MATLAB矩阵实验报告

合集下载

matlab矩阵实验报告

matlab矩阵实验报告

matlab矩阵实验报告《MATLAB矩阵实验报告》摘要:本实验报告利用MATLAB软件进行了矩阵实验,通过对矩阵的运算、转置、逆矩阵、特征值等操作进行了分析和讨论。

实验结果表明,MATLAB在矩阵运算方面具有高效、准确的特点,能够满足工程和科学计算的需求。

引言:矩阵是线性代数中的重要概念,广泛应用于工程、物理、经济等领域。

MATLAB是一种强大的数学软件,能够对矩阵进行各种运算和分析。

本实验旨在利用MATLAB软件对矩阵进行实验,探讨其在矩阵运算中的应用和优势。

实验方法:1. 创建矩阵:利用MATLAB软件创建不同大小的矩阵,包括方阵和非方阵。

2. 矩阵运算:进行矩阵的加法、减法、乘法等运算,比较不同大小矩阵的计算效率和结果准确性。

3. 矩阵转置:对矩阵进行转置操作,观察转置后矩阵的性质和应用。

4. 逆矩阵:求解矩阵的逆矩阵,并分析逆矩阵在实际问题中的应用。

5. 特征值和特征向量:利用MATLAB软件求解矩阵的特征值和特征向量,分析其在物理、工程等领域的应用。

实验结果与讨论:通过实验发现,MATLAB软件在矩阵运算中具有高效、准确的特点。

对于大规模矩阵的运算,MATLAB能够快速进行计算并给出准确的结果。

在矩阵转置和逆矩阵求解方面,MATLAB也能够满足工程和科学计算的需求。

此外,通过求解矩阵的特征值和特征向量,可以得到矩阵的重要性质,为实际问题的分析和求解提供了有力支持。

结论:本实验利用MATLAB软件进行了矩阵实验,通过对矩阵的运算、转置、逆矩阵、特征值等操作进行了分析和讨论。

实验结果表明,MATLAB在矩阵运算方面具有高效、准确的特点,能够满足工程和科学计算的需求。

希望本实验能够对矩阵运算和MATLAB软件的应用有所启发,为相关领域的研究和应用提供参考。

实验二MATLAB矩阵分析与处理

实验二MATLAB矩阵分析与处理

实验二MATLAB矩阵分析与处理实验二MATLAB矩阵分析与处理一、实验目的(1)掌握生成特殊矩阵的方法。

(2)掌握矩阵分析的方法。

(3)用矩阵求逆法解线性方程组。

二、实验内容:1、设有分块矩阵A=[E3×3R3×2;O2×3 S2×2],其中E、R、O、S 分别为单位矩阵、随机矩阵、零矩阵和对角矩阵,试通过数值计算验证A2=[E R+RS;O S2]。

实验过程:>> E=eye(3)E =1 0 00 1 00 0 1>> R=rand(3,2)R =0.1389 0.60380.2028 0.27220.1987 0.1988>> O=zeros(2,3)O =0 0 00 0 0>> S=diag([2,3])S =2 00 3>> A=[E R;O S]A =1.0000 0 0 0.1389 0.60380 1.0000 0 0.2028 0.27220 0 1.0000 0.1987 0.19880 0 0 2.0000 00 0 0 0 3.0000>> B=(A^2==[E R+R*S;O S^2])B =1 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 12、建立一个5×5矩阵,求它的行列式的值、迹、秩和范数。

实验过程:>> A=10*rand(5)A =8.1472 0.9754 1.5761 1.4189 6.55749.0579 2.7850 9.7059 4.2176 0.35711.2699 5.4688 9.5717 9.1574 8.49139.1338 9.5751 4.8538 7.9221 9.33996.3236 9.6489 8.0028 9.5949 6.7874>> B=det(A)B =-2.5011e+003>> C=rank(A)C =5>> D=trace(A)D =35.2133>> V1=norm(A,1)V1 =33.9324>> V2=norm(A,2)V2 =33.1290>> V3=norm(A,inf)V3 =40.82463、已知A=[-29 6 18;20 5 12;-8 8 5],求A的特征值及特征向量,并分析其数学意义。

MATLAB实验报告

MATLAB实验报告

MATLAB实验报告一、实验目的本次 MATLAB 实验旨在深入了解和掌握 MATLAB 软件的基本操作和应用,通过实际编程和数据处理,提高解决问题的能力,培养编程思维和逻辑分析能力。

二、实验环境本次实验使用的是 MATLAB R2020a 版本,运行在 Windows 10 操作系统上。

计算机配置为英特尔酷睿 i5 处理器,8GB 内存。

三、实验内容(一)矩阵运算1、矩阵的创建使用直接输入、函数生成和从外部文件导入等方式创建矩阵。

例如,通过`1 2 3; 4 5 6; 7 8 9` 直接输入创建一个 3 行 3 列的矩阵;使用`ones(3,3)`函数创建一个 3 行 3 列元素全为 1 的矩阵。

2、矩阵的基本运算包括矩阵的加减乘除、求逆、转置等。

例如,对于两个相同维度的矩阵`A` 和`B` ,可以进行加法运算`C = A + B` 。

3、矩阵的特征值和特征向量计算通过`eig` 函数计算矩阵的特征值和特征向量,加深对线性代数知识的理解和应用。

(二)函数编写1、自定义函数使用`function` 关键字定义自己的函数,例如编写一个计算两个数之和的函数`function s = add(a,b) s = a + b; end` 。

2、函数的调用在主程序中调用自定义函数,并传递参数进行计算。

3、函数的参数传递了解值传递和引用传递的区别,以及如何根据实际需求选择合适的参数传递方式。

(三)绘图功能1、二维图形绘制使用`plot` 函数绘制简单的折线图、曲线等,如`x = 0:01:2pi; y = sin(x); plot(x,y)`绘制正弦曲线。

2、图形的修饰通过设置坐标轴范围、标题、标签、线条颜色和样式等属性,使图形更加清晰和美观。

3、三维图形绘制尝试使用`mesh` 、`surf` 等函数绘制三维图形,如绘制一个球面`x,y,z = sphere(50); surf(x,y,z)`。

(四)数据处理与分析1、数据的读取和写入使用`load` 和`save` 函数从外部文件读取数据和将数据保存到文件中。

矩阵的奇异值分解(MATLAB自编)实验报告

矩阵的奇异值分解(MATLAB自编)实验报告

end B=B(:,1:n); B=B.'; V=qr(B); V1=V(:,1:r); U(:,1:r)=A*V1*(inv(D(1:r,1:r))); U(:,r+1:m)=null(A*A'); end
2.5 运行与数据分析
以教材上的 A=[1 0;0 1;1 0]为例来验证上述求矩阵的奇异值分解 程序的正确性。在 matlab 运行结果如下: >> A=[1 0;0 1;1 0]; >> [U1,D1,V1] = SVDecom(A) U1 = 0.7071 0 0.7071 D1 = 1.4142 0 0 V1 = 1 0 0 1 0 1.0000 0 0 1.0000 0 0.7071 0 -0.7071
s11 1 1 即有 U1=AV1 .其中 =
s2 1
sr 1
第四步: 解方程组 AAHy = 0, 对基础解系单位正交化可以求得 γr+1, γr+2,…,γm,令 U =(γ1 , γ2 , … , γr , γr+1 , γr+2 , … , γm).
2 矩阵的奇异值分解
2.1 原理
设 A∈Cm×n,s1,s2,…,sr 是 A 的非零奇异值,则存在 m 阶酉矩 阵 U∈Cm×n 及 n 阶酉矩阵 V,m× n 矩阵 D,
s1 0 0 0 0 D= 0 0 sr 0 0 0 0 0 0 = 0 0 0 0
使得 A=UDVH 这就是矩阵 A 的奇异值分解.
2.2 算法
第一步:求出 AHA 的特征值 1 ≥ 2 ≥…≥ r >0= r 1 =…= n ,确定非 零奇异值 si = i ,i=1,2 …, r. 第二步:分别求出矩阵 AHA 的对应于特征值 i 的特征向量并将其 单位正交化,得到标准正交向量组 α1 , α2 , … , αn 令 V=(α1 , α2 , … , αn)=(V1 , V2) ,V1=(α1 , α2 , … , αr) ,V2= (αr+1 ,αr+2 , …, αn) 第三步:若 U=(γ1 , γ2 , … , γr , γr+1 , γr+2 , … , γm)=(U1 , U2) ,其 中 U1=(γ1 , γ2 , … , γr) , U2=(γr+1 , γr+2 , … , γm) , 则因(Aα1 , Aα2 , … , Aαr)=(s1γ1 , s2γ2 , … , srγratlab 自带求解矩阵奇异值分解函数: [U,S,V] = svd(A)其 中 U 就是所求的 U 矩阵,S 是所求的对角阵,V 就是所求的酉矩阵

MATLAB矩阵的分析与处理截图版实验报告

MATLAB矩阵的分析与处理截图版实验报告

MATLAB矩阵的分析与处理截图版实验报告实验名称:MATLAB矩阵的分析与处理
实验步骤:
(1)打开matlab软件,进行操作界面的基本设置,转到矩阵的工作空间;
(2)创建矩阵并进行矩阵的分析操作,包括将矩阵拆分成2部分:A矩阵和B 矩阵,并运用函数求和、求积、求最大值等操作;
(3)进行矩阵的处理操作,包括矩阵的相乘、运算求值等操作,实现矩阵的转置操作;
(4)并进行图形处理,将计算数据和结果以函数图、标尺图、表格等方式展现出来,并进行分析;
(5)最后,根据实验的结果,总结实验的感悟和体会。

实验结果:
实验过程中,使用了MATLAB矩阵的基本操作,包括矩阵的求和、求积、求最大值、相乘、求值等操作,实现了矩阵的处理,并且将计算数据以图形的方式展示出来,有利于我们更好的理解数据,作出更准确的判断:
我们创建的矩阵如下图所示:
![图1](./矩阵1.jpg)
综上所述,我在本次实验中,掌握了MATLAB矩阵的基本操作,及其运用函数求和求积求最大值、相乘运算求值等方法,也通过图像数据展现来更好的了解矩阵的变化和分析结果。

通过实验,我能够更好地掌握MATLAB矩阵的分析与处理方法,从而加深对MATLAB 矩阵的理解,并为以后的操作打下坚实的基础。

MATLAB矩阵实验报告

MATLAB矩阵实验报告

MATLAB程序设计实验班级:电信1104班姓名:龙刚学号:1404110427实验内容:了解MA TLAB基本使用方法和矩阵的操作一.实验目的1.了解MA TLAB的基本使用方法。

2.掌握MA TLAB数据对象的特点和运算规则。

3.掌握MA TLAB中建立矩阵的方法和矩阵的处理方法。

二.实验内容1.浏览MATLAB的start菜单,了解所安装的模块和功能。

2.建立自己的工作目录,使用MA TLAB将其设置为当前工作目录。

使用path命令和工作区浏览两种方法。

3.使用Help帮助功能,查询inv、plot、max、round等函数的用法和功能。

使用help命令和help菜单。

4.建立一组变量,如x=0:pi/10:2*pi,y=sin(x),在命令窗口显示这些变量;在变量窗口打开这些变量,观察其值并使用绘图菜单绘制y。

5.分多行输入一个MA TLAB命令。

6.求表达式的值)610.3424510w-=+⨯()22tanb ca eabcxb c aππ++-+=++,a=3.5,b=5,c=-9.8(20.5ln tz e t=,21350.65it-⎡⎤=⎢⎥-⎣⎦7.已知1540783617A--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,831253320B-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦求A+6B,A2-B+IA*B,A.*B,B*AA/B,B/A[A,B],[A([1,3], :); B^2]8.已知23100.7780414565532503269.5454 3.14A -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦ 输出A 在[10,25]范围内的全部元素取出A 的前三行构成矩阵B ,前两列构成矩阵C ,右下角3x2子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E分别求表达式E<D ,E&D ,E|D ,(~E) | (~D)9.已知2961820512885A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦求A 的特征值和特征向量,分析其数学意义。

matlab矩阵运算实验报告

matlab矩阵运算实验报告

matlab矩阵运算实验报告Matlab矩阵运算实验报告一、引言矩阵运算是数学和工程领域中的重要概念之一,它在各个领域中都有广泛的应用。

Matlab作为一种强大的数学软件工具,提供了丰富的矩阵运算功能,可以帮助我们进行高效的数值计算和数据处理。

本实验报告将介绍Matlab中的矩阵运算功能,并通过实例展示其在实际问题中的应用。

二、矩阵运算的基本概念矩阵是由若干个数按照行和列排列形成的一个矩形阵列,它是线性代数中的基本工具。

在Matlab中,矩阵可以通过直接输入数值或使用内置函数生成。

矩阵运算包括加法、减法、乘法、转置等操作,这些操作可以对矩阵的每个元素进行运算,也可以对整个矩阵进行运算。

三、矩阵运算的实例分析1. 矩阵的创建与赋值在Matlab中,可以使用以下命令创建一个矩阵,并对其进行赋值操作:A = [1, 2, 3; 4, 5, 6; 7, 8, 9];这样就创建了一个3行3列的矩阵A,并对其进行了赋值。

可以通过输入A来查看矩阵A的内容。

2. 矩阵的加法与减法矩阵的加法和减法是按照对应元素进行运算的。

例如,对于两个3行3列的矩阵A和B,可以使用以下命令进行加法运算:C = A + B;同样地,可以使用以下命令进行减法运算:D = A - B;这样就得到了矩阵C和D。

3. 矩阵的乘法矩阵的乘法是按照行乘以列的方式进行的。

例如,对于一个3行2列的矩阵A和一个2行4列的矩阵B,可以使用以下命令进行乘法运算:C = A * B;这样就得到了一个3行4列的矩阵C。

4. 矩阵的转置矩阵的转置是将矩阵的行和列进行交换的操作。

例如,对于一个3行2列的矩阵A,可以使用以下命令进行转置操作:B = A';这样就得到了一个2行3列的矩阵B。

四、矩阵运算的应用实例矩阵运算在实际问题中有着广泛的应用。

以下是一个简单的实例,通过矩阵运算来解决线性方程组的问题。

假设有一个线性方程组:2x + y = 4x + 3y = 6可以将其表示为矩阵形式:A = [2, 1; 1, 3];B = [4; 6];通过矩阵运算可以求解出未知数x和y的值:X = A \ B;这样就得到了未知数x和y的值。

matlab实验报告

matlab实验报告

matlab实验报告实验1 熟悉matlab 的开发环境及矩阵操作⼀、实验的教学⽬标通过本次实验使学⽣熟悉MATLAB7.0的开发环境,熟悉MA TLAB ⼯作界⾯的多个常⽤窗⼝包括命令窗⼝、历史命令窗⼝、当前⼯作⽬录窗⼝、⼯作空间浏览器窗⼝等。

掌握建⽴表达式书写规则及常⽤函数的使⽤,建⽴矩阵的⼏种⽅法。

⼆、实验环境计算机、MATLAB7.0集成环境三、实验内容1、熟悉命令窗⼝的使⽤,⼯作空间窗⼝的使⽤,⼯作⽬录、搜索路径的设置。

命令历史记录窗⼝的使⽤,帮助系统的使⽤。

2、在当前命令窗⼝中输⼊以下命令:x=0:2:10 y=sqrt(x),并理解其含义。

3、求下列表达式的值(1)w=)1034245.01(26-?+?(2)x=ac b e abc cb a ++-+++)tan(22ππ,其中a=3.5,b=5,c=-9.8 四、实验总结1、熟悉了命令窗⼝的使⽤,⼯作空间窗⼝的使⽤。

2、了解了⼯作⽬录、搜索路径的设置⽅法。

---5317383399351542实验2 MATLAB 基本运算⼀、实验的教学⽬标通过本次实验使学⽣掌握向量和矩阵的创建⽅法;掌握矩阵和数组的算术运算、逻辑运算和关系运算;掌握字符数组的创建和运算;了解创建元胞数组和结构体的⽅法。

⼆、实验环境计算机、MATLAB7.0集成环境三、实验内容1、要求在闭区间]2,0[π上产⽣具有10个等距采样点的⼀维数组。

试⽤两种不同的指令实现。

(提⽰:冒号⽣成法,定点⽣成法)2、由指令rng('default'),A=rand(3,5)⽣成⼆维数组A ,试求该数组中所有⼤于0.5的元素的位置,分别求出它们的“全下标”和“单下标”。

(提⽰:find 和sub2ind )3、创建3阶魔⽅矩阵a 和3阶对⾓阵b ,c=a(1:3,1:3)(1)计算矩阵a,b 和c 的⾏列式、逆矩阵并进⾏最⼤值的统计。

(2)⽐较矩阵和数组的算术运算:b 和c 的*、/、^和.*、./、.^。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB程序设计实验
班级:电信1104班姓名:龙刚学号:1404110427
实验内容:了解MA TLAB基本使用方法和矩阵的操作
一.实验目的
1.了解MA TLAB的基本使用方法。

2.掌握MA TLAB数据对象的特点和运算规则。

3.掌握MA TLAB中建立矩阵的方法和矩阵的处理方法。

二.实验内容
1.浏览MATLAB的start菜单,了解所安装的模块和功能。

2.建立自己的工作目录,使用MA TLAB将其设置为当前工作目录。

使用path命令和工作
区浏览两种方法。

3.使用Help帮助功能,查询inv、plot、max、round等函数的用法和功能。

使用help命
令和help菜单。

4.建立一组变量,如x=0:pi/10:2*pi,y=sin(x),在命令窗口显示这些变量;在变量窗口打
开这些变量,观察其值并使用绘图菜单绘制y。

5.分多行输入一个MA TLAB命令。

6.求表达式的值
)6
10.3424510
w-
=+⨯
()
2
2
tan
b c
a e
abc
x
b c a
π
π
+
+-
+
=
++
,a=3.5,b=5,
c=-9.8
(20.5ln t
z e t
=,
213
50.65
i
t
-
⎡⎤
=⎢⎥
-
⎣⎦
7.已知
154
078
3617
A
--
⎡⎤
⎢⎥
=⎢⎥
⎢⎥
⎣⎦

831
253
320
B
-
⎡⎤
⎢⎥
=⎢⎥
⎢⎥
-⎣⎦求
A+6B,A2-B+I
A*B,A.*B,B*A
A/B,B/A
[A,B],[A([1,3], :); B^2]
8.已知
23100.7780414565532503269.54
54 3.14A -⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦ 输出A 在[10,25]范围内的全部元素
取出A 的前三行构成矩阵B ,前两列构成矩阵C ,右下角3x2子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E
分别求表达式E<D ,E&D ,E|D ,(~E) | (~D)
9.已知
2961820512885A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦
求A 的特征值和特征向量,分析其数学意义。

三、代码与实现
6.代码:
disp('1.求表达式的值')
w=sqrt(2)*(1+0.34245*10^(-6))
a=3.5;b=5;c=-9.8;
x=(2*pi*a+(b+c)/(tan(b+c)+a))
t=[2 1-3i;5 -0.65];
z=0.5*exp(2*t)*log(t+sqrt(1+t^2))
运行结果:
7.代码:
disp('2.已知A=[-1 5 -4;0 7 8;3 61 7];B=[8 3 -1;2 5 3;-3 2 0];求下列值')
A=[-1 5 -4;0 7 8;3 61 7];
B=[8 3 -1;2 5 3;-3 2 0];
I=[1 0 0;0 1 0;0 0 1];
disp('A+6*B=')
disp(A+6*B)
disp('A.^2-B+I=')
disp(A.^2-B+I)
disp('A*B=')
disp(A*B)
disp('A.*B=')
disp(A.*B)
disp('B*A=')
disp(B*A)
disp('A/B=')
disp(A/B)
disp('A\B=')
disp(A\B)
disp('[A,B]=')
disp([A,B])
disp('[A([1,3],:);B^2]=')
disp([A([1,3],:);B^2])
运行结果为:
8.代码:
d isp('3.已知A=[23 10 -0.778 0;41 -45 65 5;32 5 0 32;6 -9.54 54 3.14];') disp('(1)输出A在[10,25]范围内的全部元素;')
A=[23 10 -0.778 0;41 -45 65 5;32 5 0 32;6 -9.54 54 3.14];
m=find(A>=10&A<=25);
disp(A(m))
disp('(2)取出A的前3行构成矩阵B,前两列构成矩阵C,右下角3X2子矩阵构成矩阵D,B 与C的乘积构成矩阵E;')
B=A([1:3],:)
C=A(:,[1,2])
D=A([2:4],[3,4])
E=B*C
disp('(3)分别求表达式E<D,E&D,E|D,(~E) | (~D)。

')
disp('E<D=')
disp(E<D)
disp('E&D=')
disp(E&D)
disp('E|D=')
disp(E|D)
disp('~E|~D=')
disp((~E)|(~D))
disp('(4)生成一个Hilbert矩阵和Parscal矩阵,求其行列式的值')
H=hilb(5)
P=pascal(5)
disp('det(H)=')
disp(det(H))
disp('det(P)=')
disp(det(P))
输出结果为:
9.代码为:
disp('4.已知A=[-29 6 18;20 5 12;-8 8 5];求A的特征值和特征向量,并分析其数学意义')
A=[-29 6 18;20 5 12;-8 8 5];
disp('特征值为:')
disp(eig(A))
disp('特征向量为:')
[V,D]=eig(A);
disp('A的特征向量分别为:')
a1=V(:,1)
a2=V(:,2)
a3=V(:,3)
输出结果为:。

相关文档
最新文档