北京市西城区学习探究诊断_第19章__四边形

合集下载

北京市西城区2019-2020学年中考四诊数学试题含解析

北京市西城区2019-2020学年中考四诊数学试题含解析

北京市西城区2019-2020学年中考四诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列四个多项式,能因式分解的是( ) A .a -1 B .a 2+1 C .x 2-4yD .x 2-6x +92.若一次函数(1)y m x m =++的图像过第一、三、四象限,则函数2y mx mx =-( ) A .有最大值4mB .有最大值4m -C .有最小值4m D .有最小值4m -3.将不等式组2(23)3532x x x x-≤-⎧⎨+⎩>的解集在数轴上表示,下列表示中正确的是( )A .B .C .D .4.化简221121211x x x x ÷+--++的结果是( ) A .1B .12C .11x x -+ D .222(1)x x -+5.在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为( ) A .116B .18C .316D .146.下列方程中,没有实数根的是( ) A .2x 2x 30--= B .2x 2x 30-+= C .2x 2x 10-+=D .2x 2x 10--=7.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( ) A .4≤m <7B .4<m <7C .4≤m≤7D .4<m≤78.下列四个图形中,是中心对称图形的是( )A .B .C .D .9.若△ABC ∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( ) A .30°B .50°C .40°D .70°10.如图,已知△ABC 中,∠C=90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则»BC的长是( )A.πB.13πC.12πD.16π12.在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标价为___________元.14.分解因式:2m2-8=_______________.15.如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=23,则CE的长为_______16.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C的坐标(﹣54),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B 路线向终点B 匀速运动,动点N 从O 点开始,以每秒2个单位长度的速度沿O→C→B→A 路线向终点A 匀速运动,点M ,N 同时从O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t 秒(t >0),△OMN 的面积为S .则:AB 的长是_____,BC 的长是_____,当t =3时,S 的值是_____.17.如图,在矩形ABCD 中,AD=5,AB=4,E 是BC 上的一点,BE=3,DF ⊥AE ,垂足为F ,则tan ∠FDC=_____.18.如图AB 是O e 直径,C 、D 、E 为圆周上的点,则C D ∠+∠=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,在平面直角坐标系中,一次函数y=kx+b 与反比例函数y=mx(m≠0)的图象交于点A (3,1),且过点B (0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P 是x 轴上一点,且△ABP 的面积是3,求点P 的坐标.20.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:求参与问卷调查的总人数.补全条形统计图.该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.21.(6分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.22.(8分)计算:2-1+20160-3tan30°323.(8分)为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:车型起步公里数起步价格超出起步公里数后的单价普通燃油型 3 13元 2.3元/公里纯电动型 3 8元2元/公里张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.24.(10分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题: (1)本次抽测的男生人数为 ,图①中m 的值为 ; (2)求本次抽测的这组数据的平均数、众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.25.(10分)某街道需要铺设管线的总长为9000m ,计划由甲队施工,每天完成150m .工作一段时间后,因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度()y m 与甲队工作时间x (天)之间的函数关系图象. (1)直接写出点B 的坐标;(2)求线段BC 所对应的函数解析式,并写出自变量x 的取值范围; (3)直接写出乙队工作25天后剩余管线的长度.26.(12分)(1)计算:|﹣3|162sin30°+(﹣12)﹣2(2)化简:22222()x x y x yx y x y x y +--÷++-. 27.(12分)某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲 乙 价格(万元/台)75每台日产量(个) 100 60(1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可. 试题解析:x 2-6x+9=(x-3)2. 故选D .考点:2.因式分解-运用公式法;2.因式分解-提公因式法. 2.B 【解析】 【分析】 【详解】解:∵一次函数y=(m+1)x+m 的图象过第一、三、四象限, ∴m+1>0,m <0,即-1<m <0, ∴函数221()24my mx mx m x =-=--有最大值, ∴最大值为4m -, 故选B . 3.B 【解析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解:不等式可化为:11x x ≤⎧⎨>-⎩,即11x -<≤.∴在数轴上可表示为.故选B .“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 4.A 【解析】 原式=()()111x x +-•(x –1)2+21x +=11x x -++21x +=11x x ++=1,故选A . 5.C 【解析】列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可. 解:共16种情况,和为6的情况数有3种,所以概率为.故选C . 6.B 【解析】 【分析】分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项. 【详解】解:A 、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A 选项错误; B 、△=(-2)2-4×3=-8<0,方程没有实数根,所以B 选项正确;C 、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C 选项错误;D 、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D 选项错误. 故选:B . 【点睛】本题考查根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根. 7.A 【解析】 【分析】先解出不等式,然后根据最小整数解为2得出关于m 的不等式组,解之即可求得m 的取值范围.【详解】解:解不等式3x﹣m+1>0,得:x>1 3m-,∵不等式有最小整数解2,∴1≤13m-<2,解得:4≤m<7,故选A.【点睛】本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.8.D【解析】试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D.考点:中心对称图形.9.A【解析】【分析】利用三角形内角和求∠B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.10.C【解析】【分析】根据四边形的内角和与直角三角形中两个锐角关系即可求解.【详解】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.【点睛】此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360°. 11.B【解析】【分析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【详解】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴»BC的长=6011803ππ⋅⋅=,故选B.【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.12.D【解析】【分析】本题主要考察二次函数与反比例函数的图像和性质.【详解】令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到ω=+()+=.所以本题选择D.【点睛】巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.28 【解析】设标价为x 元,那么0.9x-21=21×20%,x=28. 14.2(m+2)(m-2) 【解析】 【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解因式. 【详解】 2m 2-8, =2(m 2-4), =2(m+2)(m-2) 【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.15.【解析】分析:由菱形的性质证出△ABD 是等边三角形,得出BD=AB=6,132OB BD ==,由勾股定理得出OC OA ==,即可得出答案. 详解:∵四边形ABCD 是菱形,∴AB=AD=6,AC ⊥BD ,OB=OD ,OA=OC , ∵60BAD ∠=︒, ∴△ABD 是等边三角形, ∴BD=AB=6, ∴132OB BD ==,∴OC OA ===∴2AC OA ==∵点E 在AC 上,OE =∴当E 在点O 左边时CE OC =+=当点E 在点O 右边时CE OC =-=∴53CE =或3;故答案为53或3.点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.16.10, 1, 1【解析】【分析】作CD ⊥x 轴于D ,CE ⊥OB 于E ,由勾股定理得出AB =22OA OB +=10,OC =()22254+=1,求出BE =OB ﹣OE =4,得出OE =BE ,由线段垂直平分线的性质得出BC =OC =1;当t =3时,N 到达C 点,M 到达OA 的中点,OM =3,ON =OC =1,由三角形面积公式即可得出△OMN 的面积.【详解】解:作CD ⊥x 轴于D ,CE ⊥OB 于E ,如图所示:由题意得:OA =1,OB =8,∵∠AOB =90°,∴AB =22OA OB +=10;∵点C 的坐标(﹣25,4),∴OC =()22254+=1,OE =4,∴BE =OB ﹣OE =4,∴OE =BE ,∴BC =OC =1;当t =3时,N 到达C 点,M 到达OA 的中点,OM =3,ON =OC =1,∴△OMN 的面积S =12×3×4=1; 故答案为:10,1,1.【点睛】本题考查了勾股定理、坐标与图形性质、线段垂直平分线的性质、三角形面积公式等知识;熟练掌握勾股定理是解题的关键.17.【分析】首先根据矩形的性质以及垂线的性质得到∠FDC=∠ABE,进而得出tan∠FDC=tan∠AEB=,即可得出答案.【详解】∵DF⊥AE,垂足为F,∴∠AFD=90°,∵∠ADF+∠DAF=90°,∠ADF+∠CDF=90°,∴∠DAF=∠CDF,∵∠DAF=∠AEB,∴∠FDC=∠ABE,∴tan∠FDC=tan∠AEB=,∵在矩形ABCD中,AB=4,E是BC上的一点,BE=3,∴tan∠FDC=.故答案为.【点睛】本题主要考查了锐角三角函数的关系以及矩形的性质,根据已知得出tan∠FDC=tan∠AEB是解题关键. 18.90°【解析】【分析】连接OE,根据圆周角定理即可求出答案.【详解】解:连接OE,根据圆周角定理可知:∠C=12∠AOE,∠D=12∠BOE,则∠C+∠D=12(∠AOE+∠BOE)=90°,故答案为:90°.【点睛】本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=3x;y=x-2;(2)(0,0)或(4,0)试题分析:(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB 与x 轴的交点,设交点是C ,然后根据S △ABP =S △ACP +S △BCP 即可列方程求得P 的横坐标.试题解析:(1)∵反比例函数y=m x (m≠0)的图象过点A (1,1), ∴1=1m ∴m=1. ∴反比例函数的表达式为y=3x . ∵一次函数y=kx+b 的图象过点A (1,1)和B (0,-2).∴31{2k b b ==+-, 解得:1{2k b -==, ∴一次函数的表达式为y=x-2;(2)令y=0,∴x-2=0,x=2,∴一次函数y=x-2的图象与x 轴的交点C 的坐标为(2,0).∵S △ABP =1,12PC×1+12PC×2=1. ∴PC=2,∴点P 的坐标为(0,0)、(4,0).【点睛】本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据S △ABP =S △ACP +S △BCP 列方程是关键.20.(1)参与问卷调查的总人数为500人;(2)补全条形统计图见解析;(3)这些人中最喜欢微信支付方式的人数约为2800人.【解析】【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论; (2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例-15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【详解】(1)()1208040%500+÷=(人).答:参与问卷调查的总人数为500人.(2)50015%1560⨯-=(人).补全条形统计图,如图所示.(3)()8000140%10%15%2800⨯---=(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点睛】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.21.(1)证明见解析;(2)BC=;.【解析】(1)连接AE ,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC ∽△ABF ,利用比例式求得线段的长即可.(1)证明:连接AE ,∵AB 是⊙O 的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC ,∴∠1=∠CAB .∵∠CBF=∠CAB , ∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB 是⊙O 的直径,∴直线BF 是⊙O 的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴=.∴BF==.22.3 2【解析】【分析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,即可得到结果;【详解】原式=13+133 23-⨯+=1+12=32. 【点睛】此题考查实数的混合运算.此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.23.8.2 km【解析】【分析】首先设小明家到单位的路程是x 千米,根据题意列出方程进行求解.【详解】解:设小明家到单位的路程是x 千米.依题意,得13+2.3(x -3)=8+2(x -3)+0.8x .解得:x=8.2答:小明家到单位的路程是8.2千米.【点睛】本题考查一元一次方程的应用,找准等量关系是解题关键.24.(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标.【解析】分析:(Ⅰ)根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m 即可;(Ⅱ)根据平均数、众数、中位数的定义求解可得;(Ⅲ)总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得.详解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=1450×100%=1%,所以m=1. 故答案为50、1;(Ⅱ)平均数为344105166147650⨯+⨯+⨯+⨯+⨯=5.16次,众数为5次,中位数为552+=5次;(Ⅲ)1614650++×350=2. 答:估计该校350名九年级男生中有2人体能达标.点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.25.(1)(10,7500)(2)直线BC 的解析式为y=-250x+10000,自变量x 的取值范围为10≤x≤40.(3)1250米.【解析】【分析】(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.【详解】(1)9000-150×10=7500.∴点B的坐标为(10,7500)(2)设直线BC的解析式为y=kx+b,依题意,得:解得:∴直线BC的解析式为y=-250x+10000,∵乙队是10天之后加入,40天完成,∴自变量x的取值范围为10≤x≤40.(3)依题意,当x=35时,y=-250×35+10000=1250.∴乙队工作25天后剩余管线的长度是1250米.【点睛】本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.26.(1)2;(2) x﹣y.【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=3﹣4﹣2×+4=2;(2)原式=•=x﹣y.点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.27.(1)有3种购买方案①购乙6台,②购甲1台,购乙5台,③购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台,【解析】【分析】(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.【详解】解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台依题意,得7x+5(6-x)≤34解这个不等式,得x≤2,即x可取0,1,2三个值.∴该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台.方案二:购买甲种机器l1台,购买乙种机器5台.方案三:购买甲种机器2台,购买乙种机器4台(2)根据题意,100x+60(6-x)≥380解之得x>1 2由(1)得x≤2,即12≤x≤2.∴x可取1,2俩值.即有以下两种购买方案:购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.∴为了节约资金应选择购买甲种机器1台,购买乙种机器5台,.【点睛】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案.。

八年级数学下第十九章 四边形 总结

八年级数学下第十九章    四边形 总结

B八年级数学下第十九章 四边形 总结一、平行四边形1、定义:有两组对边分别平行的四边形叫做平行四边形。

2、性质:(1)平行四边形的对边相等; (2)平行四边形的对角相等;(3)平行四边形的对角线互相平分。

3、判定:(1)两组对边分别相等的四边形是平行四边形; (2)两组对角分别相等的四边形是平行四边形; (3)对角线互相平分的四边形是平行四边形; (4)一组对边平行且相等的四边形是平行四边形。

中位线:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

二、矩形1、定义:有一个角是直角的平行四边形叫做矩形。

2、性质:(1)矩形的四个角都是直角; (2)矩形的对角线平分且相等。

3、判定:(1)有一个角是直角的平行四边形是矩形; (2)对角线相等的平行四边形是矩形; (3)有三个角是直角的四边形是矩形。

直角三角形斜边上的中线等于斜边的一半。

三、菱形1、定义:有一组邻边相等的平行四边形叫做菱形。

2、性质:(1)菱形的四条边都相等;(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

3、判定:(1)一组邻边相等的平行四边形是菱形; (2)对角线互相垂直的平行四边形是菱形; (3)四条边都相等的四边形是菱形。

S 菱形=1/2×ab (a 、b 为两条对角线) 四、正方形1、定义:有一组邻边相等的矩形;有一个角是直角的菱形。

2、性质:(1)正方形的四条边都相等; (2)正方形的四个角都是直角。

(3)正方形的两条对角线垂直平分且相等(每一条对角线与边的夹角是45°) 3、判定:(1)邻边相等的矩形是正方形。

(2)有一个角是直角的菱形是正方形。

(3)对角线垂直平分且相等的四边形是正方形。

五、梯形 1.定义:梯形:一组对边平行,另一组对边不平行的四边形叫做梯形。

直角梯形:有一个角是直角的梯形。

等腰梯形:两腰相等的梯形。

2、性质:(等腰梯形)(1)等腰梯形的两条对角线相等。

人教版版八年级下册第十九章四边形全章精品教案(表格式)-11

人教版版八年级下册第十九章四边形全章精品教案(表格式)-11

八年级上册第十九章四边形平行四边形的判定(一)教案学校主备人时间设计理念平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.教学目标1、知识与技能:(1)在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.(2)会综合运用平行四边形的判定方法和性质来解决问题.2、过程与方法:经历平行四边形判定条件的探索过程,发展学生合情推理意识和表述能力。

3、情感态度与价值观:培养学生合情推理能力,经及严谨的书写表达,体会几何思维的真正内涵。

重点平行四边形的判定方法及应用.难点平行四边形的判定定理与性质定理的灵活应用.方法合作交流课型新授课教学过程教学环节教学内容师生活动设计意图一、创设情境1、平行四边形定义是什么?如何表示?2、平行四边形性质是什么?如何概括?3、说出上述三条性质的逆命题吗?教师提出问题,让学生思考:引导学生从正反两个方面:既可以作为平行四边形的性质,也可以作为平行四边形的判定.以问题来唤起学生的回忆,引起学生的思考.三个问题的意图各不相同,问题1,是让学生明白目前判定一个四边形是不是平行四边形的方法只有定义;问题2是为问题3作准备的;问题3是引出本节课的学习内容。

二、自主学习通过前面的学习,我们知道,平行四边形对边相等、对角相等、对角线互相平分。

反过来,对边相等或对角相等或对角线互相平分的四边形是不是平行四边形?教师让学生动手操作:按课本的“探究”的方法,让学生进行操作,并猜想:转动这个四边形,使它改变形状,它一直是个平行四边形吗?由于在操作中很难判断两对边是否平行,所以采用先我猜想,后证明的方法处理。

三、探究新知1、已知:四边形ABCD, AB=CD,AD=BC求证:四边形ABCD是平行四边形A DB C(1)归纳结论:(平行四边形的判定方法1)两组对边分别相等的四边形是平行四边形数学符号语言:∵AB=CD,AD= BC∴四边形ABCD是平行四边形2、已知:四边形ABCD, AC、BD交于点O且OA=OC,OB=OD求证:四边形ABCD是平行四边形A DOB C(2)归纳结论:(平行四边形判定方法2)对角线互相平分的四边形是平行四边形数学符号语言:∵对角线AC,BD相交于点OAO=CO,BO=DO∴四边形ABCD是平行四边形3、已知:四边形ABCD, ∠A=∠ C、∠B=∠ D求证:四边形ABCD是平行四边形A BC D归纳结论:(平行四边形判定方法3)两组对角分别相等的四边形是平行四边形数学符号语言:∵∠A=∠C,∠B=∠D∴四边形ABCD是平行四边形教师此时可引导学生对定理进行证明.提出问题:同学们能否证明出上面所提出的判定呢?学生开始证明上面提出的判定方法.主要是通过辅助线将四边形切割成一对三角形,再证明这对三角形全等把问题归结到定义上去.在教师的指导下,学生学会添加辅助线,并学会数学的化归思想,这是几何学的重要环节,应予以突破.将两个“探究”应用操作感知的方法来发现,再应用数学化归思想,借助辅助线予以推理论证,达到解决重点,突破难点的目的.四、尝试应用1.如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=____cm,CD=___ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=___cm,DO=__ _cm时,四边形ABCD为平行四边形.ADOBC2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.让学生先独立思考完成尝试应用题目达到对已学知识的巩固。

八年级数学下册第19章四边形教案新人教版

八年级数学下册第19章四边形教案新人教版

新疆克拉玛依市第十三中学八年级数学下册《第19章四边形》教案新人教版课题时间教学目标知识技能使学生掌握矩形的意义及性质过程方法通过对平行四边形的活动演示让学生感受由一般平行四边形转化为矩形过程中的角及对角线的变化情感态度与能力目标通过对一般平行四边形与矩形之间关系的探索,使学生体会一般与特殊的辩证关系重点矩形的意义、性质难点运用矩形的性质解有关问题学情分析教学内容和过程一、复习提问:1.平行四边形的定义2.平行四边形的性质3.平行四边形的判定二、新课讲解:1.对于一般四边形而言,我们对边添加一些特殊的条件如两组对边分别平行就得到了特殊的四边形—平行四边形;在此基础上我们对于角在给定一特殊的条件:有一个角是直角,这样我们就得到一个特殊的平行四边形—矩形。

四边形、平行四边形、矩形之间的关系如图所示:2.矩形的定义:有一个角是直角的平行四边形叫做矩形由定义可知,矩形首先是平行四边形,因此它具有平行四边形特有性质,那么它还有其他性质吗?当有一个角为直角时,平行四边形成为矩形时,它的其他内角是什么样的角?它的两条对角线又有什么样的关系?(找到等量关系后,要先口头证明..............)3.矩形的性质:(1)矩形的四个角都是直角(2)矩形的两条对角线相等两定理的几何语言:(1)如图,∵四边形ABCD是矩形,∴90A B C D∠=∠=∠=∠=︒(2)如图,∵四边形ABCD是矩形,AC BD=注意:性质(1)在证明过程中利用平行四边形邻角互补,对角相等,很容易证出。

课题19.2.1矩形的判定 时间教学目标知识技能掌握矩形的判定过程方法 通过性质的逆命题来掌握得到判定方法情感态度与能力目标通过对一般平行四边形与矩形之间关系的探索,使学生体会一般与特殊的辩证关系 重点 矩形的判定难点 判定的各种方法的灵活应用 学情分析教 学 内 容 和 过 程一、复习引入:问题1:如何判定一个四边形是矩形(答:定义具有双向性,所以定义可以判定 问题2:还能有其他方法说明一个四边形是矩形吗? 启发学生通过矩形的性质想到,并证明 二、 新课讲解:思考:若已知四边形是平行四边形,应添加什么条件可以判定是矩形? 1..猜想矩形的判定,然后加以证明。

八年级数学第十九章四边形全章教案人教版修改后

八年级数学第十九章四边形全章教案人教版修改后

⼋年级数学第⼗九章四边形全章教案⼈教版修改后⼗九章四边形主备⼈:王⽟霞马新明参与⼈:曹⽂静雷学贞李美玲19.1.1 平⾏四边形及其性质(1)学习⽬标:1、理解并掌握平⾏四边形的概念和平⾏四边形对边、对⾓相等的性质.2、会⽤平⾏四边形的性质解决简单的平⾏四边形的计算问题,并会进⾏有关的论证.3、培养学⽣发现问题、解决问题的能⼒及逻辑推理能⼒.学习重难点:1、重点:平⾏四边形的定义,平⾏四边形对⾓、对边相等的性质,以及性质的应⽤.2、难点:运⽤平⾏四边形的性质进⾏有关的论证和计算.学习过程:⼀、⾃学导引1、我们⼀起来观察下图中的⽵篱笆格⼦和汽车的防护链,想⼀想它们是什么⼏何图形的形象?平⾏四边形是我们常见的图形,你还能举出平⾏四边形在⽣活中应⽤的例⼦吗?你能总结出平⾏四边形的定义吗?(1)定义:(2)表⽰:平⾏四边形⽤符号“”来表⽰.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平⾏四边形.平⾏四边形ABCD记作“”,读作“”.①∵AB//DC ,AD//BC,∴四边形ABCD是平⾏四边形(判定);②∵四边形ABCD是平⾏四边形∴AB//DC,AD//BC(性质).注意:平⾏四边形中对边是指⽆公共点的边,对⾓是指不相邻的⾓,邻边是指有公共端点的边,邻⾓是指有⼀条公共边的两个⾓.⽽三⾓形对边是指⼀个⾓的对边,对⾓是指⼀条边的对⾓.2、阅读课本第83页的“探究”:回答问题:平⾏四边形是⼀种特殊的四边形,它除具有四边形的性质和两组对边分别平⾏外,还有什么特殊的性质呢?(1)根据平⾏四边形的定义画⼀个⼀个平⾏四边形,观察这个四边形,它的边和⾓之间有什(2)如何证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.提⽰(作对⾓线是解决四边形问题常⽤的辅助线,通过作对⾓线,可以把未知问题转化为已知的关于三⾓形的问题.)由此得到:平⾏四边形性质1平⾏四边形性质23、阅读课本第84页,完成例1归纳:平⾏四边形的周长就是这根绳⼦的长度,利⽤平⾏四边形的性质“平⾏四边形的对边相等。

八年级数学下册第十九章四边形知识点总结

八年级数学下册第十九章四边形知识点总结

AC BD 第十九单元:四边形(请记熟前两页)一般梯形 梯形 等腰梯形 四边形 特殊梯形 直角梯形矩形平行四边形 }正方形 菱形一、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

性质:1、对边:分别平行且相等;2、对角:分别相等;3、对角线:互相平分;4、对称性:中心对称图形。

判定定理 1、两组对边分别平行的四边形是平行四边形(定义);2、两组对边分别相等的四边形是平行四边形;3、一组对边平行且相等的四边形是平行四边形;4、两组对角分别相等的四边形是平行四边形;5、对角线互相平分的四边形是平行四边形。

三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

二、矩形定义:有一个角是直角的平行四边形。

性质:1、具有平行四边形的所有性质;2、四个角都是直角;3、对角线互相平分且相等;4、对称性:中心对称图形,轴对称图形。

判定定理: 1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

直角三角形斜边上的中线等于斜边的一半。

⎧⎨⎩⎧⎨⎩⎧⎨⎩⎧⎨⎩三、菱形定义:邻边相等的平行四边形。

性质:1、具有平行四边形的所有性质;2、四条边都相等;3、对角线互相垂直,并且每一条对角线平分一组对角;4、对称性:中心对称图形、轴对称图形。

判定定理: 1.一组邻边相等的平行四边形是菱形(定义);2.对角线互相垂直的平行四边形是菱形;3.四条边相等的四边形是菱形。

S 菱形=ab 21(a 、b 为两条对角线)四、正方形定义:一个角是直角的菱形或邻边相等的矩形。

性质:1、四条边都相等;2、四个角都是直角;3、正方形既是矩形,又是菱形。

判定定理:1、邻边相等的矩形是正方形。

2、有一个角是直角的菱形是正方形。

五、梯形定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。

1、直角梯形的定义:有一个角是直角的梯形2、等腰梯形的定义:两腰相等的梯形。

2021年八年级数学下册 第十九章四边形复习教案 人教新课标版

2021年八年级数学下册 第十九章四边形复习教案 人教新课标版

2021年八年级数学下册第十九章四边形复习教案人教新课标版教学目标知识与技能:回顾本单元知识,领会四边形以及特殊四边形的概念、性质、判定,以及三角形中位线定理,发展合情推理能力.过程与方法:经历四边形基本性质,常见判定方法的复习交流过程,使学生学会“合乎逻辑地思考”,建立知识体系,获得一定的技能基础.情感态度与价值观:让学生理解平面几何观念的基本途径是多种多样的,感知和体验几何图形的现实意义,体验二维空间相互转换关系.重难点、关键重点:理解和掌握几种常见特殊四边形的性质、判定.难点:发展合情推理和初步的演绎推理能力.关键:运用观察、比较、归纳、类比……即通过合情推理提出猜想,再通过演绎推理证明.教学准备教师准备:投影仪,制作投影片.学生准备:写一份单元小结.学法解析1.认知起点:在学完四边形、特殊四边形的内容后进行小结.2.知识线索:本章知识是在相交线、•平行线和三角形知识的基础上发展起来的,基本上按四边形、特殊四边形及其性质与判定思路展开知识.3.学习方式:合作、交流、探究、归纳.教学过程一、回顾交流,系统跃进【显示投影片】知识结构图【活动方略】教师活动:操作投影仪,指导学生以知识结构为主线,系统复习:1.概念,•2.性质,3.判定,4.其他性质;然后组织学生分成四人小组交流自己的小结.学生活动:首先参与教师的回顾,然后分成四人小组进行交流,最后进行小组汇报,弄清本单元的知识体系.【设计意图】采用师生互动,发挥学生主动复习的意识,提高知识层面.二、分类学习,优化思维【重点精析】1.四边形的内角和外角和都是360°,这两个定理点四边形的角度计算和四边形的推理证明的基础.2.任意多边形问题,常设法应用三角形的知识去解决.【课堂演练】(投影显示)演练题:如图,已知四边形ABCD中,AB=3,BC=4,CD=13,AD=12,∠B=90°,求四边形ABCD的面积S.思路点拨:把不规则的四边形转化成几个规划的三角形或熟悉的图形,如,矩形,平行四边形等,本题由∠B=90°启发,连接AC,这样把问题归结到Rt△中,•应用勾股定理以及逆定理解决.因为AC2=AB2+BC2=9+16=25,∴AC=5,又∵AD2+AC2=CD2,∴∠DAC=Rt∠,∴S=S△ABC+S△DAC=AB·BC+AD·AC=36.学生活动:先独立完成演练题,然后再踊跃上台演示,并归纳小结知识点,和解题方法.教师活动:关注学生的思维,请一些学生上台演示,然后与学生一起纠正.【重点精析】1.平行四边形是一类特殊的四边形,它包括了矩形、菱形、正方形.•平行四边形是中心对称图形(以后再学).2.平行四边形主要性质:对边相等,对角相等,对边平行,•对角线互相平分.3.平行四边形性质是证明或计算的基础.如,应用边的性质(对边平行、•对边相等),可以求解(证)边长、周长、对角线长以及平行等问题;应用角的性质(对角相等、邻角互补),可以求解(证)角的问题;应用对角线性质(对角线互相平分),可证明两个三角形全等,再通过三角形全等研究角或线段之间的关系.4.由平行四边形的性质可以得出一些角与线段的相等关系,特别地,•还可以知道平行线间的距离处处相等.5.平行四边形判定的题目,应根据不同条件,灵活选用,•证明中不论选用什么方法,都离不开线段的平行、相等,直角的相等关系.【课堂演练】(投影显示)演练题:已知:如图,E、F为ABCD的对角线AC所在直线上的两点,AE=CF,求证:BE=DF.(用两种证法).思路点拨:证法1:运用ABCD的性质证明△ABE≌△CDF的条件,从而证出BE=DF.证法2:连结DE、BF、BD,设BD与AC相交于O,去证明四边形BFDE是平行四边形即可.学生活动:先独立完成演练题,然后以此为素材进行思维归纳、交流.教师活动:操作投影仪,显示演练题,巡视、引导学生进行演练,关注“学困生”.请部分学生上台演练,然后纠正.评析:在有关特殊四边形的问题中,通常转化为三角形或直接运用特殊四边形自身性质来解决.思路不唯一,但应选择较好的方法.【重点精析】名称定义性质判定面积两组对边分①对边平行;②对边相等;①定义;②两组对边分S=ah(a为一边长,平行四边形别平行的四边形叫做平行四边形。

2019-2020学年八年级数学下册《第19章 四边形》学案 新人教版.doc

2019-2020学年八年级数学下册《第19章 四边形》学案 新人教版.doc

2019-2020学年八年级数学下册《第19章四边形》学案新人教版学习目标1.经历四边形基本性质,常见判定方法的复习交流过程,使学生学会“合乎逻辑地思考”,建立知识体系,获得一定的技能基础.2.重点:理解和掌握几种常见特殊四边形的性质、判定.3.难点:发展合情推理和初步的演绎推理能力.新知引导知识结构图以知识结构为主线,系统复习:1.概念,•2.性质,3.判定,4.其他性质新知要点行互相垂直,且新知运用例1如图,已知四边形ABCD中,AB=3,BC=4,CD=13,AD=12,∠B=90°,求四边形ABCD的面积S.例2已知:如图,E、F为ABCD的对角线AC所在直线上的两点,AE=CF,求证:BE=DF.(用两种证法).新知检测1.菱形相邻两边中点连线的长分别为7cm和4cm,则菱形的面积为________.2.平行四边形有一个角的平分线和一边相交,且把这边分成3cm和5cm两部分,则这平行四边形周长为________.3.矩形一条长边的中点与另一条长边的两端的连线互相垂直,且周长是36cm,则它的长和宽分别是______和_______,对角线的长是_______.4.一个正方形和一个等腰三角形有相等的周长,等腰三角形有二边长为5.6cm和13.2cm,则这个正方形面积为().A.24cm2B.36cm2C.48cm2D.64cm25.直角梯形中,斜腰与底的夹角为60°,若这腰与上底的长都是8cm,则这梯形的周长是().A.24+4 3 B.26+4 3C.28+4 3 D.32+4 36.如图,矩形ABCD的对角线AC、BD相交于点O,CE⊥BO于E,且DE:EB=3:•1,OF⊥AB于F,OF=3.6cm,求矩形对角线长.7.已知:如图,EG、FH过正方形ABCD的对角线交点O,EG⊥FH,求证:四边形EFGH是正方形.(用两种证法)EG。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十九章四边形测试1 平行四边形的性质(一)学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.课堂学习检测一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。

2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成....立.的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④(B)①③④(C)①②③(D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).(A)8cm和16cm (B)10cm和16cm (C)8cm和14cm (D)8cm和12cm 11.以不共线的三点A、B、C为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为( )3(A)2 (B)5(C)35 (D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n (B)3n (n +1) (C)6n(D)6n (n +1)综合、运用、诊断 一、解答题14.已知:如图,在□ABCD 中,从顶点D 向AB 作垂线,垂足为E ,且E 是AB 的中点,已知□ABCD 的周长为8.6cm ,△ABD 的周长为6cm ,求AB 、BC 的长.15.已知:如图,在□ABCD 中,CE ⊥AB 于E ,CF ⊥AD 于F ,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O 为□ABCD 的对角线AC 的串点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线MN 上,且OE =OF .(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE =∠NCF .17.已知:如图,在□ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”)2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,F A与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE 的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD 与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC 中,AB =AC =10,D 是BC 边上的任意一点,分别作DF ∥AB 交AC 于F ,DE ∥AC 交AB 于E ,求DE +DF 的值.15.已知:如图,在等边△ABC 中,D 、F 分别为CB 、BA 上的点,且CD =BF ,以AD 为边作等边三角形ADE .求证:(1)△ACD ≌△CBF ;(2)四边形CDEF 为平行四边形.拓展、探究、思考16.若一次函数y =2x -1和反比例函数xk y 2 的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xk y =的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD 中,BC =2AB ,若E 为BC 的中点,则∠AED =______.4.在□ABCD 中,如果一边长为8cm ,一条对角线为6cm ,则另一条对角线x 的取值范围是______.5.□ABCD 中,对角线AC 、BD 交于O ,且AB =AC =2cm ,若∠ABC =60°,则△OAB的周长为______cm .6.如图,在□ABCD 中,M 是BC 的中点,且AM =9,BD =12,AD =10,则□ABCD 的面积是______.7.□ABCD 中,对角线AC 、BD 交于点O ,若∠BOC =120°AD =7,BD =10,则□ABCD的面积为______.8.如图,在□ABCD 中,AB =6,AD =9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,AF =5,24=BG ,则△CEF 的周长为______.9.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______ S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠F AB.AB =a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB =5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD 的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______°。

相关文档
最新文档