阴极保护系统
强制电流阴极保护系统设计

强制电流阴极保护系统设计强制电流阴极保护系统是一种常用于金属结构保护的阴极保护方案。
其基本原理是通过施加外加电流,使金属结构的电位降低,从而减少或阻止金属的腐蚀。
1. 系统的整体设计:首先需要确定需要保护的金属结构的大小、形状、材质等,以及所需施加的保护电流的大小。
根据这些参数,设计出合适的保护系统。
2. 电流供应装置的选择:电力供应装置是强制电流阴极保护系统的核心部件,其主要功能是提供稳定的直流电源。
在选择电流供应装置时,需要考虑给定结构所需的保护电流、工作环境条件、可靠性等因素。
3. 电流分配系统的设计:电流分配系统用于将电流从电源传输到被保护的金属结构上。
在设计电流分配系统时,需考虑金属结构的几何形状、结构复杂度、电阻分布等因素,合理规划电流的传输路径。
4. 电流控制系统的设计:电流控制系统用于实时监测和控制电流的大小和方向,以保证被保护金属结构的电位保持在理想的范围。
电流控制系统的设计需要考虑电流监测、控制逻辑和保护功能等方面。
5. 电位测量系统的设计:电位测量系统用于实时监测所保护金属结构的电位,以便及时发现和解决电位异常的问题。
电位测量系统的设计需要考虑测量精度、抗干扰能力、测量位置等因素。
6. 地下电流分散系统的设计:为了保证电流从金属结构传输到地下的有效分散,需要设计合适的地下电流分散系统。
该系统包括地下电流分发线路和地下电流分散装置。
7. 监控与维护系统的设计:强制电流阴极保护系统的长期稳定运行需要进行监控和维护。
监控与维护系统的设计需要考虑对电流和电位的实时监测、数据存储与处理、故障报警等功能。
强制电流阴极保护系统的设计需要综合考虑结构的特点、保护电流的要求以及工作环境等因素,合理选择和设计各个子系统,以确保金属结构能够得到有效的阴极保护,延长其使用寿命。
阴极保护_精品文档

阴极保护引言:阴极保护是一种常用的金属腐蚀防护方法,主要应用于金属设备、管道、船舶和建筑等领域。
通过采取适当的措施,将金属材料的电位移到更负的方向,从而减少金属材料的腐蚀速度。
本文将介绍阴极保护的原理、应用领域、常用方法以及一些优缺点。
一、阴极保护的原理阴极保护是基于金属腐蚀的电化学原理而实施的一种防护方法。
金属腐蚀是指金属在水、空气、土壤等介质中,受到氧化或其他化学物质作用而逐渐破坏的过程。
通过施加外加电源,将金属材料的电位移向更负的方向,实施阴极保护,可以有效地减缓金属的腐蚀过程。
具体而言,阴极保护主要包括两种方式:1) 通过阴极电流的施加,在结构表面形成一个足够厚度的电子屏蔽,从而降低腐蚀的速率;2) 通过阳极材料的提供,以消耗环境中的氧气而达到抑制腐蚀的效果。
二、阴极保护的应用领域阴极保护广泛应用于金属设备、管道、船舶和建筑等领域,并且有着重要的经济和社会效益。
以下是几个常见的应用领域:1. 管道防腐阴极保护在石油、天然气、水泥、化工等行业中广泛应用于管道防腐。
通过在管道表面施加电流,降低金属管道的腐蚀速率,延长其使用寿命。
这种方法具有效果明显、使用方便等优点,已被广泛采用。
2. 船舶防腐船舶在海域中长时间暴露于水中,容易受到海洋环境的腐蚀。
阴极保护在船舶上的应用可以有效地减缓腐蚀速度,延长船舶的使用寿命。
通过在船体附近安装阴极保护系统,将船体电位负化,以减少腐蚀。
3. 油罐防腐石油储罐是石油储存和运输的重要设施,经常接触到腐蚀性介质。
阴极保护可以在油罐内外表面施加电流,降低其腐蚀速率,保护油罐的安全运营。
三、阴极保护的常用方法阴极保护有多种常用的方法,具体选择方法应根据不同情况和需求作出。
以下是几种常见的阴极保护方法:1. 外加直流电源法该方法是最常见的阴极保护方法之一,通过外接直流电源,在金属结构和电源之间建立电路,施加足够的电流来实现保护。
通过控制电流大小和施加时间,可以有效地减缓金属的腐蚀速度。
输气管道阴极保护系统存在的问题及解决方法

输气管道阴极保护系统存在的问题及解决方法输气管道阴极保护系统是一种常用的防腐蚀措施,其作用是通过施加电流,使管道表面处于保护电位,从而减缓或防止管道的腐蚀。
然而,在实际应用中,输气管道阴极保护系统存在一些问题,本文将对这些问题进行分析,并提出相应的解决方法。
一、问题分析1. 阴极保护效果不佳输气管道阴极保护系统的主要目的是防止管道的腐蚀,但是在实际应用中,由于管道周围环境的复杂性,阴极保护效果往往不尽如人意。
例如,管道周围存在大量的金属结构物,这些结构物会影响阴极保护电流的分布,从而导致管道表面的一些区域无法得到有效的保护。
2. 阴极保护电流不稳定阴极保护电流的稳定性对于防腐蚀效果至关重要。
然而,在实际应用中,由于管道周围环境的变化,阴极保护电流往往会发生波动,从而导致管道表面的保护电位不稳定,无法达到预期的防腐蚀效果。
3. 阴极保护系统的维护成本高阴极保护系统需要定期进行检修和维护,以确保其正常运行。
然而,在实际应用中,由于管道的长度和分布范围较大,阴极保护系统的维护成本往往较高,给企业带来一定的经济压力。
二、解决方法1. 优化阴极保护系统设计为了解决阴极保护效果不佳的问题,可以通过优化阴极保护系统的设计来改善管道表面的保护效果。
例如,可以采用分段阴极保护的方式,将管道分成若干个段落,分别施加阴极保护电流,从而提高管道表面的保护效果。
2. 采用智能化阴极保护系统为了解决阴极保护电流不稳定的问题,可以采用智能化阴极保护系统。
智能化阴极保护系统可以根据管道周围环境的变化,自动调整阴极保护电流的大小和分布,从而保证管道表面的保护电位稳定。
3. 采用新型阴极保护材料为了降低阴极保护系统的维护成本,可以采用新型阴极保护材料。
新型阴极保护材料具有较长的使用寿命和较低的维护成本,可以有效降低企业的经济压力。
三、结论输气管道阴极保护系统是一种重要的防腐蚀措施,但是在实际应用中存在一些问题。
为了解决这些问题,可以通过优化阴极保护系统的设计、采用智能化阴极保护系统和采用新型阴极保护材料等方式来提高阴极保护效果,降低阴极保护系统的维护成本,从而保证输气管道的安全运行。
强制电流阴极保护系统设计

强制电流阴极保护系统设计强制电流阴极保护系统是一种使用电流进行阴极保护的措施,通常用于金属结构的防腐。
以下是一个强制电流阴极保护系统的设计方案,包括系统组成和原理。
1. 系统组成:(1) 阴极保护源:通常是一个直流电源,用于提供保护电流。
(2) 电流传输装置:由电缆、连接头等组成,用于将阴极保护源的电流传输到受保护金属结构上。
(3) 保护电流分配装置:用于将阴极保护电流分配到受保护金属结构上的各个部位,以确保整个金属结构均受到保护。
(4) 测量监控装置:用于监测和测量阴极保护电流的大小和金属结构的电位,以便及时调整和控制电流的分配。
(5) 接地系统:用于提供电流回路的接地,形成一个完整的电流回路。
2. 工作原理:强制电流阴极保护系统的工作原理基于阴极保护原理,通过将保护电流引入金属结构,形成一个保护电流环路,从而达到防止金属结构腐蚀的目的。
当阴极保护系统开始工作时,阴极保护源提供直流电流,通过电流传输装置将电流输送到受保护金属结构上。
保护电流分配装置将电流按需分配到各个部位,以保证整个金属结构均受到保护。
测量监控装置实时监测金属结构的电位和保护电流的大小,当发现电位过高或保护电流不足时,会发出警报并调整电流的分配,以实现最佳的阴极保护效果。
接地系统起到了提供电流回路的作用,使得电流能够流经金属结构,形成一个完整的闭合回路。
良好的接地系统也能够有效降低结构上的电位,提高阴极保护的效果。
3. 设计要点:(1) 选择合适的阴极保护源:根据金属结构的大小和防腐要求选择合适的阴极保护源。
一般来说,阴极保护源需要能够提供稳定的直流电流。
(2) 合理布置电流传输装置和保护电流分配装置:根据金属结构的形状和大小,合理布置电流传输装置和保护电流分配装置,确保保护电流能够均匀分配到各个部位。
(3) 选择合适的测量监控装置:选择合适的测量监控装置,能够实时监测电位和电流,并具备报警和调整功能,以确保阴极保护系统的稳定工作。
强制电流阴极保护系统设计

强制电流阴极保护系统设计1. 引言1.1 背景介绍强制电流阴极保护系统是一种常用的金属防腐蚀技术,通过施加外部电流控制金属结构表面的电位,将金属结构的阳极和阴极区域之间形成保护电位差,从而实现对金属结构的防腐蚀保护。
在海洋平台、油气管道、桥梁等工程中,金属结构长期暴露在恶劣的环境中容易受到腐蚀的侵害,因此需要采取阴极保护措施。
强制电流阴极保护系统具有防腐蚀效果好、操作简便、成本低廉等优点,因此受到广泛应用。
本文旨在研究强制电流阴极保护系统的设计原理、设计要素、系统组成部分、操作流程以及参数调整等关键内容,以探讨其在工程实践中的可行性和实际应用价值,同时分析存在的问题,并提出改进方向,展望未来强制电流阴极保护系统在防腐蚀领域的发展前景。
通过对该技术的深入研究和探讨,旨在为相关工程领域的技术人员提供参考和借鉴,推动该技术的进一步应用和发展。
1.2 研究目的本文旨在深入探讨强制电流阴极保护系统设计的相关原理、要素和操作流程,以及系统组成部分和参数调整等内容。
通过对这些内容的详细分析和讨论,旨在为相关领域的研究人员和工程师提供参考和指导,帮助他们更好地理解和应用强制电流阴极保护技术,提高阴极保护系统的设计和运行效率。
具体来说,本文将通过对强制电流阴极保护系统设计原理的介绍,帮助读者了解阴极保护系统工作的基本原理,从而为系统设计提供理论支持。
接着,本文将详细解析设计阴极保护系统所需考虑的要素,包括材料选择、电流密度、涂层方式等因素,帮助读者制定合理的设计方案。
本文还将对系统的组成部分进行详细描述,包括阳极、电源、监测设备等组成部分,帮助读者了解系统的整体结构和功能。
通过对操作流程和参数调整的讨论,本文旨在帮助读者了解如何正确操作和调整阴极保护系统,确保系统运行稳定和有效。
本文的研究目的是为了促进强制电流阴极保护系统设计的进一步发展和应用,提高系统的设计水平和运行效率,从而更好地保护金属结构免受腐蚀的侵害。
强制电流阴极保护系统设计

强制电流阴极保护系统设计【摘要】强制电流阴极保护系统是一种常用的防腐蚀技术,可以有效延长金属设备的使用寿命。
本文主要介绍了强制电流阴极保护系统的设计原则、设计流程、系统组成、系统维护和系统优化等方面。
设计原则包括合理选择保护电流密度和保护电位、设计耐腐蚀性能良好的阳极材料等。
设计流程则涵盖了系统功能需求分析、设计方案确定、施工安装调试等步骤。
系统组成主要包括阳极、电源、电解液和监控系统。
系统维护是确保系统长期有效运行的关键,包括定期检查、维修和替换部件。
系统优化则是为了提高系统的保护效果和节约能源。
强制电流阴极保护系统设计的重要性在于其可以有效预防金属设备的腐蚀损坏,未来发展方向将更加注重系统的智能化和节能性能。
【关键词】强制电流阴极保护系统设计、概述、设计原则、设计流程、系统组成、系统维护、系统优化、重要性、未来发展方向1. 引言1.1 强制电流阴极保护系统设计概述强制电流阴极保护系统设计是一种用于对金属结构进行保护的技术手段,通过施加外加电流,使金属表面产生负电极,在电化学上形成保护性氧化膜,从而防止金属结构发生腐蚀的过程。
强制电流阴极保护系统设计是一项涉及工程设计、材料科学、电化学等多学科综合应用的工程技术,具有广泛的应用价值和重要的意义。
在强制电流阴极保护系统设计中,设计原则是核心,其决定了系统的稳定性和有效性。
设计流程包括对金属结构进行腐蚀情况的评估、电化学参数的确定以及系统参数的优化等内容。
系统组成主要包括电源装置、电极装置、监测系统等部分,每个组成部分都有其独特的功能和作用。
系统维护是保证系统长期稳定运行的关键,包括对系统各部分的定期检测、维修和替换等工作。
系统优化是持续改进系统性能和降低运行成本的重要手段,需要通过不断地调整参数和改进技术手段来实现。
强制电流阴极保护系统设计的重要性在于能够有效地延长金属结构的使用寿命,降低维护成本和减少环境污染。
未来发展方向包括提高系统的自动化程度、优化系统参数和控制策略,以及开发更加环保和经济的新型材料和技术。
阴极保护培训讲义图文
THANKS
感谢观看
参比电极
参比电极用于测量被保护结构的电 位,为调整保护电流提供参考依据。
阴极保护系统的设计
确定保护范围
确定电流密度和保护电位
根据被保护结构的材质、尺寸、使用 环境等因素,确定阴极保护系统的保 护范围。
根据被保护结构的材质和需求,确定 合适的电流密度和保护电位。
选择阳极和埋设方式
根据实际情况选择合适的阳极材料和 埋设方式,确保阳极能够有效地向被 保护结构提供电流。
模型预测法
利用数学模型预测管道的腐蚀速率,评估阴极保 护效果。
05
阴极保护的常见问题与解 决方案
阴极保护系统失效的原因分析
电源故障
电源设备出现故障,如电源线断裂、电源开 关损坏等。
杂散电流干扰
外界杂散电流干扰导致阴极保护电流流失或 干扰保护效果。
电流分布不均
由于管道防腐层质量差或破损,导致电流在 管道上分布不均。
03
阴极保护材料
常用的阴极保护材料
锌合金
锌合金作为阳极材料, 通过电化学反应保护金
属不受腐蚀。
镁合金
镁合金作为阳极材料, 适用于土壤和淡水环境
中的金属保护。
镀锌钢
镀锌钢作为阳极材料, 广泛用于钢铁结构的阴
极保护。
钛和锆合金
适用于高腐蚀环境的金 属保护,如海洋环境。
阴极保护材料的性能与选择
01
02
栏等金属结构的防腐。
在建筑行业中,阴极保护用于 地下室、水池、冷却塔等混凝
土结构中的钢筋防腐。
02
阴极保护系统
阴极保护系统的组成
阳极系统
阳极是阴极保护系统的关键组成 部分,通常采用石墨、硅钢等材 料制成,负责向被保护结构提供
强制电流阴极保护系统设计
强制电流阴极保护系统设计强制电流阴极保护系统是针对金属结构在海洋、工业和土木工程环境中受到腐蚀的一种保护方法。
本文将详细介绍强制电流阴极保护系统的设计原理及流程,希望能给读者更多的指导。
一、设计原理强制电流阴极保护系统是通过向被保护构件施加一个外加电源,使得保护系统构成电路,从而在被保护构件表面形成一个保护电位,从而防止其腐蚀。
具体原理如下:1. 阴极保护作用原理保护对象的电位可以依靠电化学反应来调节,利用阴极保护可以将被保护金属构件的电位调整到一个较低的水平,从而使其从腐蚀产生阴极反应,发生电子体积效应和电子分布效应等,形成一个保护膜,“阴极保护”涂覆在金属表面后,使其成为阴极电极,从而防止其发生腐蚀。
该方法适用于构件表面的均匀腐蚀。
2.阴极保护的控制阴极保护的电流、电压和能量密度,都影响着阴极保护的效果。
通过控制强制电流,可以调整被保护构件的电位,从而实现防腐的目的。
二、设计流程强制电流阴极保护系统的设计是一个繁琐的过程,需要根据具体需要来进行。
一般来说,其设计流程包括以下几个步骤:1.确定强制电流阴极保护的需要在设计过程中,需要首先确定被保护金属构件的抗腐蚀要求。
如果构件的腐蚀等级达到或超过NC 水平,或者其腐蚀等级随时间推移而逐渐升高,都需要对其实施阴极保护。
2.选择合适的保护电极保护电极的选择需要考虑到其引入电路的方式以及电极的形状、大小、长度等因素。
不同引入方式和电极形状对保护效果有一定的影响,需要根据具体情况进行判断。
3.确定保护电流和电压保护电流和电压是决定阴极保护效果的关键因素,需要通过保护电流和电压的测定和筛选来确定。
强制电流阴极保护需要供电,因此需要选择合适的电源,以满足保护电流和电压的需要。
电源的要求包括输出电压、输出电流、能耗等方面。
基于以上的信息,设计出一个合适的强制电流阴极保护系统。
该系统一般包括电源、保护电极、电缆及其他配件。
在设计过程中,需要考虑到系统的耐用性、安全性和可靠性等方面。
强制电流阴极保护系统设计
强制电流阴极保护系统设计强制电流阴极保护系统是一种用于防止金属管道、储罐和其他设施的腐蚀的有效技术。
它通过向金属结构施加一个外部电流,从而使其成为阴极,从而防止金属的腐蚀和腐蚀产生的问题。
本文将介绍强制电流阴极保护系统的设计原理和方法。
一、系统的设计原理强制电流阴极保护系统的设计原理基于电化学保护原理。
金属在电化学条件下容易发生腐蚀,而通过向金属施加一个外部电流,将其变成一个阴极,进而防止金属的腐蚀。
这种通过外加电流改变金属电位的方法来保护金属称为电化学保护。
强制电流阴极保护系统一般采用直流电源,通过接地电极将外部电流引入金属结构中,使其成为一个阴极。
通过控制外部电流的大小和方向,可以有效地防止金属的腐蚀。
系统还需要监测金属结构的电位和外部电流的大小,以便及时调整电流大小和方向,从而实现对金属的有效保护。
1. 电源系统设计强制电流阴极保护系统的电源一般采用直流电源,其输出电流和电压需要根据具体情况来确定。
一般来说,电流的大小需要根据金属结构的大小和特性来确定,一般情况下,外部电流密度需要在2-4A/m²的范围内。
电压的选择需要考虑到电源的稳定性和金属结构的电阻,一般而言,系统的输出电压需要在10-20V之间。
接地系统是强制电流阴极保护系统中非常重要的一部分,它通过接地电极将外部电流引入金属结构中。
接地电极的数量和位置需要根据金属结构的大小和形状来确定,一般情况下,需要确保接地电极的电流密度均匀并且能够覆盖整个金属结构。
强制电流阴极保护系统需要通过监测金属结构的电位和外部电流的大小来实现对金属的有效保护。
监测系统一般包括电位监测装置和电流监测装置。
电位监测装置需要能够实时监测金属结构的电位变化,并且能够发出报警信号。
电流监测装置需要能够实时监测外部电流的大小和方向,并且能够自动调整电流的大小和方向。
强制电流阴极保护系统在设计时需要考虑到其安全性。
系统需要具有过载保护和短路保护功能,以及可以实现对整个系统的远程监控和控制。
阴极保护系统简介
阴极保护系统简介首先清楚几个概念:1、浸于电解质溶液中的金属导体称为电极。
2、电解质是指在液体状态(溶解或熔融状态)时分子分解为离子因而能导电的物质。
3、双电层在金属与溶液中的界面两侧形成电位差,这个电位差即是该金属在该溶液中的电极电位4、如果把两个不同电极组成一体,因它们的电极电位不同,电极间的电位差,形成电势,即为电池,用导线把它接进电路,就可以向电路供电。
把这样只有两个电极构成的电池称为“原电池”5、电解:腐蚀电池与环境和被腐蚀金属间构成电流的通路,腐蚀电池的两极同时也成为电解的两极,在电流的作用下,阳极的金属不断溶解进入电解质,按电流的通路向阴极沉积,由此阳极发生腐蚀,金属逐渐损失阴极保护护就是以通电的方法使被保护物成为阴极,由此减缓、避免腐蚀。
阴极保护实现的技术有两种:一是外加电流阴极保护也称强制(电流)阴极保护,二是牺牲阳极(阴极)保护。
实体布局请见示意图。
一、外加电流阴极保护:用金属导线将管道接在直流电源的负极,将辅助阳极接在电源的正极,构成保护回路,如图阴极保护模型所示。
从图中可以看出,管道实施阴极保护时,有外加电子注入管道表面。
当外加的电子来不及与电解质溶液中的某些物质起作用时,就会在金属表面积聚起来,导致阴极表面金属电极电位向负方向移动,即产生阴极极化。
这时,微阳极区金属释放电子的能力就受到阻碍。
施加的电流愈大,电子积累就会越多,金属表面的电极电位就越负,微阳极区释放电子的能就越弱,换句话说,就是腐蚀电池二极间的电位差变小,阳极电流Ia越来越小。
当金属表面阴极极化到一定值时,阴、阳极达到等电位,腐蚀电池的作用就被迫停止。
此时,外加电流Ip等于阴极电流Ic,即Ia=0,这就是阴极保护的基本原理。
用于阴极保护的恒电位仪整体说是一个负反馈放大——输出系统,与被保护物(如埋地管道)构成闭环调节,通过参比电极测量通电点电位,作为取样信号与控制信号进行比较,实现控制并调节极化电流输出,使通电点电位得以保持在设定的控制电位上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锌合金阳极:在现场突然介质中具有长期稳定的 开路电位,阳极输出电流能随被保护金属构筑物 状态、环境的变化调节,满足阴极保护要求,电 流效率高。可用于海水和土壤中的金属保护。极化特性。比较适用于高电阻率土壤中的 金属保护。是目前使用比较多的一种。
⑷自然电位:管道在没有进行阴极保护送电时,所 测得的管道对地电位。
⑸管道沿线的土壤电阻率:土壤电阻率越低,管道 腐蚀就越高。
⑹覆盖层电阻:覆盖层电阻的好坏直接影响阴极保 护的输出功率和保护距离。
3.阴极保护基本形式
A. 牺牲阳极保护 ⑴牺牲阳极保护结构图
牺牲阳
e
极
被保护体
⑵牺牲阳极基本原理
阴极保护在我国石油管道上的应用研究始 于1958年。到了60年代初期,在新疆、大庆、 四川等油、气管道 上陆续推广了阴极保护技 术。70年代,我国的油、气管道已广泛采用 了阴极保护。
1.阴极保护基本原理
根据电化学腐蚀原电池的原理,不断失去电子的 过程称为氧化过程又称腐蚀过程。对使被保护管 道通以阴极电流,使管道表面不断的得到电子而 被阴极极化,从而阻止了腐蚀过程的产生。
②相对饱和硫酸铜参比电极的管/地电位为负850mV 或更负。
③管道表面与同土壤接触的稳定的参比电极之间阴 极极化电位值为100mV。(这一准则可以用于极化 的建立过程或衰减过程中)
④在存在硫酸盐还原菌的土壤地段,相对饱和硫酸 铜参比电极的管/地电位为负950mV或更负。
⑵最大保护电位:金属在阴极保护条件下,允许的 绝对值最大的负电位值。
DC
参比电极
牺牲阳极
管道
牺牲阳极(组)输出电流测量接线图
数字万用表
牺牲阳极
B.外加直流电流(强制电流)阴极保护
就是将外加直流电流的正极接在辅助阳极装置上, 负极接在被保护管道上通以阴极电流,在管道与大 地、辅助阳极、直流电源组成一个完整电路。使金 属管道表面处于阴极极化状态,这就可以抑制金属 表面阳极区电子的释放,从而防止了腐蚀过程所产 生的腐蚀现象。
美国腐蚀工程师协会(NACE)对阴极保护的定义 是:通过施加外加的电动势把电极的腐蚀电位移 向氧化性较低的电位而使腐蚀速率降低。
2.影响阴极保护的主要参数
⑴最小保护电位:金属达到完全保护所需的、绝对 值最小的负电位值。
①在施加阴极电流的情况下,测得管/地电位为负 850mV(相对饱和硫酸铜参比电极)或更负。
埋地管道采用外防腐层与电法保护是延长管道 运行寿命、减少管道运行故障的有效手段。七十年 代初,自美国首次立法开始,一些国家相继立法, 规定埋地管道必须采用防腐涂层与阴极保护的双重 保护措施。防腐涂层是对埋地管道外壁的面保护, 主要是针对均匀腐蚀而言,阴极保护则主要以点保 护为主,是针对防腐涂层的漏损处。
⑷牺牲阳极的主要填包料:
铝合金阳极:彭闰土、食盐、熟石灰
锌合金阳极:彭闰土、石膏粉、硫酸钠
镁合金阳极:彭闰土、石膏粉、硫酸镁、硫酸钠
⑸牺牲阳极维护管理
a.每月检测一次阳极闭路电位值、管道保护电位。
b.每6个月检测一次阳极(单只和组合)开路电位、 输出电流、阳极接地电阻、管道开路电位、阳极闭 路电位、土壤电阻率。
主要是当负电位达到一定值后,就要产生吸氢反应, 产生大量的氢气,造成金属管道的氢脆腐蚀和绝缘 涂层的剥离。过去的沥青绝缘涂层最大保护电位是 负1250mV(短时间可以达到1500mV)。
⑶保护电流密度:平均作用在管道表面,使管道腐 蚀停止时的电流。
主要可根据保护电流密度的大小来判断绝缘涂层的 质量、老化程度。
阴极保护系统维护
一、阴极保护的重要性和必要性
在2003年10月第四届全国腐蚀大会上,腐蚀学会理 事长柯伟院士介绍了《中国工业与自然环境腐蚀问 题调查与对策》课题进展的报告,指出我国的年腐 蚀损失约为5000亿元,如能应用近代腐蚀科学知识 和防腐蚀技术,腐蚀的经济损失可以降低25%~30%。 对于全国数万公里的埋地管道,阴极保护是行之有 效的防蚀技术。
本世纪五十年代以来,阴极保护技术日趋完善。实践 证明,绝缘防腐涂层与阴极保护联合应用,是当今防止 输气管道外壁腐蚀最合理的手段。
1936年美国成立了中部大陆阴极保护协会。
1940年英国应用了牺牲阴极保护,德国和 日本分别是在1950和1946年开始研究电化学 保护理论的,并开始了煤气管道的阴极保护。
⑹牺牲阳极保护参数测定的主要内容:
管道对地电位(自然电位)、阳极对地电位(开路 电位)、阳极工作电位(阳极与管道连接时的电 位)、两组阳极之间的最小保护电位、阳极输出电 流(单支和阳极组)、阳极接地电阻(单支和阳极 组)、两组阳极之间的距离。
牺牲阳极开路电位测量接线图
数字万用表
-1.100
采用比被保护金属电位更负的金属材料与被保护金 属连接,使被保护金属表面有过剩的电子而被阴极 极化,从而了防止金属腐蚀。
特点:不需要直流电源,阳极材料必须采用电位更 负的有色金属。保护电流利用率高,不会产生过保 护,对邻近的地下金属设施干扰小。
⑶常用牺牲阳极材料
铝合金阳极:有足够负的电位、高的理论电流输出, 但在中性、弱酸和碱性介质中,铝表面容易形成一 层高电阻AI2O2氧化膜,使铝的电位向较正值方向移 动。主要用于海洋内的金属保护。
输气管道大多埋设于复杂的土壤环境,管道外壁主要遭 受土壤的电化学腐蚀。管道外壁虽有防腐涂层保护,然 而在实际施工中,由于各种因素的影响,不可能作到完 整无损,常常在涂层漏敷处发生腐蚀。所以,单纯的采 用防腐涂层不可能完全防止管道的腐蚀,巴渝线即是一 个典型的例子:巴渝输气干线于1961年建成,该管道投 产五年后,管道外壁即出现严重的穿孔泄露,1967年大 修涂层,仍未能阻止管道的严重腐蚀而被迫停输报废。 巴渝线的外壁腐蚀使我局科技工作者对土壤腐蚀的危害、 防护层的正确选型和施工监督、阴极保护的必要性等有 了充分的认识。在1966年威成线的建设中,针对土壤腐 蚀制定了良好的防腐措施,即石油沥青玻璃布+外加电流 阴极保护,并严格控制施工质量,从而较好地解决了长 输管道的外壁腐蚀问题。