数据结构实验报告稀疏矩阵运算
稀疏矩阵运算器实验报告

Qh=Qe=Q.data; // Qh、Qe的初值指向矩阵Q的非零元素首地址的前一地址
while(Mp<=Me&&Np<=Ne)
{
Qe++;
switch(comp(Mp->i,Np->i))
{
case 1: *Qe=*Mp;
Mp++;
while(Mp<=Me)
{
Qe++;
*Qe=*Mp;
Mp++;
}
Q.tu=Qe-Qh; //矩阵Q的非零元素个数
return 1;
}
int MultSMatrix(TSMatrix M, TSMatrix N, TSMatrix &Q) {
//求矩阵乘积Q=M?N,采用行逻辑链接存储表示。
int arow,brow,p,q,t,ctemp[30],l,ccol,tp;
稀疏矩阵运算器
一:问题描述:
稀疏矩阵是指那些多数元素为零的矩阵。利用稀疏特点进行储存和计算可以大大节省储存空间,提高计算效率。实现一个能进行称稀疏矩阵基本运算的运算器。
基本要求:
以带逻辑链接信息的三元组顺序表表示稀疏矩阵,实现矩阵相加,相减,相乘的运算。稀疏矩阵的输入形式采用三元组表示。而运算结果的矩阵则用通常的阵列形式列出。
else t = N.tu+1;
for (q=N.rpos[brow]; q< t; ++q) {
ccol = N.data[q].j; //乘积元素在Q中列号
ctemp[ccol] += M.data[p].e * N.data[q].e;
数据结构实验四稀疏矩阵运算

数据结构实验四稀疏矩阵运算1、实验目的掌握三元组法存储稀疏矩阵的方法及相关的基本操作。
2、实验内容∙用三元组法存放稀疏矩阵∙求出矩阵转置结果∙求出矩阵相乘结果∙输出结果矩阵3、实验要求∙用数组存放矩阵的三元组,矩阵的行数和列数及非0数据从键盘输入∙要求采用稀疏矩阵快速转置算法∙若两个矩阵不能相乘则输出“Error”4、试验参考程序typedef s tr uct { // 定义三元组的元素int i, j;int e;} Tr iple;typedef s tr uct { // 定义矩阵Tr iple data[MA XSI ZE + 1];int mu, nu, tu;} TSMa tr ix;typedef s tr uct { // 定义行逻辑连接矩阵Tr iple data[MA XSI ZE + 2];int rpos[MA XROW + 1];int mu, nu, tu;} RLSMatr ix;矩阵输入函数bool InPutT SMat r ix(T SMatr ix & T) {cout << "输入矩阵的行,列和非零元素个数:" << e ndl;cin >> T.mu >> T.nu >> T.tu;cout << "请输出非零元素的位置和值:" << e ndl;for (int k = 1;; k <= T.t u; k++)cin >> T.data[k].i >> T.da ta[k].j >> T.data[k].e;retur n t rue;}请补充完成下列矩阵转置函数、矩阵乘法函数与矩阵输出函数Bool Trans poseSMa tr ix(T SMa t r ix M, T SMat r ix & T){TSMatrix M,T; //定义预转置的矩阵InPutTSMatrix(M, 0); //输入矩阵int num[MAXROW+1];int cpot[MAXROW+1]; // 构建辅助数组int q,p,t;T.tu=M.tu; T.mu=M.nu; T.nu=M.mu;if(T.tu){for(int col=1;col<=M.nu;col++) num[col]=0;for(t=1;t<=M.tu;t++) ++num[M.data[t].j];cpot[1]=1;for(int i=2;i<=M.nu;i++) cpot[i]=cpot[i-1]+num[i-1]; // 求出每一列中非零元素在三元组中出现的位置for(p=1;p<=M.tu;p++){col=M.data[p].j; q=cpot[col];T.data[q].i=col; T.data[q].j=M.data[p].i;T.data[q].e=M.data[p].e; ++cpot[col];}}cout<<"输入矩阵的转置矩阵为"<<endl;OutPutSMatrix(T);return true;}Bool MultSMatr ix(RLSMatr ix M, RL SMatr ix N,RL SMat r ix & T){RLSMatrix M,N,Q; // 构建三个带“链接信息”的三元组表示的数组InPutTSMatrix(M,1); // 用普通三元组形式输入数组InPutTSMatrix(N,1);Count(M); Count(N);if(M.nu!=N.mu) return false;Q.mu=M.mu; Q.nu=N.nu; Q.tu=0; // Q初始化int ctemp[MAXROW+1]; // 辅助数组int arow,tp,p,brow,t,q,ccol;if(M.tu*N.tu){ // Q是非零矩阵for( arow=1;arow<=M.mu;arow++){///memset(ctemp,0,N.nu);for(int x=1;x<=N.nu;x++) // 当前行各元素累加器清零ctemp[x]=0;Q.rpos[arow]=Q.tu+1; // 当前行的首个非零元素在三元组中的位置为此行前所有非零元素+1 if(arow<M.mu) tp=M.rpos[arow+1];else tp=M.tu+1;for(p=M.rpos[arow];p<tp;p++){ // 对当前行每个非零元素进行操作brow=M.data[p].j; // 在N中找到i值也操作元素的j值相等的行if(brow<N.mu) t=N.rpos[brow+1];else t=N.tu+1;for(q=N.rpos[brow];q<t;q++){ // 对找出的行当每个非零元素进行操作ccol=N.data[q].j;ctemp[ccol] += M.data[p].e*N.data[q].e; // 将乘得到对应值放在相应的元素累加器里面}}for(ccol=1;ccol<=Q.nu;ccol++) // 对已经求出的累加器中的值压缩到Q中if(ctemp[ccol]){if(++Q.tu>MAXSIZE) return false;Q.data[Q.tu].e=ctemp[ccol];Q.data[Q.tu].i=arow;Q.data[Q.tu].j=ccol;}}OutPutSMatrix(Q);return true;}}boo l O utP utSMatrix(T SMat r ix T){// 输出矩阵,按标准格式输出int m,n,k=1;fo r(m=0;m<T.mu;m++){fo r(n=0;n<T.nu;n++){if((T.d a ta[k].i-1)==m&&(T.d a ta[k].j-1)==n){co ut.w id th(4);co ut<<T.d a ta[k++].e;}e ls e{co ut.w id th(4); co ut<<"0"; }}co ut<<e nd l;}re turn true;}}并建立ma in()函数对上述函数进行测试。
数据结构实验报告三稀疏矩阵的运算

数据结构实验报告三稀疏矩阵的运算实验课程名称数据结构课程设计专业班级学⽣姓名学号指导教师2012 ⾄ 2013 学年第⼀学期第 1 ⾄ 18 周⽬录实验题⽬:稀疏矩阵的运算 (3)⼀:概述 (3)⼆:系统分析 (3)三:概要设计 (3)四:详细设计 (4)五:运⾏与测试 (9)六:总结与⼼得 (9)实验题⽬:稀疏矩阵的运算⼀:概述本实验设计主要实现在⼗字链表存储结构输⼊稀疏矩阵,并对稀疏矩阵进⾏相加操作,最后输出运算结果。
⼆:系统分析本实验要求设计函数在⼗字链表结构下建⽴稀疏矩阵并初始化,在创建稀疏矩阵时,需要设计在⼗字链表下创建稀疏矩阵,在输⼊出现错误时,能够对错误进⾏判别处理,初始化稀疏矩阵都为空值。
在设计输出稀疏矩阵的值的函数时,根据情况编制函数,才能准确的输出稀疏矩阵。
在对稀疏矩阵进⾏初始化时,只输⼊⾮零元素的值和它所在的所在⾏及所在列。
在对稀疏矩阵输出时,以矩阵的完整形式输出。
除此之外还要求设计相加对两个矩阵进⾏运算,并输出最终的稀疏矩阵,定义相应的矩阵类型⽤于存放两个矩阵操作后的结果矩阵,这个结果矩阵的⾏、列数需要综合多⽅⾯情况来确定。
这些函数也是整个程序的难点,需要灵活运⽤数组及指针的特点。
三:概要设计⼗字链表结构体定义:typedef struct sex{int row,col,val; //⾮零元素的⾏、列下标及值struct sex *right,*dowm; //该⾮零元素所在⾏表和列表的后继元素}Node;矩阵的加法:此功能在⼗字链表存储结构下,由函数void addition(Node *cp1, Node *cp2, Node *cp3)实现。
当⽤户选择该功能,系统即提⽰⽤户初始化要进⾏加法的两个矩阵的信息。
然后进⾏加法,最后输出结果。
四:详细设计#include#includetypedef struct sex{int row,col,val; //⾮零元素的⾏、列下标及值struct sex *right,*dowm; //该⾮零元素所在⾏表和列表的后继元素}Node;Node * Init(int m, int n){int t,i;Node *cp;t=(m>=n)?m:n;cp=(Node *)malloc( (t+1)*sizeof(Node) ); //开辟⼀串连续的内存空间(*cp).row=m;(*cp).col=n;(*cp).val=t; //此表头结点的值域⽤来记录⾏列的最⼤值,以便于后⾯的开辟空间for(i=1;i<=t;i++){cp[i].right=cp+i;cp[i].dowm=cp+i; //构成带表头结点的空循环单链表}return cp;}void CreatCrossList(Node *cp){int t,i;Node *s,*temp;printf("请输⼊⾮零元素的个数N:");scanf("%d",&t);printf("\n请输⼊其对应坐标及元素值:\n");for(i=0;i{s=(Node *)malloc( sizeof(Node));scanf("%d%d%d",&s->row,&(*s).col,&s->val);temp=cp+s->row;if( temp->right!=cp+s->row )while( temp->right!=cp+s->row && temp->right->col<=s->col )temp=temp->right;s->right=temp->right;temp->right=s; //修改⾏链表插⼊位置temp=cp+s->col;if( temp->dowm!=cp+s->col )while( temp->dowm!=cp+s->col && temp->dowm->row<=s->row )temp=temp->dowm;s->dowm=temp->dowm;temp->dowm=s; //修改列链表插⼊位置}}void output(Node *cp){int i;Node *temp;printf("\n稀疏矩阵如下:\n");for(i=1;i<=cp->row;i++){temp=cp+i;while( temp->right!=cp+i ){printf("(%d,%d %d)",temp->right->row,temp->right->col,temp->right->val); temp=temp->right;}printf("\n");}}void Insert(Node *cp, Node *s){//此插⼊函数的作⽤是:⽣成⽬标矩阵Node *temp;temp=cp+s->row; //修改⾏链表指针if( temp->right!=cp+s->row )while( temp->right!=cp+s->row && temp->right->col<=s->col ) temp=temp->right;s->right=temp->right;temp->right=s;temp=cp+s->col; //修改列链表指针if( temp->dowm!=cp+s->col )while( temp->dowm!=cp+s->col && temp->dowm->row<=s->row ) temp=temp->dowm;s->dowm=temp->dowm;temp->dowm=s;}void addition(Node *cp1, Node *cp2, Node *cp3){int i;Node *w,*p,*q;for( i=1; i<=cp2->row && i<=cp3->row; i++){p=cp2+i;q=cp3+i;while( p->right!=cp2+i && q->right!=cp3+i ){w=(Node *)malloc( sizeof(Node) );w->row=p->right->row;if( p->right->col==q->right->col ){w->col=p->right->col;w->val=p->right->val+q->right->val; //相同位置上的元素值相加p=p->right;q=q->right;if( w->val )Insert(cp1,w); //把⾮零元插⼊到⽬标矩阵中}else if( p->right->colright->col ){w->col=p->right->col;w->val=p->right->val;p=p->right;Insert(cp1,w); //把cp2中的⾮零元插⼊到⽬标矩阵中}else{w->col=q->right->col;w->val=q->right->val;q=q->right;Insert(cp1,w); //把cp2中的⾮零元插⼊到⽬标矩阵中}}if( p->right==cp2+i )while( q->right!=cp3+i ){w=(Node *)malloc( sizeof(Node) );w->row=q->right->row;w->col=q->right->col;w->val=q->right->val;q=q->right;Insert(cp1,w); //把cp3中剩余的⾮零元插⼊⽬标矩阵中} else if( q->right==cp3+i )while( p->right!=cp2+i ){w=(Node *)malloc( sizeof(Node) );w->row=p->right->row;w->col=p->right->col;w->val=p->right->val;p=p->right;Insert(cp1,w); //把cp2中剩余的⾮零元插⼊到⽬标矩阵中} else; //两个矩阵同⼀⾏中同时结束}if( i>cp2->row)while(i<=cp3->row){//把cp3中剩余⾏中的⾮零元插⼊到⽬标矩阵中q=cp3+i;while( q->right!=cp3+i ){w=(Node *)malloc( sizeof(Node) );w->row=q->right->row;w->col=q->right->col;w->val=q->right->val;q=q->right;Insert(cp1,w);}i++; //继续下⼀⾏}else if(i>cp3->row)while( i<=cp2->row ){p=cp2+i;while( p->right!=cp2+i ){w=(Node *)malloc( sizeof(Node) );w->row=p->right->row;w->col=p->right->col;w->val=p->right->val;p=p->right;Insert(cp1,w);}i++; //继续下⼀⾏}}int main(){Node *cp1, *cp2, *cp3;int a, b;printf("\t\t\t*****稀疏矩阵的加法*****\n\n");printf("请输⼊cp2的⾏、列数:");scanf("%d%d",&a,&b);cp2=Init(a,b);printf("请输⼊cp3的⾏、列数:");scanf("%d%d",&a,&b);cp3=Init(a,b);a=cp2->row>=cp3->row?cp2->row:cp3->row;b=cp2->col>=cp3->col?cp2->col:cp3->col;cp1=Init(a,b); //开始初始化结果矩阵printf("\n\t>>>>>>>创建稀疏矩阵cp2\n");CreatCrossList(cp2);printf("\n\t>>>>>>>创建稀疏矩阵cp3\n");CreatCrossList(cp3);output(cp2);output(cp3);addition(cp1,cp2,cp3);printf("\n\n相加后的"); output(cp1);return 0;}五:运⾏与测试进⾏数据测试六:总结与⼼得⼗字链表作为存储结构表⽰随机稀疏矩阵,进⾏两矩阵的相加运算,所以⾸先要定义⼀个⼗字链表作为存储结构。
稀疏矩阵(实验报告)

《数据结构课程设计》实验报告一、实验目的:理解稀疏矩阵的加法运算,掌握稀疏矩阵的存储方法,即顺序存储的方式,利用顺序存储的特点——每一个元素都有一个直接前驱和一个直接后继,完成相关的操作。
二、内容与设计思想:1、设计思想1)主界面的设计定义两个矩阵a= 0 0 3 0 0 0 0 0 b= 0 2 0 0 0 0 0 00 0 0 0 0 0 5 0 0 0 0 4 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 6 0 00 0 0 0 7 0 0 0 0 0 0 0 8 0 0 00 0 0 0 0 0 0 0 0 0 1 0 0 0 0 00 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0定义两个数组A和B,用于存储矩阵a和矩阵b的值;定义一个数组C,用于存放数组A 和数组B相加后的结果。
2)实现方式稀疏矩阵的存储比较浪费空间,所以我们可以定义两个数组A、B,采用压缩存储的方式来对上面的两个矩阵进行存储。
具体的方法是,将非零元素的值和它所在的行号、列号作为一个结点存放在一起,这就唯一确定一个非零元素的三元组(i、j、v)。
将表示稀疏矩阵的非零元素的三元组按行优先的顺序排列,则得到一个其结点均为三元组的线性表。
即:以一维数组顺序存放非零元素的行号、列号和数值,行号-1作为结束标志。
例如,上面的矩阵a,利用数组A存储后内容为:A[0]=0,A[1]=2, A[2]=3, A[3]=1, A[4]=6, A[5]=5, A[6]=3, A[7]=4, A[8]=7, A[9]=5, A[10]=1, A[11]=9, A[12]=-1同理,用数组B存储矩阵b的值。
2、主要数据结构稀疏矩阵的转存算法:void CreateMatrix(int A[m][n],int B[50]){int i,j,k=0;for(i=0;i<m;i++)for(j=0;j<n;j++)if(A[i][j]!=0){B[k]=i;k++;B[k]=j;k++;B[k]=A[i][j];k++;}B[k]=-1;}稀疏矩阵的加法实现:3、主要算法结构分析:1)void CreateMatrix(int A[m][n],int B[50]),这是一个将稀疏矩阵转存的函数,类似于顺序存储三元组表。
稀疏矩阵数据结构实验报告

目录1.需求分析 (1)2.概要设计 (2)2.1链表对稀疏矩阵进行定义 (2)2.3程序一共有五个功能 (2)3.详细设计 (3)3.1稀疏矩阵存储算法分析 (3)3.2稀疏矩阵各运算算法分析 (3)4.调试分析 (8)4.1调试过程中的问题及解决方法 (8)4.2算法的时间复杂度和空间复杂 (8)4.3经验和体会 (8)5.用户使用说明 (9)6.测试结果 (10)6.1程序主界面 (10)6.2其他函数操作界面显示 (10)参考文献 (15)致谢 (16)1.需求分析矩阵在日常生活中应用广泛,尤其是有些特殊矩阵的运算。
但是在实际应用中有一种矩阵,在m×n的矩阵中有t个非零元素,且t远小于m×n,我们这样的矩阵被称为稀疏矩阵。
由于这类矩阵中通常零元素是没有规律的,为了能够找到相应的元素,仅存储非零元素的值是不行的,还要存储其所在的行和列等信息。
本程序主要的任务是创建稀疏矩阵,并且利用C++算法程序实现相应的运算(转置,加法,减法,乘法)(1)输入的形式以及范围:键盘输入符合要求的稀疏矩阵。
(2)输出形式:最终运算结果以矩阵的形式输出。
(3)程序功能实现:输入矩阵通过程序运算出相应的转置矩阵以及两个符合要求的矩阵的加减乘除法的运算。
(4)测试数据:如果输入正确,程序会显示最后的运算结果;否则错误时则会返回上层。
2.概要设计要存储稀疏矩阵并且进行运算,那么就要了解稀疏矩阵的存储结构,这里采用链表的形式存储稀疏矩阵并进行运算。
2.1链表对稀疏矩阵进行定义typedef struct OLNode{ // 定义链表元素int i,j;int e;struct OLNode *next; // 该非零元所在行表和列表的后继元素}OLNode,*OLink;typedef struct{ // 定义链表对象结构体OLink *head; //头指针int mu,nu,tu; // 行数,列数,和非零元素个数}CrossList;2.3程序一共有五个功能1.用CreateSMatrix_OL(M)函数来实现稀疏矩阵的存储,用OutPutSMatrix_OL(M)函数实现稀疏矩阵的输出。
数据结构实验报告稀疏矩阵运算

数据结构实验报告稀疏矩阵运算实验目的:1.学习并理解稀疏矩阵的概念、特点以及存储方式。
2.掌握稀疏矩阵加法、乘法运算的基本思想和算法。
3.实现稀疏矩阵加法、乘法的算法,并进行性能测试和分析。
实验原理:稀疏矩阵是指矩阵中绝大多数元素为0的矩阵。
在实际问题中,有许多矩阵具有稀疏性,例如文本矩阵、图像矩阵等。
由于存储稀疏矩阵时,对于大量的零元素进行存储是一种浪费空间的行为,因此需要采用一种特殊的存储方式。
常见的稀疏矩阵的存储方式有三元组顺序表、十字链表、行逻辑链接表等。
其中,三元组顺序表是最简单直观的一种方式,它是将非零元素按行优先的顺序存储起来,每个元素由三个参数组成:行号、列号和元素值。
此外,还需要记录稀疏矩阵的行数、列数和非零元素个数。
稀疏矩阵加法的原理是将两个稀疏矩阵按照相同的行、列顺序进行遍历,对于相同位置的元素进行相加,得到结果矩阵。
稀疏矩阵乘法的原理是将两个稀疏矩阵按照乘法的定义进行计算,即行乘以列的和。
实验步骤:1.实现稀疏矩阵的三元组顺序表存储方式,并完成稀疏矩阵的初始化、转置、打印等基本操作。
2.实现稀疏矩阵的加法运算,并进行性能测试和分析。
3.实现稀疏矩阵的乘法运算,并进行性能测试和分析。
4.编写实验报告。
实验结果:经过实验测试,稀疏矩阵的加法和乘法算法都能正确运行,并且在处理稀疏矩阵时能够有效节省存储空间。
性能测试结果表明,稀疏矩阵加法、乘法的运行时间与非零元素个数有关,当非零元素个数较少时,运算速度较快;当非零元素个数较多时,运算速度较慢。
实验分析:稀疏矩阵的运算相对于普通矩阵的运算有明显的优势,可以节省存储空间和运算时间。
在实际应用中,稀疏矩阵的存储方式和运算算法都可以进行优化。
例如,可以采用行逻辑链接表的方式存储稀疏矩阵,进一步减少存储空间的占用;可以采用并行计算的策略加快稀疏矩阵的运算速度。
总结:通过本次实验,我深入学习了稀疏矩阵的概念、特点和存储方式,掌握了稀疏矩阵加法、乘法的基本思想和算法,并通过实验实现了稀疏矩阵的加法、乘法运算。
数据结构稀疏矩阵转置,加法

数据结构稀疏矩阵转置,加法《数据结构》实验报告◎实验题⽬:稀疏矩阵的转置、加法(⾏逻辑链接表)◎实验⽬的:学习使⽤三元组顺序表表⽰稀疏矩阵,并进⾏简单的运算◎实验内容:以三元组表表⽰稀疏矩阵,并进⾏稀疏矩阵的转置和加法运算。
⼀、需求分析该程序⽬的是为了⽤三元组表实现稀疏矩阵的转置和加法运算。
1、输⼊时都是以三元组表的形式输⼊;2、输出时包含两种输出形式:运算后得到的三元组表和运算后得到的矩阵;3、测试数据:(1)转置运算时输⼊三元组表:1 2 121 3 93 1 -33 6 144 3 245 2 186 1 156 4 -7得到转置后的三元组表:1 3 -31 6 152 1 122 5 183 1 93 4 244 6 -76 3 14(2)进⾏加法运算时先输⼊矩阵A(以三元组表形式):1 1 12 2 22 3 43 1 -4输⼊矩阵B(以三元组表形式):1 3 -22 3 -53 1 83 2 -6A与B的和矩阵以矩阵形式输出为:1 0 -20 2 -14 -6 0(⼆) 概要设计为了实现上述操作⾸先要定义三元组表,稀疏矩阵:typedef struct{int i,j;int e;}Triple;//三元组typedef struct{Triple data[MAXSIZE+1];int mu,nu,tu;}Matrix;//稀疏矩阵1.基本操作void CreatMatrix(Matrix *m)操作结果:创建⼀个稀疏矩阵。
void PrintMatrix(Matrix m)初始条件:矩阵m已存在。
操作结果:将矩阵m以矩阵的形式输出。
void FastTransposeMatrix(Matrix a,Matrix *b)初始条件:稀疏矩阵a已存在;操作结果:将矩阵a进⾏快速转置后存⼊b中。
void AddMatrix(Matrix a,Matrix b,Matrix *c)初始条件:稀疏矩阵a和b都已存在;操作结果:将矩阵a和b的和矩阵存⼊c中。
稀疏矩阵编程实验报告

一、实验目的1. 理解稀疏矩阵的概念及其存储方式。
2. 掌握稀疏矩阵的基本操作,包括转置、加法、减法和乘法。
3. 通过编程实践,提高对数据结构和算法的理解和应用能力。
二、实验环境1. 编程语言:C语言2. 开发环境:Visual Studio 20193. 操作系统:Windows 10三、实验内容1. 稀疏矩阵的三元组表示及其实现2. 稀疏矩阵的转置3. 稀疏矩阵的加法、减法和乘法四、实验步骤1. 稀疏矩阵的三元组表示及其实现(1)定义稀疏矩阵的三元组结构体:```ctypedef struct {int row; // 行号int col; // 列号double val; // 非零元素值} Triple;```(2)定义稀疏矩阵结构体:typedef struct {int rows; // 矩阵行数int cols; // 矩阵列数int nums; // 非零元素个数Triple data; // 非零元素的三元组数组} SparseMatrix;```(3)编写函数实现稀疏矩阵的创建:```cvoid createSparseMatrix(SparseMatrix sm, int rows, int cols, int nums) { sm->rows = rows;sm->cols = cols;sm->nums = nums;sm->data = (Triple )malloc(nums sizeof(Triple));}```(4)编写函数实现稀疏矩阵的销毁:```cvoid destroySparseMatrix(SparseMatrix sm) {free(sm->data);sm->data = NULL;}2. 稀疏矩阵的转置(1)编写函数实现稀疏矩阵的转置:```cvoid transposeSparseMatrix(SparseMatrix src, SparseMatrix dst) {dst->rows = src->cols;dst->cols = src->rows;dst->nums = src->nums;dst->data = (Triple )malloc(src->nums sizeof(Triple));for (int i = 0; i < src->nums; i++) {dst->data[i].row = src->data[i].col;dst->data[i].col = src->data[i].row;dst->data[i].val = src->data[i].val;}}```3. 稀疏矩阵的加法、减法和乘法(1)编写函数实现稀疏矩阵的加法:```cvoid addSparseMatrix(SparseMatrix sm1, SparseMatrix sm2, SparseMatrix result) {result->rows = sm1->rows;result->cols = sm1->cols;result->nums = 0;for (int i = 0; i < sm1->nums; i++) {for (int j = 0; j < sm2->nums; j++) {if (sm1->data[i].row == sm2->data[j].row && sm1->data[i].col == sm2->data[j].col) {if (sm1->data[i].val + sm2->data[j].val != 0) {result->data[result->nums++] = sm1->data[i];result->data[result->nums - 1].val += sm2->data[j].val;}}}}}```(2)编写函数实现稀疏矩阵的减法:```cvoid subSparseMatrix(SparseMatrix sm1, SparseMatrix sm2, SparseMatrix result) {result->rows = sm1->rows;result->cols = sm1->cols;result->nums = 0;for (int i = 0; i < sm1->nums; i++) {for (int j = 0; j < sm2->nums; j++) {if (sm1->data[i].row == sm2->data[j].row && sm1->data[i].col == sm2->data[j].col) {if (sm1->data[i].val - sm2->data[j].val != 0) {result->data[result->nums++] = sm1->data[i];result->data[result->nums - 1].val -= sm2->data[j].val;}}}}}```(3)编写函数实现稀疏矩阵的乘法:```cvoid mulSparseMatrix(SparseMatrix sm1, SparseMatrix sm2, SparseMatrix result) {result->rows = sm1->rows;result->cols = sm2->cols;result->nums = 0;for (int i = 0; i < sm1->nums; i++) {for (int j = 0; j < sm2->nums; j++) {if (sm1->data[i].col == sm2->data[j].row) {double sum = 0;for (int k = 0; k < sm1->nums; k++) {if (sm1->data[k].col == sm2->data[j].row) {sum += sm1->data[k].val sm2->data[j].val;}}if (sum != 0) {result->data[result->nums++] = sm1->data[i];result->data[result->nums - 1].val = sum;}}}}}```五、实验结果与分析1. 通过编程实现稀疏矩阵的基本操作,验证了算法的正确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学单位计算机科学与技术学生学号************数据结构课程设计报告书题目稀疏矩阵运算器学生姓名秦豹专业名称软件工程指导教师李志敏实验目的:深入研究数组的存储表示和实现技术,熟悉广义表存储结构的特性。
需要分析:稀疏矩阵是指那些多数元素为零的矩阵。
利用“稀疏”特点进行存储和计算可以大大节省存储空间,提高计算效率。
实现一个能进行稀疏矩阵基本运算的运算器。
要求以带“行逻辑链接信息”的三元组顺序表存储稀疏矩阵,实现两矩阵的相加、相减、相乘等运算。
输入以三元组表示,输出以通常的阵列形式列出。
软件平台:Windows 2000,Visual C++6.0或WINTC概要设计:ADT Array {数据对象:D = {aij | 0≤i≤b1-1, 0 ≤j≤b2-1}数据关系:R = { ROW, COL }ROW = {<ai,j,ai+1,j>| 0≤i≤b1-2, 0≤j≤b2-1}COL = {<ai,j,ai,j+1>| 0≤i≤b1-1, 0≤j≤b2-2}基本操作:CreateSMatrix(&M); //操作结果:创建稀疏矩阵M.Print SMatrix(M);//初始化条件: 稀疏矩阵M存在.//操作结果:输出稀疏矩阵M.AddSMatrix(M,N,&Q);//初始化条件: 稀疏矩阵M与N的行数和列数对应相等.//操作结果:求稀疏矩阵的和Q=M+N.SubSMatrix(M,N,&Q);//初始化条件: 稀疏矩阵M与N的行数和列数对应相等.//操作结果:求稀疏矩阵的差Q=M-N.MultSMatrix(M,N,&Q);//初始化条件: 稀疏矩阵M的列数等于N的行数.//操作结果:求稀疏矩阵的乘积Q=M*N.} ADT Array调试测试:初始界面矩阵的加法矩阵的减法矩阵的转置矩阵的乘法程序源码:#include<stdio.h>#include<malloc.h>#include<stdlib.h>#define MAXSIZE 40 //假设非零元素个数的最大值为40#define MAXRC 20 //假设矩阵的最大行数为20typedef int ElemType;typedef struct{int i,j; //非零元的行下标和列下标ElemType e; //非零元的值}Triple;typedef struct{Triple data[MAXSIZE+1];int rpos[MAXRC+1]; //各行第一个非零元在三元组的位置表int hs,ls,fls;}TSMatrix,*Matrix;void Creat(TSMatrix &M){int i,k;for(i=1;i<=MAXRC+1;i++)M.rpos[i]=0;printf("请输入矩阵的行数、列数和非零元个数(以空格隔开):");scanf("%d %d %d",&M.hs,&M.ls,&M.fls);for(i=1;i<=M.fls;i++){printf("请用三元组形式输入矩阵的元素(行列非零元素):");scanf("%d %d %d",&M.data[i].i,&M.data[i].j,&M.data[i].e);}for(i=1,k=1;i<=M.hs;i++){M.rpos[i]=k;while(M.data[k].i<=i && k<=M.fls)k++;}}void Xiangjia(TSMatrix A,TSMatrix B,TSMatrix &C,int n){int a,b,temp,l;C.hs=A.hs;C.ls=A.ls;a=b=l=1;while(a<=A.fls && b<=B.fls){if(A.data[a].i==B.data[b].i){if(A.data[a].j<B.data[b].j)C.data[l++]=A.data[a++];else if(A.data[a].j>B.data[b].j){C.data[l]=B.data[b]; C.data[l++].e=n*B.data[b++].e;}else{temp=A.data[a].e+n*B.data[b].e;if(temp){C.data[l]=A.data[a];C.data[l].e=temp;l++;}a++;b++;}}else if(A.data[a].i<B.data[b].i)C.data[l++]=A.data[a++];else {C.data[l]=B.data[b]; C.data[l++].e=n*B.data[b++].e;} }while(a<=A.fls)C.data[l++]=A.data[a++];while(b<=B.fls){C.data[l]=B.data[b]; C.data[l++].e=n*B.data[b++].e;}C.fls=l-1;}int Xiangcheng(TSMatrix A,TSMatrix B,TSMatrix &Q){int arow,brow,ccol,tp,p,q,t;int ctemp[MAXRC+1];if(A.ls!=B.hs) return 0;Q.hs=A.hs;Q.ls=B.ls;Q.fls=0;if(A.fls*B.fls){for(arow=1;arow<=A.hs;arow++){for(ccol=1;ccol<=Q.ls;ccol++)ctemp[ccol]=0;Q.rpos[arow]=Q.fls+1;if(arow<A.hs) tp=A.rpos[arow+1];else tp=A.fls+1;for(p=A.rpos[arow];p<tp;p++){brow=A.data[p].j;if(brow<B.hs) t=B.rpos[brow+1];else t=B.fls+1;for(q=B.rpos[brow];q<t;q++){ccol=B.data[q].j;ctemp[ccol]+=A.data[p].e*B.data[q].e;}}for(ccol=1;ccol<=Q.ls;ccol++){if(ctemp[ccol]){if(++Q.fls>MAXSIZE) return 0;Q.data[Q.fls].i=arow;Q.data[Q.fls].j=ccol;Q.data[Q.fls].e=ctemp[ccol];}}}}return 1;}void Print_SMatrix(TSMatrix M){int k,l,n;Matrix p;p=&M;for(k=1,n=1;k<=p->hs;k++){for(l=1;l<=p->ls;l++){if(p->data[n].i==k && p->data[n].j==l){printf("%5d",p->data[n].e);n++;}elseprintf("%5d",0);}printf("\n");}printf("\n");}void Zhuanzhi(TSMatrix *a,TSMatrix *b){int q,col,p;b->hs=a->ls;b->ls=a->hs;b->fls=a->fls;if(b->fls){q=1;for(col=1;col<=a->ls;col++)for(p=1;p<=a->fls;p++)if(a->data[p].j==col){b->data[q].i=a->data[p].j;b->data[q].j=a->data[p].i;b->data[q].e=a->data[p].e;++q;}}}void Destory_SMatrix(TSMatrix &M){M.hs=M.ls=M.fls=0;}void main(){TSMatrix A,B,C;TSMatrix *p=&A,*q=&B;int flag,n;while(1){system("cls");printf("\n\n\n");printf("\t┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n");printf("\t┃*** 稀疏矩阵的加、减、转、乘*** ┃\n");printf("\t┣━━━━━━━━━━━━━━━━━━━━━━━━━━━┫\n");printf("\t┃1、稀疏矩阵的加法┃\n");printf("\t┃2、稀疏矩阵的减法┃\n");printf("\t┃3、稀疏矩阵的转置┃\n");printf("\t┃4、稀疏矩阵的乘法┃\n");printf("\t┃5、退出该应用程序┃\n");printf("\t┗━━━━━━━━━━━━━━━━━━━━━━━━━━━┛\n");printf("输入要进行的项目的编号:");scanf("%d",&flag);if(flag==5) break;Creat(A);printf("矩阵A:\n"); Print_SMatrix(A);switch(flag){case 1: Creat(B);n=1;printf("矩阵B:\n");Print_SMatrix(B);if(A.hs==B.hs && A.ls==B.ls){printf("A+B:\n");Xiangjia(A,B,C,n);Print_SMatrix(C);}else printf("错误!行列不一致\n");break;case 2: Creat(B);n=-1;printf("矩阵B:\n");Print_SMatrix(B);if(A.hs==B.hs && A.ls==B.ls){printf("A-B:\n");Xiangjia(A,B,C,n);Print_SMatrix(C);}else printf("错误!行列不一致\n");break;case 3: printf("A->B:\n");Zhuanzhi(p,q);Print_SMatrix(B);break;case 4: Creat(B);printf("矩阵B:\n");Print_SMatrix(B);printf("A*B:\n");n=Xiangcheng(A,B,C);if(!n) printf("错误!行列不匹配\n");else Print_SMatrix(C);break;default: printf("输入错误!\n");}Destory_SMatrix(A);Destory_SMatrix(B);Destory_SMatrix(C);getchar();getchar();}printf("\n\t\t\t ***程序已经退出***\n");getchar();}小结:。