的点的轨迹定义。
2. 圆的性质:- 圆的离心率 e 等于 0,焦距为零。
- 圆的半径为定长 r,焦距为零。
- 圆心到任意点的距离都相等,这个距离称为半径 r。
总结:通过以上对圆锥曲线的介绍,我们可以发现每一种曲线都有各自的定义和性质。
第1课时 圆锥曲线的定义、方程与性质

3 =2 3 .故选C. 2
考点聚焦
栏目索引
考点二 圆锥曲线的几何性质(高频考点)
命题点 1.求椭圆、双曲线的离心率或离心率的范围; 2.由圆锥曲线的性质求圆锥曲线的标准方程;
高考导航
3.求双曲线的渐近线方程.
1 2 3 2
高考导航
考点聚焦
栏目索引
方法归纳 求解圆锥曲线标准方程的方法是“先定型,后计算”. (1)定型:就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准 方程.
高考导航
(2)计算:即利用待定系数法求出方程中的a2,b2或p.另外,当焦点位置无法
确定时,抛物线常设为y2=2ax或x2=2ay(a≠0),椭圆常设为mx2+ny2=1(m>0, n>0,且m≠n),双曲线常设为mx2-ny2=1(mn>0).
考点聚焦
栏目索引
跟踪集训
x2 y 2 1.(2017辽宁沈阳质量检测(二))已知双曲线C: 2 - 2 =1(a>0,b>0)的左、 a b 高考导航
右焦点分别为F1,F2,点M与双曲线C的焦点不重合,点M关于F1,F2的对称 点分别为A,B,线段MN的中点在双曲线的右支上,若|AN|-|BN|=12,则a=
(3)抛物线的标准方程为x2=±2py,y2=±2px,其中p>0.
考点聚焦
栏目索引
典型例题
x2 y 2 (1)(2017河南郑州质量预测(三))椭圆 5 + 4 =1的左焦点为F,直线x=
a与椭圆相交于点M,N,当△FMN的周长最大时,△FMN的面积是 ( )
圆锥曲线的极点与极线问题

圆锥曲线的极点与极线问题圆锥曲线的极点与极线问题导言圆锥曲线是数学中的一个重要分支,其所涵盖的概念和性质有着深远的研究价值。
其中,圆锥曲线的极点与极线问题是一个具有特殊意义的主题。
在本文中,我将以深度和广度的方式来探讨圆锥曲线的极点与极线,希望能够使读者对这一问题有全面、深刻和灵活的理解。
一、圆锥曲线的基本定义与性质1.1 什么是圆锥曲线圆锥曲线是由一个平面与一个平行于它的不相交的直线切割圆锥所得到的曲线。
根据切割的方式和角度不同,圆锥曲线可以分为椭圆、双曲线和抛物线三类。
1.2 圆锥曲线的焦点与离心率圆锥曲线的焦点是指在其上的特殊点,其具有特殊的几何性质。
离心率是一个衡量圆锥曲线形状的参数,也是圆锥曲线性质的重要指标。
二、极点与极线的基本概念2.1 极点的定义与性质在平面上给定一个圆锥曲线,其直角坐标系中的原点O被称为该圆锥曲线的极点。
极点在圆锥曲线的研究中具有重要的地位,它与曲线的各种性质密切相关。
2.2 极线的定义与性质对于圆锥曲线上的任意一点P,以极点为中心,作直线OP,称为圆锥曲线的极线。
极线是一个与极点相关的直线,它与曲线的位置和特性有着密切的联系。
三、不同类型曲线的极点与极线问题3.1 椭圆的极点与极线对于椭圆,其极点为原点O,极线为过原点O的直线。
椭圆的极点处于其主轴的中点位置,其极线是关于两个焦点的对称直线。
3.2 双曲线的极点与极线对于双曲线,其极点为原点O,极线为过原点O的渐近线。
双曲线的极点处于离心率之间的位置,其极线是关于两个焦点的渐近线。
3.3 抛物线的极点与极线对于抛物线,其极点为其焦点,极线为过焦点的直线。
抛物线的极点位于抛物线的顶点位置,其极线是关于焦点的直线。
四、个人观点与理解圆锥曲线的极点与极线问题是一个十分有趣且具有挑战性的数学问题。
通过研究圆锥曲线的极点与极线,我们能够更深入地理解曲线的性质和特性。
极点是曲线的重要几何特征,它能够从不同的角度揭示出曲线的各种性质。
圆锥曲线的平面几何性质-双曲线

③2OA ON OM =⋅,即OA 是OM 、ON 的等比中项.二、双曲线1.双曲线的定义式如图,P 是双曲线上一点,1F 、2F 是焦点,AB 是实轴,则12PF PF AB -=,即双曲线定义.2.双曲线的直径与共轭直径如图,双曲线的平行弦CD 、EF 、GH 的中点M 、N 、P 在同一条直线l 上,当l 与双曲线22221(,0)x y a b a b-=>的交点为A 、B 时,这条线段AB 叫做抛物线的直径.双曲线的直径有若干条,它们都过双曲线的中心O .设平行弦斜率为k ,则直径方程为220b x a ky -=,其中双曲线为22221(,0)x y a b a b-=>.平行于直径AB 的弦11C D 、11E F 、11G H 的中点1M 、1N 、1P 也在同一条直线1l 上,当1l 与双曲线22221(,0)x y a b a b -=>的共轭双曲线22221(,0)x y a b a b-=->的交点为1A 、1B 时,线段11A B 叫做直径AB 的共轭直径.397(1)双曲线直径与共轭直径的关系:直径与共轭直径的斜率之积为定值,即1122AB A B b k k a=,其中双曲线方程为22221(,0)x y a b a b-=>.(2)双曲线的任意一条直径平分平行于其共轭直径的弦.(3)如图,设双曲线22221(,0)x y a b a b-=>两共轭直径的长2AB m =、2CD n =,O 是双曲线的中心,两共轭直径与长轴的夹角(锐角)为2DOF α∠=、2BOF β∠=,且βα<,则sin()abmnαβ-=且2222m n a b -=-(定值).(4)双曲线上任意一点P 的焦半径之积等于其对应的半共轭直径的平方.(5)如图,AB 、CD 是共轭直径,作EFGH 使其四边过共轭直径端点且与共轭直径平行,则4EFGH S ab = .3.双曲线中的弧与弓形如图A 是双曲线上的右顶点,右支上有点(,)M x y -和(,)N x y ,则398弧AN 的长度为2201x Archal ae ch tdt =+⎰;弓形MAN 的面积为ln()x y S xy ab a b=-+弓形MAN .4.双曲线的切线(1)如图,O 是双曲线的中心,M 是弦CD 的中点,AB 是直径,P 是线段AB 上一点,若AM APBM BP =,则PC 、PD 是双曲线的切线.反之,若PC 、PD 是双曲线的切线,则AM APBM BP=.(2)如图,M 是弦CD 的中点,AB 是直径,若BK CD ,则BK 是双曲线的切线.反之,若BK 是双曲线的切线,则BK CD .(3)如图,直线AB 切双曲线于点T ,交双曲线的渐近线于A 、B ,则TA TB =.且双曲线上动点的切线与渐近线形成的三角形的面积为定值OAB S ab ∆=.399更进一步,如图,直线交双曲线及其渐近线,则有AC BD =、EG FH =;以及OAC OBD S S ∆∆=、OEG OFH S S ∆∆=.(4)如图,O A 、OB 是渐近线,AB 、CD 是切线,则AD BC ,且OA OB OC OD⋅=⋅即OA OB ⋅为定值;(5)如图,两共轭双曲线中,TM 、TN 是切线,AB TM GH 、CD TN EF ,AB 、CD 交于P ,EF 、GH 交于双曲线的中心O ,则22TM OG OH TN OE OF ⋅=⋅;PA PB OG OHPC PD OE OF⋅⋅=⋅⋅.400(6)如图,AB 、AC 是焦点弦,则A 、B 处切线的交点I 在准线GH 上,即1AF B ∆的内心I 在准线上;A 、C 处切线的交点a I 在准线EF 上,即2AF C ∆的外心a I 在准线上.(7)如图,CE 、CF 是双曲线的定切线,动切线AB 交CE 、CF 于A 、B ,则2AF B ∠为定值.(8)如图,A B 是双曲线的实轴,CD 切双曲线于T ,且AC AB ⊥、BD AB ⊥,则①以CD 为直径的圆过焦点1F 、2F .②反之,以CD 为直径的圆过焦点1F 、2F ,则AC AB ⊥、BD AB ⊥.③若2CF 、1DF 交于H ,则以CH 为直径的圆过1F 、T ,以DH 为直径的圆过2F 、T .④若1F M 、2F N 垂直于切线CD ,则以AB 为直径的圆过M 、N .⑤1FT ON 、2F T OM .401⑥若11CF DF ⊥(110CF DF ⋅= ),则CD 是双曲线的切线或渐近线.另外,110CF DF ⋅<则CD 与双曲线相离;110CF DF ⋅>则CD 与双曲线相交.5.双曲线的特征三角形如图,双曲线方程为22221(,0)x y a b a b -=>,M 是准线2a x c =与渐近线by x a=的交点,A 是实轴右端点,B 是虚轴上端点,1F 、2F 是左右焦点,则(1)特征三角形2Rt AOB Rt OAN Rt OMF ∆≅∆≅∆;渐近线by x a=、直线x a =、直线y b =、圆222x y c +=四线共点N .(2)过焦点向渐近线作垂线,则垂足在准线上;反之,过准线与渐近线的交点作这条渐近线的垂线,则垂线过焦点;焦点到渐近线的距离2MF AN OB b ===.(3)以实轴、虚轴分别为长、宽的矩形DEHN 与以双曲线的中心为圆心、半焦距长为半径的圆相内接.(4)以双曲线的中心为圆心,实半轴长为半径的圆过准线与渐近线的交点,即OM OA a ==.(5)本图提供了双曲线草图的准确画法。
圆锥曲线知识点整理

圆锥曲线知识点整理圆锥曲线是数学中的重要概念之一,是一个由一个动点和一个定点之间的线段所确定的曲线。
它包括椭圆、双曲线和抛物线这三种基本形式。
圆锥曲线在几何学、物理学、工程学等领域均有广泛的应用,掌握圆锥曲线的知识对于深入学习和应用这些领域的知识至关重要。
以下是圆锥曲线的一些常见知识点整理:1. 椭圆:椭圆是一个闭合的曲线,它有两个焦点和一个长轴。
定义椭圆的一个特性是到两个焦点的距离之和等于常数,这个常数被称为椭圆的短轴长度。
椭圆的方程可以表示为(x/a)² + (y/b)² = 1,其中a和b分别代表椭圆的半长轴和半短轴。
2. 双曲线:双曲线是一个开放的曲线,它有两个分离的分支。
双曲线的定义也与焦点有关,但与椭圆的定义不同,双曲线的焦点之间的距离差等于常数。
双曲线的方程可以表示为(x/a)² - (y/b)² = 1,其中a和b分别代表双曲线的半长轴和半短轴。
3. 抛物线:抛物线是一个开放的曲线,它有一个焦点和一个直线称为准线。
抛物线的定义与焦点和准线之间的距离以及焦点到曲线上任意一点的距离有关。
抛物线的方程可以表示为y = ax² + bx + c,其中a、b和c分别代表抛物线的系数。
4. 圆锥曲线的性质:圆锥曲线具有许多有趣的性质和特点。
例如,椭圆的离心率小于1,而双曲线的离心率大于1。
抛物线的离心率等于1,它在焦点上有对称性。
此外,圆锥曲线还具有切线、法线、渐近线等几何性质,这些性质在解题和实际应用中非常重要。
5. 圆锥曲线的应用:圆锥曲线在许多领域都有广泛的应用。
在天文学中,行星的轨道可以用椭圆来描述;在工程学中,双曲线常用于天线的设计和无线通信的信号传播;在物理学中,抛物线可用于描述物体在重力作。
高一数学圆锥曲线的标准方程与几何性质

单击此处添加标题
圆锥曲线包括椭圆、双曲线和抛物线
单击此处添加标题
圆锥曲线的标准方程包括x^2/a^2 + y^2/b^2 = 1(椭圆)、 x^2/a^2 - y^2/b^2 = 1(双曲线)和y = ax^2 + bx + c(抛 物线)
单击此处添加标题
椭圆的性质:对 称性、旋转性、 中心对称性、焦 点对称性
椭圆的应用:光 学、天体物理、 工程等领域
双曲线的标准方程
双曲线的定义:平面内与两个定点F1、F2的距离之差的绝对值等于常数(小于|F1F2|)的点 的轨迹
双曲线的标准方程:x^2/a^2 - y^2/b^2 = 1(a>0,b>0)
双曲线的焦点:F1(c,0), F2(-c,0)
利用几何性质和代 数关系,求解标准 方程
验证求解结果是否 满足圆锥曲线的定 义和性质
圆锥曲线的几何性质
圆锥曲线的焦点与准线
焦点:圆锥曲线上的一个特殊 点,决定了曲线的形状和性质
准线:与焦点相对应的直线, 决定了曲线的性质和位置
椭圆的焦点与准线:椭圆的焦 点在椭圆的中心,准线是垂直 于椭圆中心的直线
圆锥曲线在工程中 的应用:如建筑设 计、机械制造等
圆锥曲线在数学中 的应用:如解析几 何、微积分等
圆锥曲线在计算机 科学中的应用:如 图形学、计算机视 觉等
解析几何问题中的应用
圆锥曲线在物理中的应用:如天体运动、电磁场等 圆锥曲线在工程中的应用:如建筑设计、机械制造等 圆锥曲线在计算机图形学中的应用:如三维建模、图像处理等 圆锥曲线在数学竞赛中的应用:如奥林匹克数学竞赛、国际数学竞赛等
圆锥曲线在实际问题中 的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. . . .圆锥曲线的几何性质一、椭圆的几何性质(以22a x +22by =1(a ﹥b ﹥01、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义12121212242AF AF a AF AF BF BF a BF BF a +=⎫⎪⇒+++=⎬+=⎪⎭即2ABF C2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2tan 2θ•b(2)(S ⊿PF1F2)max = bc (3)当P 证明:(1)在12AF F 中∵ 22212124cos 2PF PF c PF PF θ+-=⋅∴ ()221212122cos 24PF PF PF PF PF PF c θ⋅=+-⋅-∴ 21221cos b PF PF θ⋅=+ ∴12212sin 21cos PF F b S b θθ=⨯⋅=+(2)(S ⊿PF1F2)max =max 122c h bc ⨯⨯=(3 ()()()22222222120022221244cos 22PF PF c a ex a ex c PF PF a e x θ+-++--===⋅+当0x =0时 cos θ有最小值2222a c a - 即∠F 1PF 2最大3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M ,则M 的轨迹是x 2+y 2=a 2证明:延长1F M 交2F P 于F ,连接OM 由已知有1PF FP =∴ 212OM FF ==()1212PF PF +=a 所以M 的轨迹方程为 4、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2切证明:取1PF 的中点M ,连接OM 。
令圆M 的直径1PF ,半径为r ∵ OM =()2111112222PF a PF a PF a r =-=-=- ∴ 圆M ∴ 以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2切5、任一焦点⊿PF 1F 2的切圆圆心为I ,连结PI 延长交长轴于R ,xxxx证明:令()()1122,,,A x y B x y 到准线的距离为12,d d 以为直径的圆的圆心为M 到准线的距离为d 。
∵ ()21221222AF ed AF BF e d d BF ed =⎫⇒+=+⇒⎬=⎭()()1212122AB R e d d R e d d ==+⇒=+ ∵(1212d d d =+∵ 01e ∴ R d 7、A 为椭圆一定点,P 在椭圆上,则: (∣PA ∣+∣PF 2∣)max =2a+∣AF 1∣ (∣PA ∣+∣PF 2∣)min =2a-∣AF 1∣ 证明:连接11,,AP AF PF ∵ ()21122AP PF AP a PF a AP PF +=+-=+-∵111AF AP PF AF -≤-≤∴122a AF AP PF -≤+∴ (∣PA ∣+∣PF 2∣)max =2a+∣AF 1∣ (∣PA ∣+∣PF 2∣)8、A 为椭圆一定点,P 是椭圆上的动点,则 (∣PA ∣+ePF 2)min = A 到右准线的距离证明:设到右准线的距离d,由椭圆的第二定义有PF e d d =⇒=∴(∣PA ∣+ePF 2)min =()minPA d+ = A 到右准线的距离.9、焦点⊿PF 1F 2的旁心在直线 x=±a 上。
证明:令☉I 与⊿PF 1F 2三边所在的直线相切于M 、N 、A∵ PM PN = 22F N F A =∴111221PF PN F M F F F N F A+=+=∵ 11FM F A =∴ 1122PF PN F F F N +=+ xyxx∵ 22F N F A =∴ 121222PF PN F N F F F N F A ++=++∵ 22F N F A =∴ 2222a c F A =+∴ 2a c F A =+ 即为椭圆顶点。
∴ 焦点⊿PF 1F 2的旁心在直线 x=±a 上10、P 是椭圆上任意一点,PF 2的延长线交右准线于上另一任意点,连结PK 交椭圆于Q ,则KF 2平分∠证明:令P,Q 到准线的距离为12,d d2122212122222212PF e d PF QF PF d QF d d QF d PF e d QF d PKd QK ⎫⎫=⎪⎪⎪⎪⇒=⇒=⎬⎪⎪=⇒=⎬⎪⎭⎪⎪=⎪⎭由三角形外角平分线性质定理有KF 2平分∠EF 2Q11、)(2112定值baBF AF =+证明:令()()1122,,,A x y B x y1:当AB 的斜率存在时,设直线AB 方程为(y k =∵()22222222222222(2)0y k x c b x a k x k cx c k a b x y ab =-⎧⎪⇒+-+-=⎨+⎪⎩22222222222()20b a k x a k cx a k c a b ⇒+-+-=∴ 22122222a k c x x b a k +=+ 2222212222a k c a b x x b a k-=+∴12121111AF a ex BF a ex AF BF a ex a ex =-⎫⎪⇒+=+⎬=---⎪⎭()()122212122a e x x a ae x x e x x -+=-++ =2222222222222222222222222222222222222222222222()a k c c a k ca e ab a k a b a k a kc a k c a b a k c c a k c a b a ae e a ae b a k b a k b a k a b a k --⋅++=---+-+++++ 32222422222242222222a k ab ak c a k a b a k c c k b c +-=+-+- ()2222224222222222222ak a c ab ak ak b a b b c k b a c -++==+-+- x()()22222121a k a b b k +==+ 2: 当AB 的斜率存在时,222112a a a AF BF b b b+=+=)(2112定值baBF AF =+12、AB是椭圆的任意一弦,P 是AB 中点, 则22ab K K OP AB -=•(定值)证明:令()()1122,,,A x y B x y ,()00,P x y则()1202x x x += ()1202y y y +=∵ ()()()()22112212121212222222221..01x y x x x x y y y y a b a b x y a b ⎫+=⎪+-+-⎪⇒+=⎬⎪+=⎪⎭(()()121221212y x x a y y ⇒=--+ ∵ ()()1212AB y y k x x -=-,0OPy k x =∴ 221ABOPb k k a ⎛⎫=⋅- ⎪⎝⎭ ∴ 22AB OP b k k a ⋅=-13、椭圆的短轴端点为B 1、B 2,P 是椭圆上任一点,连结B 1P 、B 2P 分别 交长轴于N 、M 两点,则有∣OM ∣*∣ON ∣ =a 2证明:()()()()()1210020,,0,,0,,,0B b B b N x P x y M x - ∴()()()()2002210011,,,,,,B P x y b B M x b B P x y b B N x b =-=-=+=∵ 由于2B 、P 、M 共线 ∴ 000220x y b bx x x b y b --=⇒=--∵ 由于()()100200,,,PF c x y PF c x y =---=-- B1、P 、N 共线∴000110x y b bx x x b y b+=⇒=+ ∴ 222200222200x b x b OM ON ABy b y b-⋅==--∵ 22222222000002222221x y x b y b x a a b a b b y -+=⇒=⇒=-∴ 2OM ON ⋅14、椭圆的长轴端点为A 1、A 2,P 是椭圆上任一点, 连结A 1P 、A 2P 并延长,交一准线于N 、M 两点,则M 、N 与对应准线的焦点角为900证明:令()221200,,,,,a a M y N y P x y c c ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭, ()1,0A a -()2,0A a xx∴()()100200221122,,,,,,,A P x a y A P x a y a a A M a y A N a y c c =+=-⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭∵ 由于1A 、P 、M 共线 ∴ 20001210()a y a x a y c y a y x a a c⋅++=⇒=++ ∵ 由于2,,A P N共线 ∴ 20002220()a y a x a y c y a y x a a c⋅--=⇒=-- ∴22242200012222000()()a a y a y a y a a c c c y y x a x a x a c ⋅-⋅+-==⋅-+-∵22220002222201x y y b a b x a a+=⇒=--∴24221222b a ac y y a c -=-⋅42b c=- ∵ 21412222,,a FM c y c b FM FN y y c a FN c y c ⎫⎛⎫=-⎪⎪⎝⎭⎪⇒⋅=+⎬⎛⎫⎪=- ⎪⎪⎝⎭⎭∴ 0FM FN ⋅=∴ M 、N 与对应准线的焦点角为90015、过椭圆准线上任一点作椭圆和切线,切点弦AB 过 该准线对应的焦点。
证明:设20,a M y c ⎛⎫⎪⎝⎭则AB 的方程为20221axy y c a b+=即 021y y x c b +=必过点(c 16证明:设()00,P x y ,则过P 点的切线l :00221x x y ya b+=,直线l 的法线x 交轴于Q 直线l 的法向量为:0022,x y n a b ⎛⎫= ⎪⎝⎭∵()()100200,,,PF c x y PF c x y =---=-- ∴222220002PF c x y cx =++-2222200022b x c x cx b a =+-++42220022a c x a cx a +-=()2022a cx a -=同理 21PF ()2022a cx a+=2 ∵ 22000122cx x y n PF a b --⋅=-222200022cx x b x b a a --=-+202a cx a --=同理2022a cx n PF a-+⋅= xm∴ 202222022cos a cx n PF a F PQ a cx PF nn a -+⋅∠==-⋅⋅1n = 202222022cos a cx n PF a F PQ a cx PF nn a -+⋅∠==⋅-⋅⋅1n = ∴ 12F PQ F PQ ∠=∠二、双曲线的几何性质(均以 为例:(1)焦点三角形面积:2cot2ϑ*=∆b S(2)、过作∠F 1PF 2的角平行线的重线垂足M 的轨迹是222a y x =+(3)、以焦半径为直径作圆长的焦半径为直径作圆与222a y x =+切,小的圆与222a y x =+外切。