金融数学课件资料PPT课件

合集下载

《金融数学》ppt课件(10)利率的期限结构38页PPT文档

《金融数学》ppt课件(10)利率的期限结构38页PPT文档
9
例:假设1年期和2年期的即期利率分别为5%和5.5126%。3 年期债券的价格为100,息票率为6%。求3年期的即期利 率。
解:3年期的即期利率满足下述方程:
1001 6r1(16r2)2(110r63)3
1.6051.05561262(110r63)3
r36.0411%
10
与表1 对应的即期利率曲线
套利策略:按100元的价格卖出一个三年期债券,同时用 99.3872元的成本复制一个相同的现金流,即可在0时刻获 得100-99.3872=0.6128(元)的无风险收益。 将99.3872元按4.500%投资一年,支付已售债券的息票 5.861元后,还剩余: 99.3872×1.045 - 5.861 = 97.9986(元) 上述资金在第二年按远期利率6.002%再投资一年,支付 已售债券的息票5.861元后, 剩余: 97.9986×1.06002 - 5.861 = 98.0194(元)
1
到期收益率
到期收益率(yield to maturity):资产的内部报酬率,是 使得该项资产未来现金流的现值与其价格相等的利率。
P
t 0
Ct (1 y)t
2
表1:利率的期限结构(由10种不同到期日的债券组成)
到期日 1 2 3 4 5 6 7 8 9 10
年息票率 2% 5% 6% 10% 4% 12% 0% 7% 4% 8%
• 买入一项价格被低估的资产,并出售一系列现金流与之相匹配的资产。
28
例(价格被低估):一个年息票率为5%的两年期债券的价格 为99元,其面值为100元。1年期即期利率为4.5%,2年期 即期利率为5%。试判断是否存在套利机会。如果存在, 请确定一个无净现金流出,且可获得无风险收益的策略。

金融数学ppt课件

金融数学ppt课件

考虑T时刻到期的欧式期权,假定到期时,期 权的内在价值为V(T)=g(P(T));
设V(t,x)表示在t时刻股票价格为x时,期权的价值, 利用Ito公式可得到如下Black-Scholes方程
终V t端(t,条x 件) r V(T x x( ,tx,)x V ) g(1 2 x)2 x 2 V x(t x ,x ) r( V t,x () 5.2)
解上述联立方程可得
0 V S 1 1 ( ( H H ) ) V S 1 1 ( ( T T ) ) ,V 0 1 1 r 1 u r d d V 1 ( H ) u u ( 1 d r ) V 1 ( T ) *

0 称为套期保值比。 注意若取
向量自回归模型及其应用 14
1.投资组合理论简介
在投资活动中,人们发现,投资者手中持有多种 不同风险的证券,可以减轻风险带来的损失,对于投 资若干种不同风险与收益的证券形成的证券组称为证 券投资组合。
证券投资组合的原则是,组合期望收益愈大愈好, 组合标准差愈小愈好,但在同一证券市场中,一般情 形是一种证券的平均收益越大,风险也越大,因而最 优投资组合应为一个条件极值问题的解,即对一定的 期望收益率,选择资产组合使其总风险最小。
15
Markowitz 提出的证券组合均值方差问题,是证券 组合理论的基本问题,可描述为有约束的线性规划问

mi
n2p
mi w
nwTw
s.t. 1Tw1
E(Xp) E(X)Tw
解上述问题可得最优资产组合w*的表达式,且最 优资产组合的方差为
p 2 a 2 2 b c
诺贝尔经济奖简介(3)
2003年度诺贝尔经济学奖授予 Robert F.Engle和 Clive Granger。

金融数学1ppt课件

金融数学1ppt课件
精品课件
假设一个人面临两种选择: (1)确定性获得15元 (2)50%获得10元,50%获得20元。 会选择哪一种?
精品课件
说明: 取f (x) U(x),t 0.5
确定性收入效用:U(15) 不确定收入的期望效用:0.5U(20) 0.5U(10) 如果:U(15) 0.5U(20) 0.5U(10),U是凹函数,风险厌恶。 如果:U(15) 0.5U(20) 0.5U(10),U是凸函数,风险爱好。
这次改为讲解金融实例为主
精品课件
第1讲:风险态度和效用函数 假设一个人面临两种选择: (1)确定性获得15元 (2)50%获得10元,50%获得20元。 会选择哪一种?
精品课件
效用函数
一、偏好关系
设B是n维欧氏空间Rn中的凸集,在B中引入一个二元 关系记为" ",如果它具有: (1)(反身性)若xB,则x x; (2) (可比较性)若x, yB,则x y,或者y x; (3) (传递性)若x, y,zB,如果x y, y z,则x z; 我们称“ ”是一个偏好关系。
精品课件
课程目标
不在于分析数学原理,而重点学习 利用数学工具分析金融问题的方法。
着重于金融问题的分析与解决
精品课件
课程要求
预习: 每次上课前尽量预习内容
作业要求: 每次所布置作业下次上课时交给助
教,要求独立完成,不能抄袭。
精品课件
导论
一、什么是金融数学?
金融数学(Financial Mathematics),又称 数理金融学,是利用数学工具研究金融, 进行定量分析,以求找到金融内在规律并 用以指导实践。金融数学也可以理解为现 代数学与计算技术在金融领域的应用。
精品课件

金融数学完整课件全辑

金融数学完整课件全辑

风险管理政策
制定明确的风险管理政策和流程,确保业务 操作的合规性。
危机应对计划
制定应对重大风险的应急预案,确保在危机 发生时能够迅速、有效地应对。
05
投资组合优化
马科维茨投资组合理论
总结词
该理论是现代投资组合理论的基石,它通过 数学模型和优化技术,为投资者提供了构建 最优投资组合的方法。
详细描述
债券是一种常见的固定收益证券,其价格与利率之间存在密切关系。债券定价模型用于确定债券的理 论价格,通常基于现值计算方法。不同类型的债券(如国债、企业债等)具有不同的风险和收益特征 ,因此需要采用不同的定价模型。
复杂衍生品定价
总结词
概述了复杂衍生品定价的难点和方法, 包括信用衍生品、利率衍生品和商品衍 生品等。
数据清洗
对数据进行预处理,去除异常值、缺 失值和重复值,提高数据质量。
数据存储
采用分布式存储系统,高效地存储和 管理大规模金融数据。
数据可视化
通过图表、图像等形式直观地展示数 据分析结果,帮助用户更好地理解数 据。
机器学习在金融中的应用
风险评估
信贷审批
利用机器学习算法对历史金融数据进行分 析,预测未来市场走势和风险状况。
微积分
微积分是研究函数、极限、导数和积 分的数学分支。在金融领域,微积分 用于计算金融衍生品的价格和风险度 量。
线性代数
线性代数是研究线性方程组、矩阵和 向量空间的数学分支。在金融领域, 线性代数用于数据处理、模型建立和 优化问题求解等方面。
03
金融衍生品定价
期权定价模型
总结词
详细描述了期权定价模型的基本原理、应用场景和优缺点。
通过机器学习模型对借款人的信用状况进 行评估,提高信贷审批的效率和准确性。

金融数学课件资料PPT课件

金融数学课件资料PPT课件

期次(半年)
票息
0
1
40.00
2
40.00
3
40.00
4
40.00
合计
160.00
利息收入 折价累计额
48.23 48.64 49.07 49.52 195.46
8.23 8.64 9.07 9.52 35.46
账面值
964.54 972.77 981.41 990.48 1000.00
例题5-3
例:债券的面值为1000元,年息票率为6% ,期限为3年,到期按面值偿还。市场利率 为8%,试计算债券在购买6个月后的价格 和帐面值。
解:已知: C = F= 1000 r = g = 6% n=3 i= 8% 所以债券在购买日的价格为
在购买6个月后的价格为
在购买6个月后的帐面值等于价格扣除 应计息票收入: 按理论方法计算
P Nr(1 t)a Cvn n
Nr(1 t)a K n
该公式称为计算债券价格的基本公式,债券价格 的计算还有另外两种变型公式:
(1)溢价/折价公式: P C [Nr(1 t) Ci]a n
(2)Makeham公式: P K g(1 t) (C K )
例:
面值1000元的五年期债券,票息率为每年 计息两次的年名义利率10%,可以面值赎 回,现以每年计息两次的年名义利率12% 的收益率购买,求分期偿债表中的总利息 收入。
SUCCESS
THANK YOU

5.1.3票息支付周期内债券的估价
债券的平价:债券购买日的实际交付款项 债券的市价:扣除应计票息后的买价 计算方法: 理论法 实务法 混合法
债券的面值N=1000 债券的收益率i=0.05

《金融数学模型》课件

《金融数学模型》课件
略。
风险管理
金融数学模型可以对投资组合 进行风险评估和管理,帮助投 资者降低投资风险。
资产定价
金融数学模型可以对资产进行 定价,帮助投资者确定资产的 价值。
决策支持
金融数学模型可以为决策者提 供科学的数据支持,帮助决策
者做出更准确的决策。
金融数学模型的分类
线性模型
非线性模型
线性模型是指模型中的变量之间存在线性 关系,如回归分析、弹性系数等。
残差分析
检查残差是否随机、正态分布,并具有恒定的方差。这有助于诊断模 型是否满足某些假设。
04
非线性回归模型
非线性回归模型的定义
总结词
非线性关系
详细描述
非线性回归模型用于描述因变量和自变量之间的非线性关系,这种词:参数估计
详细描述:通过最小二乘法等参数估计方法,确定非线性回归模型的参数,以使 实际数据与预测数据之间的误差最小化。
建立模型
根据收集到的数据,使用最小二乘法等统计方法 来估计模型的参数 (a) 和 (b)。
确定自变量和因变量
确定要预测的变量作为因变量,选择与预测结果 相关的变量作为自变量。
诊断和修正
检查模型的残差图和其他统计量,以确定模型是 否满足某些假设(如线性关系、误差的正态性和 同方差性)。如果需要,可以使用转换或引入其 他变量来改进模型。
基尼指数越小,模型的纯度越高。可以通过计算每个节点的基 尼指数来评估模型的分类效果。
通过计算每个特征在决策树中的使用次数或信息增益等指标来 评估特征的重要性,从而了解哪些特征对模型预测效果影响最
大。
06
神经网络模型
神经网络模型的定义
神经网络模型是一种模拟人脑神经元工作方式的计算模型 ,通过训练和学习,能够实现对复杂数据的分类、预测和 优化等任务。

金融数学完整课件

金融数学完整课件

金融数学:运用数学工具来定量研究金融问题的一门学科。
与其说是一门独立学科,还不如说是作为一系列方法而存在 。
2020/3/10
11
一、金融与金融数学
金融数学 是金融经济学的数学化。金融经济学的主要 研究对象是在证券市场上的投资和交 易,金融数学则是通 过建立证券市场的数学模型,研究证券市场的运作规律。
2020/3/10
18
二、金融数学的发展历程
第二个时期为1969-1979 年:
这一时期是金融数学发展的黄金时代,主要代表人 物有莫顿(R . Merton )、布莱克(F . Black )、斯科尔 斯( M . Scholes )、考克斯(J . Cox )、罗斯 (S.Ross)、鲁宾斯坦(M . Rubinstein )、莱克 (S.Lekoy)、卢卡斯(D . Lucas )、布雷登(D . Breeden )和哈里森(J . M . Harrison ) 等。
2020/3/10
25
补充: 金融数学基础
第一节 微积分在数理金融中的应用 第二节 线性代数在数理金融中的应用 第三节 随机过程在数理金融中的应用
2020/3/10
26
第三节 随机过程在数理金融中的应用
同一时期另一引人注目的发展是非对称信息分析方法 开始使用。
20பைடு நூலகம்0/3/10
21
二、金融数学的发展历程
金融数学发展的第三个时期:
1980 年至今是金融数学发展的第三个时期,是成果 频出、不断成熟完善的时期。该期间的代表人物有达菲 (D . Duffie )、卡瑞撤斯(I . Karatzas )、考克斯(J . Cox )、黄(C . F . Huang )等。
2020/3/10

《金融数学》ppt课件(1-2)利息度量

《金融数学》ppt课件(1-2)利息度量

重新整理得
1-
d
1
d (m) m
m
d
1-
1
d (m) m
m
d(m)
1 1
m1-(1-d)mm1-vm
a
20
Example:Find the present value of $1000 to be paid at the end of six year at 6% per annum payable in advance and convertible semiannually.
i(m):年初投资1,每年复利m次,每1/m年末获得i(m)/m利息 d(m):年初投资1,每年复利m次,每1/m年初获得d(m)/m利息
a
27
思考题
某人2006年1月1日在银行存入10000元,期限为1年,年利 率为3%。1月末,银行的1年期存款利率上调了100个基点。 请分析此人是否有必要对该笔存款转存?假设活期存款利 率不变,为0.72%。 1年按360天计算,每月按30天计算。
a
29
回顾:
年实际利率度量了资金在一年内的增长强度(年平均)。
名义利率度量了资金在一个小区间内(如一个月)的增长 强度(月平均)。
问题:
哪一个更能准确度量资金的增值速度?名义利率还是实 际利率?
如何度量资金在每一个时点上的增长强度?
在名义利率中,如果时间区间无穷小,名义利率就度量了 资金在一个时点上的增长强度。
a
25
nominal annual rate of discount is 10%
Compounding times per year 1(每年)
2(每半年) 4(每季) 12(每月) 52(每周)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n|
n|
若 g>i,则债券溢价发行;
若g< i,则债券折价发行。
债券的价格取决于各期票息的现值和赎回值的现 值。由于债券买价经常低于或者高于赎回值,因 而投资者在赎回日就有利润或者亏损,该利润或 者亏损在计算到期收益率时就反映在债券收益率 中。因此,应该将每期票息分成利息收入和本金 调整两个部分。
一般的,若面值不是1,是C,表中各值乘以 C即可.
溢价摊销 折价积累
例 购买的面值1000元的2年期债券,票息率为每年计息两次 的年名义利率为8%,收益率为每年计息两次的年名义利率 6%,建立债券分期偿还表。
期次(半年) 0 1 2 3 4
合计
票息
40.00 40.00 40.00 40.00 160.00
用这种方法将债券价值从购买日的买价连续地调 整到赎回日的赎回值。这些调整后的债券价值被 称为债券的账面值。
考虑面值为1,以面值赎回的n期附息债券 在不同时刻的账面值、利息的收入和本金 的调整状况。
记第t期票息中的利息收入为It 记第t时刻的本金调整为Pt 买价记为1+p
期次 票息
(2)溢价/折价公式:
P C [Nr(1 t) Ci]a n 1050 (420.8 10500.05)12.46 814.46
(3) Makeham公式: P K g(1 t) (C K ) i 395.73 0.04 0.8(1050 395.73) / 0.05 814.46
5.1 债券
1、所得税后的债券价格
首先定义如下符号: P:债券价格; N:债券的面值; C:债券的赎回值; r : 债券的票息率; Nr:票息额;
n:债券周期; g:债券的修正票息率; i:债券的收益率; K:赎回值的现值; G:债券的基础金额; t:所得税率;
债券的价格等于各期票息现值加上债券赎回值的 现值,因此,债券价格P可以用如上定义的符号 表示如下:
全价:实质是非整数期的债券价格
5.1.2 溢价与折价
若债券的价格高于赎回值即P>C,则称该债券为溢 价发行,P与C的差额称为溢价额。若买价低于赎 回值即P<C,则称该债券为折价发行,C与P的差 价称为折价额。
在不考虑所得税的情况下,由溢价/折价公式知
P C (Nr Ci)a C(g i)a
债券的面值N=1000 债券的收益率i=0.05
债券的赎回值C=1050 赎回值得现值K=395.79
债券的票息率r =0.042 债券的基础金额G=840
票息额Nr=42
所得税率=20%
故可以按照如下四种公式计算债券价格:
(1) 基本公式:
P Nr(1 t)a K n 42 0.8 a 395.734 814.46 20
(4)基础金额公式
P G(1 t) [C G(1 t)]vn 814.46
2、所得税、资本增益税后的债券价格:
P' (1 t2 )K (1 t1)(g / i)(C K ) 1 t2K / C
例5-2:面值1000元的10年期债券,票息率为每年 计息2次的年名义利率8.4%,赎回值为1050元,票 息所得税率为20%,且利率为i(2)=10%,资本增益 税30%。求债券价格。
i[1 (g i)a ] 2i
i[1 (g i)a ] 1i ng-p
(g i)v2 (g i)v1 (g i)a
ni
1 (g i)a 1i 1
由表可以看出: 1、账面值与定价公式按原收益率计算的价
格一致 2、本金调整之和等于p 3、利息收入之和等于票息减去本金调整 4、本金调增呈现等比数列的规律 注意: 账面值不同于重新购买该债券的价格
期次(半年)
票息
0
1
40.00
2
40.00
3
40.00
4
40.00
合计
160.00
利息收入 折价累计额
48.23 48.64 49.07 49.52 195.46
8.23 8.64 9.07 9.52 35.46
第五章 债券及其定价理论
本章介绍债券、债券的定价方法、收益率等内容。
债券是一种有价证券,体现的是一种债权债务关 系,持券人有权利按照约定的条件向发行人取得 利息和到期收回本金。
5.1 债券
5.1.1 债券价格

三个前提 (1)不考虑信用风险 (2)有固定到期日 (3)支付票息后的价格
(3)基础金额公式
i
P G(1 t) [C G(1 t)]vn
例 面值1000元的10年期债券,票息率为每年计息2次的年名义利率 8.4%,赎回值为1050元,票息所得税率为20%,且利率为i(2)=10%,求 债券价格。
解:首先确定如下符号的取值
债券周期n=20
债券的修正票率g=0.04
P Nr(1 t)a Cvn n
Nr(1 t)a K n
该公式称为计算债券价格的基本公式,债券价格 的计算还有另外两种变型公式:
(1)溢价/折价公式: P C [Nr(1 t) Ci]a n
(2)Makeham公式: P K g(1 t) (C K )
利息收入 溢价摊销额
账面值
1037.17
31.12 8.88 1028.29
30.85 9.15 1019.14
30.57 9.43 1009.71
30.29 9.71
1000.00
122.83 37.17
例 折价购买的面值1000元的2年期债券,票息率为每年计息两次 的年名义利率为8%,收益率为每年计息两次的年名义利率10%, 建立债券分期偿还表。
利息收入
本金调整
账面值
0
1+p=
1 (g i)a
ni
1
g
i[1 (g i)a ] ni
(g i)vn
1 (g i)a n-1|
……



t
g
i[1 (g i)a ] nt 1i
(g

i )v n t 1
1
(g

i)a nt i
……


n-1
相关文档
最新文档