对数与对数函数试题1
高三数学对数与对数函数试题答案及解析

高三数学对数与对数函数试题答案及解析1.函数(其中且)的图像恒过定点,若点在直线上,其中,则的最小值为 .【答案】2【解析】由y=log(x+3)-1经过的定点为(-2,-1)a于是-2m-n+4=0,得2m+n=4,且mn>0,于是m>0,n>0所以=2当且仅当m=1,n=2时等号成立,即的最小值为2.【考点】函数图象过定点,基本不等式(2x-1)的定义域为________________.2.函数f(x)=log2【答案】(,+∞)【解析】由2x-1>0,得x>.注意写成集合或者区间形式.考点:函数的定义域,对数函数的性质3.计算的结果是()A.B.2C.D.3【答案】B【解析】,选B【考点】对数基本运算.4.若的最小值是A.B.C.D.【答案】D【解析】由题意,且,所以又,所以,,所以,所以,当且仅当,即,时,等号成立.故选D.【考点】1、对数的运算;2、基本不等式.5.若,则=.【答案】【解析】∵,,∴.【考点】分段函数的函数值、三角函数值的计算、对数式的计算.6.设a=lg e,b=(lg e)2,c=lg,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a【答案】B【解析】∵1<e<3,则1<<e<e2<10.∴0<lg e<1.则lg=lg e<lg e,即c<a.又0<lg e<1,∴(lg e)2<lg e,即b<a.同时c-b=lg e-(lg e)2=lg e(1-2 lg e)=lg e·lg>0.∴c>b.故应选B.7.函数y=(x2-6x+17)的值域是________.【答案】(-∞,-3]【解析】令t=x2-6x+17=(x-3)2+8≥8,y=为减函数,所以有≤=-3.8.已知f(x)=logax(a>0且a≠1),如果对于任意的x∈都有|f(x)|≤1成立,试求a的取值范围.【解析】解:当a>1时,f(x)=logax在上单调递增,要使x∈都有|f(x)|≤1成立,则有解得a≥3.∴此时a的取值范围是a≥3.当0<a<1时,f(x)=logax在上单调递减,要使x∈都有|f(x)|≤1成立,则有,解得0<a≤.∴此时,a的取值范围是0<a≤.综上可知,a的取值范围是∪[3,+∞).9.(5分)(2011•重庆)设a=,b=,c=log3,则a,b,c的大小关系是()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【答案】B【解析】可先由对数的运算法则,将a和c化为同底的对数,利用对数函数的单调性比较大小;再比较b和c的大小,用对数的换底公式化为同底的对数找关系,结合排除法选出答案即可.解:由对数的运算法则,a=log32>c;排除A和C.因为b=log23﹣1,c=log34﹣1=,因为(log23)2>2,所以log23>,所以b>c,排除D故选B.点评:本题考查对数值的大小比较,考查对数的运算法则和对数的换底公式,考查运算能力.10.函数的值域为 .【答案】【解析】由得 ,所以函数的定义域是:设点=所以,,所以答案填:【考点】1、对数函数的性质;2、数形结合的思想.11.函数的定义域是A.[1,2]B.C.D.【答案】C【解析】根据函数定义域的要求得:.【考点】(1)函数的定义域;(1)对数函数的性质.12.对任意实数a,b定义运算如下,则函数的值域为( )A.B.C.D.【答案】B【解析】因为,对任意实数a,b定义运算如下,所以,==,故,选B.【考点】分段函数,对数函数的性质,新定义.13.已知函数f(x)=log2x-2log2(x+c),其中c>0,若对任意x∈(0,+∞),都有f(x)≤1,则c的取值范围是________.【答案】c≥【解析】由题意,在x∈(0,+∞)上恒成立,所以c≥14. 若函数f(x)=log 2|ax -1|(a >0),当x≠时,有f(x)=f(1-x),则a =________. 【答案】2【解析】由f(x)=f(1-x),知函数f(x)的图象关于x =对称, 而f(x)=log 2+log 2|a|,从而=,所以a =2.15. 已知两条直线l 1:y =m 和l 2:y =,l 1与函数y =|log 2x|的图象从左至右相交于点A 、B ,l 2与函数y =|log 2x|的图象从左至右相交于点C 、D.记线段AC 和BD 在x 轴上的投影长度分别为a 、b.当m 变化时,求的最小值. 【答案】8【解析】由题意得x A =m,x B =2m ,x C =,x D =,所以a =|x A -x C |=,b =|x B -x D |=,即==·2m =2+m.因为+m = (2m +1)+-≥2-=,当且仅当 (2m +1)=,即m =时取等号.所以,的最小值为=8.16. 设则a ,b ,c 的大小关系为 A .a <c <b B .b <a <c C .a <b <c D .b <c <a【答案】B 【解析】因为所以显然,所以的值最大.故排除A,D 选项.又因为,所以.即.综上.故选B.本小题关键是进行对数的运算.【考点】1.对数的运算.2.数的大小比较的方法.17. 函数y=log a (x-1)+2(a>0,且a≠1)的图象恒过定点 . 【答案】(2,2)【解析】∵log a 1=0,∴x-1=1,即x=2,此时y=2,因此函数恒过定点(2,2).18. 已知函数f (x )是定义在R 上的奇函数,且当x ∈(0,+∞)时,都有不等式f (x )+xf ′(x )>0成立,若a =40.2f (40.2),b =(log 43)f (log 43),c =f,则a ,b ,c 的大小关系是________.【答案】c >a >b【解析】由f (x )+xf ′(x )>0得(xf (x ))′>0,令g (x )=xf (x ),则g (x )在(0,+∞)递增,且为偶函数,且a =g (40.2),b =g (log 43),c =g =g (-2)=g (2),因为0<log 43<1<40.2<2,所以c >a>b .19. 在ABC 中,若,则A=( )A .B .C .D .【答案】C【解析】由,整理得,又,选C.【考点】对数及其运算,余弦定理的应用.20.已知函数(1)若x=2为的极值点,求实数a的值;(2)若在上为增函数,求实数a的取值范围.【答案】(1);(2)【解析】(1)通过求导可得.又因为x=2是极值点.即可求得.(2)通过对对数的定义域可得符合题意的不等式.在上恒成立.所以转化为研究二次函数的最值问题.通过对称轴研究函数的单调性即可得到结论.本题的的关键是对含参的函数的最值的讨论.以二次的形式为背景紧扣对称轴这个知识点.试题解析:(1)因为.因为x=2为f(x)的极值点.所以即.解得.又当时.从而x=2为f(x)的极值点成立. (2)因为f(x)在区间上为增函数.所以.在区间上恒成立. ①当时. 在上恒成立.所以f(x)在上为增函数.故符合题意.②当时.由函数f(x)的定义域可知,必须有时恒成立.故只能.所以在区间上恒成立.令g(x)= .其对称轴为.因为.所以<1.从而g(x) 在上恒成立.只需要g(3) 即可.由g(3)= .解得:.因为.所以.综上所述. 的取值范围为.【考点】1.对数函数的知识点.2.最值问题.3.含参的讨论.21.已知函数的两个极值点分别为,且,,点表示的平面区域为,若函数的图象上存在区域内的点,则实数的取值范围为 .【答案】【解析】的两根x1,x2满足0<x1<1<x2,则x1+x2=-m,x1x2=,(x1-1)(x2-1)=x1x2-(x1+x2)+1=+m+1<0,即∴-m<n<-3m-2,为平面区域D,∴m<-1,n>1,因为的图像上存在区域D内的点,所以,,因为,所以,所以解得.【考点】1.函数的导数;2.对数的性质.22.设是定义在上的偶函数,对任意的,都有,且当时,,若关于的方程在区间内恰有三个不同实根,则实数的取值范围是 .【答案】【解析】∵对于任意的x∈R,都有f(2-x)=f(x+2),∴函数f(x)的图象关于直线x=2对称,又∵当x∈[-2,0]时,f(x)=-1,且函数f(x)是定义在R上的偶函数,若在区间(-2,6)内关于x的方程f(x)-loga (x+2)=0恰有3个不同的实数解,则函数y=f(x)与y=loga(x+2)在区间(-2,6)上有三个不同的交点,如下图所示:又f(-2)=f(2)=3,则有 loga (2+2)<3,且loga(6+2)≥3,解得.【考点】1.指数函数与对数函数的图象与性质;2.函数的零点与方程根的关系23.对于以下结论:①.对于是奇函数,则;②.已知:事件是对立事件;:事件是互斥事件;则是的必要但不充分条件;③.若,,则在上的投影为;④.(为自然对数的底);⑤.函数的图像可以由函数图像先左移2个单位,再向下平移1个单位而来.其中,正确结论的序号为__________________.【答案】③④⑤【解析】对①,不一定有意义,所以不正确;对②,是的充分但不必要条件;所以不正确;对③,易得在上的投影为;所以正确;对④,构造函数,则.由此可得在上单调递减,故成立;所以正确;对⑤,原函数可变为:,所以将函数图像先左移2个单位,再向下平移1个单位可得函数的图像.正确.【考点】1、函数的性质;2、随机事件及二项分布;3、向量的投影;4、充分必要条件.24.设,,,则( )A.c>b>a B.b>c>a C.a>c>b D.a>b>c【答案】D【解析】,,,又,,,,所以,所以.【考点】对数与对数运算25.函数f(x)=lnx的图象与函数g(x)=x2-4x+4的图象的交点个数为()A.0B.1C.2D.3【答案】C【解析】将题中所给的函数画出如下:,根据图像,易知有2个交点.【考点】1.函数的零点;2.函数的图像画法.26.不等式的解集为_____________.【答案】【解析】原不等式等价于,解得.【考点】对数函数的定义与性质27.已知函数f(x)=|lg(x-1)|若a≠b,f(a)=f(b),则a+2b的取值范围是.【答案】【解析】由得,且,由对数函数的特征得,所以,故.【考点】对数函数性质、基本不等式.28.已知函数.(1) 当时,函数恒有意义,求实数a的取值范围;(2) 是否存在这样的实数a,使得函数在区间上为增函数,并且的最大值为1.如果存在,试求出a的值;如果不存在,请说明理由.【答案】(1);(2)存在,.【解析】(1)首先根据对数函数的底数,得到为减函数,最小值是,再根据对数函数的真数大于0,得到恒成立,在范围内解不等式即可;(2)先看真数部分是减函数,由已知“在区间上为增函数”可得,为减函数,此时得到;根据“的最大值为1”,结合对数函数的真数大于0,可知,解出,再判断它是不是在的范围内,在这个范围内,那么得到的的值满足题目要求,不在这个范围内就说明满足题目要求的是不存在的.试题解析:(1)∵,设,则为减函数,时,t最小值为, 2分当,恒有意义,即时,恒成立.即;4分又,∴ 6分(2)令,则;∵,∴函数为减函数,又∵在区间上为增函数,∴为减函数,∴,8分所以时,最小值为,此时最大值为;9分又的最大值为1,所以, 10分∴,即,所以,故这样的实数a存在. 12分【考点】1.对数函数的定义及定义域;2.对数函数的单调性及其应用;3.对数函数的值域与最值;4.简单复合函数的单调性;5.解不等式29.若函数(其中为常数且),满足,则的解集是 .【答案】【解析】函数定义域为,由,知函数为单调递减函数,所以.由知,满足:,解得.【考点】1.不等式求解;2.对数的单调性;3.函数的定义域.30.已知函数(为常数,为自然对数的底)(1)当时,求的单调区间;(2)若函数在上无零点,求的最小值;(3)若对任意的,在上存在两个不同的使得成立,求的取值范围.【答案】(1)的减区间为,增区间为;(2)的最小值为;(3)的取值范围是.【解析】(1)将代入函数的解析式,利用导数求出的单调递增区间和递减区间;(2)将函数在上无零点的问题转化为直线与曲线在区间上无交点,利用导数确定函数在区间上的图象,进而求出参数的取值范围,从而确定的最小值;(3)先研究函数在上的单调性,然后再将题干中的条件进行适当转化,利用两个函数的最值或端点值进行分析,列出相应的不等式,从而求出的取值范围.试题解析:(1)时,由得得故的减区间为增区间为 3分(2)因为在上恒成立不可能故要使在上无零点,只要对任意的,恒成立即时, 5分令则再令于是在上为减函数故在上恒成立在上为增函数在上恒成立又故要使恒成立,只要若函数在上无零点,的最小值为 8分(3)当时,,为增函数当时,,为减函数函数在上的值域为 9分当时,不合题意当时,故① 10分此时,当变化时,,的变化情况如下时,,任意定的,在区间上存在两个不同的使得成立,当且仅当满足下列条件即②即③ 11分令令得当时,函数为增函数当时,函数为减函数所以在任取时有即②式对恒成立 13分由③解得④由①④当时对任意,在上存在两个不同的使成立【考点】1.函数的单调区间;2.函数的零点;3.函数的存在性问题31.设函数,若对任意实数,函数的定义域为,则的取值范围为____________.【答案】【解析】函数的定义域为,则满足,即对任意实数恒成立,只要比的最大值大即可,而的最大值为,即.【考点】函数的定义域恒成立问题,学生的基本运算能力与逻辑推理能力.32.设,,则 ( )A.B.C.D.【答案】D.【解析】是上的增函数,又.【考点】对数值大小的比较.33.,,,则与的大小关系为()A.B.C.D.不确定【答案】C【解析】因为,,即,所以,故选C.【考点】对数的运算34.函数的定义域为()A.B.C.D.【答案】D【解析】要使函数解析式有意义需满足:解得且,即选D.【考点】1.对数函数;2.一元二次不等式.35.若,则()A.<<B.<<C.<<D.<<【答案】C【解析】因为所以,而,故,又,而,故,综上,,选C.【考点】对数函数.36.设,,,则()A.B.C.D.【答案】D【解析】一般地,只要涉及3个及以上的数比较大小,应找一中间量来比较,比如0、1.由对数的性质知:,,。
高考数学一轮专项复习练习卷-北师大版-对数运算与对数函数(含解析)

一、单项选择题1.(2023·哈尔滨模拟)函数y =log 0.5(4x -3)的定义域为()A .[1,+∞)B.34,1C.34,1 D.0,342.若函数f (x )=log a x (a >0,且a ≠1)的反函数的图象过点(1,3),则f (log 28)等于()A .-1B .1C .2D .33.若12log 0.8log 0.8x x <<0,则x 1与x 2的关系正确的是()A .0<x 2<x 1<1B .0<x 1<x 2<1C .1<x 1<x 2D .1<x 2<x 14.已知函数f (x )=log a (x -b )(a >0,且a ≠1,a ,b 为常数)的图象如图,则下列结论正确的是()A .a >0,b <-1B .a >0,-1<b <0C .0<a <1,b <-1D .0<a <1,-1<b <05.(2024·通化模拟)设a =log 0.14,b =log 504,则()A .2ab <2(a +b )<abB .2ab <a +b <4abC .ab <a +b <2abD .2ab <a +b <ab6.(2023·本溪模拟)若不等式(x -1)2<log a x (a >0且a ≠1)在x ∈(1,2]内恒成立,则实数a 的取值范围为()A .(1,2]B .(1,2)C .(1,2]D .(2,2)二、多项选择题7.(2024·永州模拟)若10a =5,10b =20,则()A .a +b =4B .b -a =lg 4C .ab <2(lg 5)2D .b -a >lg 58.(2023·吕梁模拟)已知函数f (x )x 2-4x ,x ≤0,2x |,x >0,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是()A .x 1+x 2=-4B .x 3x 4=1C .1<x 4<4D .0<x 1x 2x 3x 4≤2三、填空题9.计算:lg 25+23lg 8-log 227×log 32+2log 32=.10.(2023·绍兴模拟)已知函数f (x )满足f (xy )=f (x )+f (y ),且当x >y 时,f (x )<f (y ),请你写出一个符合上述条件的函数f (x )=.11.设p >0,q >0,若log 4p =log 6q =log 9(2p +q ),则p q =.12.(2023·龙岩模拟)已知函数y =f (x ),若在定义域内存在实数x ,使得f (-x )=-f (x ),则称函数y =f (x )为定义域上的局部奇函数.若函数f (x )=log 3(x +m )是[-2,2]上的局部奇函数,则实数m 的取值范围是.四、解答题13.已知f (x )=213log (5)x ax a -+.(1)若a =2,求f (x )的值域;(2)若f (x )在(1,+∞)上单调递减,求a 的取值范围.14.(2024·株洲模拟)已知函数f (x )=log 9(9x +1)-kx (k ∈R )是偶函数.(1)求k 的值;(2)若方程f (x )=log 9m 的取值范围.15.已知正实数x,y,z满足log2x=log3y=log5z≠0,则()A.x>y>zB.x<y<zC.x,y,z可能构成等比数列D.关于x,y,z的方程x+y=z有且只有一组解16.(2023·潍坊模拟)已知函数f(x)=log a x-(a)x-log a2(a>1)有两个零点,则实数a的取值范围是.§2.8对数运算与对数函数1.C 2.B 3.C 4.D 5.D 6.B [若0<a <1,此时x ∈(1,2],log a x <0,而(x -1)2>0,故(x -1)2<log a x 无解;若a >1,此时x ∈(1,2],log a x >0,而(x -1)2>0,令f (x )=log a x ,g (x )=(x -1)2,画出函数f (x )与g (x )的图象,如图,若不等式(x -1)2<log a x 在x ∈(1,2]内恒成立,则log a 2>1,解得a ∈(1,2).]7.BC [由10a =5,10b =20,得a =lg 5,b =lg 20,则a +b =lg 5+lg 20=lg(5×20)=lg 100=2,故A 错误;b -a =lg 20-lg 5=lg 205=lg 4<lg 5,故B 正确,D 错误;ab =lg 5×lg 20=lg 5×(lg 4+lg 5)=lg 5×lg 4+(lg 5)2,∵lg 4<lg 5,∴lg 5×lg 4+(lg 5)2<lg 5×lg 5+(lg 5)2=2(lg 5)2,∴ab <2(lg 5)2,故C 正确.]8.AB [函数f (x )x 2-4x ,x ≤0,2x |,x >0的图象如图所示,设f (x 1)=f (x 2)=f (x 3)=f (x 4)=t ,则0<t <4,则直线y =t 与函数y =f (x )图象的4个交点横坐标分别为x 1,x 2,x 3,x 4.对于A ,函数y =-x 2-4x 的图象关于直线x =-2对称,则x 1+x 2=-4,故A 正确;对于B ,由图象可知|log 2x 3|=|log 2x 4|,且0<x 3<1<x 4,所以-log 2x 3=log 2x 4,即log 2(x 3x 4)=0,所以x 3x 4=1,故B 正确;对于C ,由图象可知log 2x 4∈(0,4),则1<x 4<16,故C 错误;对于D ,由图象可知-4<x 1<-2,当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,所以x 1x 2x 3x 4=x 1(-4-x 1)=-x 21-4x 1=-(x 1+2)2+4=f (x 1)∈(0,4),故D 错误.]9.210.12log x (答案不唯一)11.1212.(2,5]解析因为f (x )=log 3(x +m )是[-2,2]上的局部奇函数,所以x +m >0在[-2,2]上恒成立,所以m -2>0,即m >2,由局部奇函数的定义,存在x ∈[-2,2],使得log 3(-x +m )=-log 3(x +m ),即log 3(-x +m )+log 3(x +m )=log 3(m 2-x 2)=0,所以存在x ∈[-2,2],使得m 2-x 2=1,即m 2=x 2+1,又因为x ∈[-2,2],所以x 2+1∈[1,5],所以m 2∈[1,5],即m ∈[-5,-1]∪[1,5],综上,m ∈(2,5].13.解(1)当a =2时,f (x )=213log (-210)x x ,令t =x 2-2x +10=(x -1)2+9,∴t ≥9,f (x )≤13log 9=-2,∴f (x )的值域为(-∞,-2].(2)令u =x 2-ax +5a ,∵y =13log u 为减函数,f (x )在(1,+∞)上单调递减,∴u =x 2-ax +5a 在(1,+∞)上单调递增,1,4a ≥0,解得-14≤a ≤2,∴a 的取值范围是-14,2.14.解(1)因为9x +1>0,所以f (x )的定义域为R ,又因为f (x )是偶函数,所以∀x ∈R ,有f (-x )=f (x ),即log 9(9-x +1)+kx =log 9(9x +1)-kx 对∀x ∈R 恒成立,则2kx =log 9(9x +1)-log 9(9-x+1)=log 99x +19-x +1=log 99x =x 对∀x ∈R 恒成立,即x (2k -1)=0对∀x ∈R 恒成立,因为x 不恒为0,所以k =12.(2)由(1)得f (x )=log 9(9x +1)-12x =log 9(9x +1)-129log 9x =log 99x +13x =log x则方程f (x )=log log x log 不相等的实数解,所以方程3x +13x =m 3x +1有两个不相等的实数解,令t =3x ,且t >0,方程化为t +1t =m t+1,即方程m =t 2-t +1在(0,+∞)上有两个不相等的实数解,令g (t )=t 2-t +1,则y =m 与y =g (t )在(0,+∞)上有两个交点,如图所示,又g (t )所以g (t )≥=34,且g (0)=1,所以m 15.D [令log 2x =log 3y =log 5z =t ≠0,则x =2t ,y =3t ,z =5t ,令g(k)=k t,由幂函数图象的性质可知,当t>0时,g(k)=k t在(0,+∞)上单调递增,故2t<3t<5t,即x<y<z,当t<0时,g(k)=k t在(0,+∞)上单调递减,故2t>3t>5t,即x>y>z,故A,B不一定正确;假设x,y,z成等比数列,则y2=xz⇒(3t)2=2t·5t⇒9t=10t,则t=0,与已知矛盾,故C错误;因为x+y=z,则2t+3t=5t,即1,令f(t)1,由指数函数的性质可知f(t)为减函数,注意到f(1)=0,故f(t)只有一个零点,即1只有一个解t=1,所以x+y=z只有一组解x=2,y=3,z=5,故D正确.]16.(1,1 e e)解析由题知,x>0,f(x)=log a x-(a)x-log a2=log a x2-2x a,令t=x2,t>0,则y=log at与y=a t的图象在(0,+∞)上有两个交点,又y=log a t与y=a t互为反函数,所以交点在直线y=t上,设y=log a t,y=a t的图象与直线y=t相切时,切点坐标为(m,n),m>0,a m ln a=1,a m,解得m=e,又1m ln a=1,所以a=1e e>1,所以当a=1e e时,y=log a t和y=a t只有一个交点,如图1;当a>1e e时,y=log a t和y=a t无交点,如图2;当1<a<1e e时,y=log a t和y=a t有两个交点,如图3.综上,a的取值范围为(1,1e e).。
高一数学第一学期必修一第三章第2节:对数与对数函数_教师版

一、以考查知识为主试题【容易题】1.(09·江西理)函数y=ln(x+1)-x2-3x+4的定义域为()A.(-4,-1) B.(-4,1)C.(-1,1) D.(-1,1][答案] C2.下列各式中不正确的是()[答案] D3.log23·log34·log45·log56·log67·log78=()A.1B.2C.3D.4[答案] C4.三个数60.7,0.76,log0.76的大小顺序是()A.0.76<log0.76<60.7B.0.76<60.7<log0.76C.log0.76<60.7<0.76D.log0.76<0.76<60.7[答案] D5.设log(a-1)(2x-1)>log(a-1)(x-1),则()A.x>1,a>2 B.x>1,a>1C.x>0,a>2 D.x<0,1<a<2[答案] A6.若函数y=log(a2-1)x在区间(0,1)内的函数值恒为正数,则a的取值范围是() A.|a|>1 B.|a|> 2C.|a|< 2 D.1<|a|< 2[答案] D7.函数y=log2x+的定义域是()A.(0,+∞) B.(1,+∞)C.(0,1) D.{1}[答案] D8.给出函数f (x )=⎩⎪⎨⎪⎧(12)x (当x ≥4时)f (x +1) (当x <4时),则f (log 23)=( )A .-238B.111C.119D.124[答案] D9.已知集合A ={y |y =log 2x ,x >1},B ={y |y =(12)x ,x >1},则A ∪B =( )A .{y |0<y <12}B .{y |y >0}C .∅D .R[答案] B10.(2010·湖北文,5)函数y =1log 0.5(4x -3)的定义域为( )A.⎝⎛⎭⎫34,1B.⎝⎛⎭⎫34,+∞ C .(1,+∞)D.⎝⎛⎭⎫34,1∪(1,+∞)[答案] A11.已知5lg x =25,则x =________,已知log x 8=32,则x =________.[答案] 100;412.设log 89=a ,log 35=b ,则lg2=________.[答案]22+3ab13.光线每透过一块玻璃板,其强度要减弱110,要使光线减弱到原来的13以下,至少要这样的玻璃板______块(lg3=0.4771).[答案] 1114.若log 0.2x >0,则x 的取值范围是________;若log x 3<0,则x 的取值范围是________. [答案] (0,1),(0,1) 二、以考查技能为主试题 【中等题】15.的值等于( )A .2+ 5B .2 5C .2+52D .1+52[答案] B16.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为________[答案]pp q17.已知lg(x +2y )+lg(x -y )=lg2+lg x +lg y ,求xy的值.答案x y =2.【较难题】18.如果方程lg 2x +(lg2+lg3)lg x +lg2·lg3=0的两根为x 1、x 2,那么x 1·x 2的值为______[答案] .1619.设x =,则x ∈( )A .(-2,-1)B .(1,2)C .(-3,-2)D .(2,3)[答案] D20.我们知道,y =a x (a >0且a ≠1)与y =log a x (a >0且a ≠1)互为反函数.只要把其中一个进行指对互化.就可以得到它的反函数的解析式.任意一个函数y =f (x ),将x 用y 表示出来能否得到它的反函数?据函数的定义:对于自变量x 的每一个值y 都有唯一确定的值与之对应.如果存在反函数,应是对于y 的每一个值,x 都有唯一确定的值与之对应,据此探究下列函数是否存在反函数?若是,反函数是什么?若否,为什么?(1)y =2x +1; (2)y =x ;(3)y =x 2; (4)y =2x -1x +1.答案 (1) y =2x +1的反函数为y =12(x -1).(2)反函数为y =x 2(x ≥0). (3) y =x 2不存在反函数. (4)反函数为y =x +12-x (x ≠2).。
2025高考一轮复习专练9 对数与对数函数【含答案】

2025高考一轮复习专练9对数与对数函数(原卷版)[基础强化]一、选择题1.lg 52+2lg 2-(12)-1=()A .1B .-1C .3D .-32.函数y =log 12(3x -2)的定义域是()A .[1,+∞)B .(23,+∞)C .23,1D .(23,1]3.函数f (x )=log 12(x 2-2x )的单调递增区间是()A .(-∞,0)B .(1,+∞)C .(2,+∞)D .(-∞,1)4.若函数f (x )=(m -2)x a 是幂函数,则函数g (x )=log a (x +m )(a >0且a ≠1)的图像过点()A .(-2,0)B .(2,0)C .(-3,0)D .(3,0)5.[2024·江西省高三联考]设a =log 0.222022,b =sin (sin 2022),c =20220.22则a ,b ,c 的大小关系为()A .a <b <cB .b <a <cC .b <c <aD .c <b <a 6.[2024·河北省高三二模]已知x =(43)54,y =log 45,z =log 34,则x 、y 、z 的大小关系为()A .y >x >zB .x >y >zC .z >x >yD .x >z >y7.已知函数f (x )=ln x +ln (2-x ),则()A .f (x )在(0,2)上单调递增B .f (x )在(0,2)上单调递减C .y =f (x )的图像关于直线x =1对称D .y =f (x )的图像关于点(1,0)对称8.若函数y =log a x (a >0且a ≠1)的图像如图所示,则下列函数图像正确的是()9.[2024·重庆市高三质量检测]若函数f (x )=log a (-3x 2+4ax -1)有最小值,则实数a 的取值范围是()A .(32,1)B .(1,3)C .(0,32)D .(3,+∞)二、填空题10.已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________.11.函数f (x )x-log 2(x +4)在区间[-2,2]上的最大值为________.12.函数f (x )=log 2(-x 2+22)的值域为________.[能力提升]13.[2024·江西省九江市二模]牛顿冷却定律,即温度高于周围环境的物体向周围媒质传递热量逐渐冷却时所遵循的规律.如果物体的初始温度为T 0,则经过一定时间t 分钟后的温度T 满足T -T c =(12)t h (T 0-T c ),其中T c 是环境温度,h 为常数.现有一个105℃的物体,放在室温15℃的环境中,该物体温度降至75℃大约用时1分钟,那么再经过m 分钟后,该物体的温度降至30℃,则m 的值约为(参考数据:lg 2≈0.3010,lg 3≈0.4771)()A .2.9B .3.4C .3.9D .4.414.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lg V.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(1010≈1.259)()A.1.5B.1.2C.0.8D.0.615.[2024·江西省高三一模]纳皮尔在他的《奇妙的对数表》一书中说过:没有什么比大数的运算更让数学工作者头痛,更阻碍了天文学的发展.许凯和斯蒂菲尔这两个数学家都想到了构造了如下一个双数列模型的方法处理大数运算.0123451248163267891011641282565121024204812 (19202122)4096 (524288104857620971524194304)232425…83886081677721633554432…如512×1024,我们发现512是9个2相乘,1024是10个2相乘.这两者的积,其实就是2的个数做一个加法.所以只需要计算9+10=19.那么接下来找到19对应的数524288,这就是结果了.若x=log4(20211226×1314520),则x落在区间()A.(15,16)B.(22,23)C.(42,44)D.(44,46)16.已知函数f(x)=log a(-x+1)(a>0且a≠1)在[-2,0]上的值域是[-1,0],若函数g(x)=a x+m-3的图像不经过第一象限,则m的取值范围为________2025高考一轮复习专练9对数与对数函数(解析版)1.B原式=lg 52+lg 4-2=lg -2=1-2=-1.2.D 由题意得log 12(3x -2)≥0,即0<3x -2≤1.∴23<x ≤1.3.A 函数f (x )=log 12(x 2-2x )的定义域为(-∞,0)∪(2,+∞),由复合函数的单调性可知,函数f (x )=log 12(x 2-2x )的单调增区间为(-∞,0).4.A ∵f (x )=(m -2)x a 为幂函数,∴m -2=1,m =3,∴g (x )=log a (x +3),又g (-2)=0,∴g (x )的图像过(-2,0).5.A 因为a =log 0.222022<log 0.2210.22=-1,-1<b =sin (sin 2022)<1,c =20220.22>20220=1,所以a <b <c .故选A.6.D ∵y =log 45>1,z =log 34>1,∴y z =log 45log 34=log 45·log 43≤(log 45+log 432)2=(log 4152)2=(log 415)2<(log 44)2=1,即z >y ,∵43=log 3343,而(343)3=34=81>43=64,∴43=log 3343>log 34,又43=(43)1<(43)54,∴x >z ,综上,x >z >y .7.C f (x )的定义域为(0,2),f (x )=ln x +ln (2-x )=ln [x (2-x )]=ln (-x 2+2x ).设u =-x 2+2x ,x ∈(0,2),则u =-x 2+2x 在(0,1)上单调递增,在(1,2)上单调递减.又y =ln u 在其定义域上单调递增,∴f (x )=ln (-x 2+2x )在(0,1)上单调递增,在(1,2)上单调递减.∴选项A 、B 错误;∵f (x )=ln x +ln (2-x )=f (2-x ),∴f (x )的图像关于直线x =1对称,∴选项C 正确;∵f (2-x )+f (x )=[ln (2-x )+ln x ]+[ln x +ln (2-x )]=2[ln x +ln (2-x )],不恒为0,∴f (x )的图像不关于点(1,0)对称,∴选项D 错误.8.B 由y =log a x 的图像可知1,所以a =3.对于选项A :y =3-x x为减函数,A 错误;对于选项B :y =x 3,显然满足条件;对于选项C :y =(-x )3=-x 3在R 上为减函数,C 错误;对于选项D :y =log 3(-x ),当x =-3时,y =1,D 错误.故选B.9.A 依题意a ∈(0,1)∪(1,+∞)且-3x 2+4ax -1>0,所以Δ=16a 2-12>0,解得a >32或a <-32,综上可得a ∈(32,1)∪(1,+∞),令-3x 2+4ax -1=0的根为x 1、x 2且x 1<x 2,u (x )=-3x 2+4ax -1,y =log a u ,若a ∈(1,+∞),则y =log a u 在定义域上单调递增,u (x )=-3x 2+4ax -1在(x 1,2a 3)上单调递增,在(2a 3,x 2)上单调递减,根据复合函数的单调性可知,f (x )=log a (-3x 2+4ax -1)在(x 1,2a 3)上单调递增,在(2a 3,x 2)上单调递减,函数不存在最小值,故舍去;若a ∈(32,1),则y =log a u 在定义域上单调递减,u (x )=-3x 2+4ax -1在(x 1,2a 3)上单调递增,在(2a 3,x 2)上单调递减,根据复合函数的单调性可知,f (x )=log a (-3x 2+4ax -1)在(x 1,2a 3)上单调递减,在(2a 3,x 2)上单调递增,所以函数在x =2a 3取得最小值,所以a ∈(32,1).10.-7解析:∵f (3)=log 2(9+a )=1,∴9+a =2,a =-7.11.8解析:因为函数y x,y =-log 2(x +4)在区间[-2,2]上都单调递减,f (x )x -log 2(x +4)在区间[-2,2]上单调递减,所以函数f (x )的最大值为f (-2)-2-24)=9-1=8.-∞,32解析:∵0<-x 2+22≤22,∴log 2(-x 2+22)≤log 222=32.13.B 由75-15=(12)1h (105-15),有(12)1h =23,又30-15=(12)m h (75-15),有(12)m h =14,即(23)m =14,则m lg 23=lg 14,解得m =-lg 4lg 2-lg 3=2lg 2lg 3-lg 2≈3.4.14.C 4.9=5+lg V ⇒lg V =-0.1⇒V =10-110=11010≈11.259≈0.8,所以该同学视力的小数记录法的数据约为0.8.15.B x =log 4(20211226×1314520)=12log 2(20211226×1314520),设20211226=2m ,1314520=2n ,由表格得知:220=1048576,221=2097152,224=16777216,225=33554432,所以24<m <25,则20<n <21,所以m +n ∈(44,46),log 2(20211226×1314520)∈(44,46),则x =12log 2(20211226×1314520)∈(22,23).16.[-1,+∞)解析:∵函数f (x )=log a (-x +1)(a >0且a ≠1)在[-2,0]上的值域是[-1,0],而f (0)=0,∴f(-2)=log a3=-1,∴a=13,∴g(x)x+m-3,令g(x)=0,得x=-m-1,则-m-1≤0,求得m≥-1,故m的取值范围为[-1,+∞).。
高中数学对数试题及答案

高中数学对数试题及答案一、选择题1. 对数函数y=log_a x的定义域是:A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)2. 如果log_a b = c,那么a的值为:A. b^cB. c^bC. b^(1/c)D. b^c3. 对于任意正数a和b,下列哪个等式是正确的?A. log_a a = 1B. log_a b = log_b aC. log_a b^2 = 2log_a bD. log_a b = log_b a二、填空题4. 根据换底公式,我们可以将log_10 100转换为以e为底的对数,其结果为 _______。
5. 如果log_5 25 = x,那么x的值为 _______。
三、解答题6. 解对数方程:log_3 x + log_3 (x - 1) = 1。
7. 已知log_2 8 = y,求以2为底的对数3的值。
四、证明题8. 证明:对于任意正数a(a≠1),log_a a = 1。
答案一、选择题1. 答案:A. (0, +∞) 对数函数的定义域是正实数。
2. 答案:C. b^(1/c) 根据对数的定义,log_a b = c 意味着 a^c = b。
3. 答案:C. log_a b^2 = 2log_a b 根据对数的幂运算法则。
二、填空题4. 答案:2 因为换底公式 log_a b = log_c b / log_c a,将log_10 100转换为以e为底的对数,即log_e 100 = log_10 100 / log_10 e = 2 / log_10 e = 2。
5. 答案:2 因为25是5的平方,所以log_5 25 = 2。
三、解答题6. 解:由题意得 log_3 x + log_3 (x - 1) = log_3 (x(x - 1)) = 1,根据对数的乘积法则,我们得到 x(x - 1) = 3^1,即 x^2 - x - 3 = 0。
高中数学对数与对数函数 综合练习 北师大版 必修1

高中数学对数与对数函数 综合练习 北师大版 必修1一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或1 3、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a aa x m n x+==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()12m n -4、如果方程2lg (lg5lg7)lg lg5lg70x x +++=的两根是,αβ,则αβ的值是( ) A 、lg5lg 7 B 、lg 35 C 、35 D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13B 23C 22D 336、函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于( )A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称 7、函数(21)log 32x y x -=-的定义域是( )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞⎪⎝⎭ C 、2,13⎛⎫ ⎪⎝⎭ D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( ) A 、12log (1)y x =+ B 、22log 1y x =-C 、21log y x = D 、22log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( ) A 、在(),0-∞上是增加的 B 、在(),0-∞上是减少的 C 、在(),1-∞-上是增加的 D 、在(),0-∞上是减少的二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m n a a m n a +=== 。
对数与对数函数.板块一.对数与对数运算.学生版

题型一:对数的定义与对数运算【例1】 ⑴将下列指数式化为对数式,对数式化为指数式:①45625=;②61264-=;③1 5.733m⎛⎫= ⎪⎝⎭;④12log 164=-;⑤lg 0.012=-;⑥ln10 2.303=.⑵求下列各式中x 的值:①642log 3x =-;②log 86x =;③lg100x =;④2ln e x -=.【例2】 将下列指数式化为对数式,对数式化为指数式:(1)712128-=; (2)327a =; (3)1100.1-=;(4)12log 325=-; (5)lg0.0013=-; (6)ln100=4.606.【例3】 将下列对数式写成指数式:(1)416log 21-=;(2)2log 1287=;(3)lg 0.012=-; (4)ln10 2.303=典例分析板块一.对数运算【例4】 已知32()log f x x =, 则(8)f 的值等于( ).A. 1B. 2C. 8D. 12【例5】 计算下列各式的值:(1)lg 0.001; (2)4log 8; (3)【例6】 ⑴27log 9,⑵81log 43,⑶()()32log 32-+,⑷625log 345【例7】). A. 1B. -1C. 2D. -2【例8】 25log ()a -(a ≠0)化简得结果是( ).A. -aB. a 2C. |a |D. a【例9】 化简3log 1的结果是( ).A. 12B. 1C. 2【例10】 计算2(lg5)lg2lg50+⋅= .【例11】 计算:()2151515log 5log 45log 3⋅+【例12】 化简与求值:(1)21lg2lg52+(2)2log .【例13】 若2510a b ==,则11a b+= .【例14】 化简3458log 4log 5log 8log 9⋅⋅⋅的结果是 ( ).A .1 B. 32C. 2D.3【例15】 计算:① 53log 12.0- ②4912log 3log 2log ⋅-【例16】 求下列各值:⑴221log 36log 32-;⑵3log lg1;⑷3log 53;⑸3log 59;⑹3log3;⑺;⑻22(lg5)lg2lg25(lg2)+⋅+;⑼827log 9log 32⋅.【例17】 求值:⑴2572lg3lg7lglg 94++-;⑵;⑷32516log 4log 9log 5⋅⋅.【例18】 (1)化简:532111log 7log 7log 7++; (2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅=,求实数m 的值.【例19】 (1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.题型二:对数运算法则的应用【例20】 若a 、0b >,且a 、1b ≠,log log a b b a =,则A.a b =B.1a b=C.a b =或1a b=D.a 、b 为一切非1的正数【例21】 求证:(1)log n a a n =; (2)log log log a a aMM N N-=.【例22】 试推导出换底公式:log log log c a c bb a=(0a >,且1a ≠;0c >,且1c ≠;0b >).【例23】 下列各式中,正确的是( )A.2lg 2lg x x =B.1log log a a x n=C.log log log a a a x xy y=1log 2a x =【例24】 已知λ====n a a a b b b n log log log 2121求证:λ=)(log 2121n a a a b b b n【例25】 已知32a =,用 a 表示33log 4log 6-【例26】 若32a =,则33log 82log 6-= .【例27】 已知3log 2a =,35b =用a b ,表示3log【例28】 已知(0,0,1)ab m a b m =>>≠且log m b x =,则log m a 等于A.1x -B.1x +C.1xD.1x -【例29】 已知lg 5m =,lg3n =,用,m n 表示30log 8.【例30】 (1)已知18log 9a =,185b =,试用a 、b 表示18log 45的值;(2)已知1414log 7log 5a b ==,,用a 、b 表示35log 28.【例31】 已知2log 3a =,37b =,求12log 56【例32】 8log 3p =,3log 5q =,那么lg 5等于 (用p ,q 表示);【例33】 知18log 9a =,185b =,用,a b 表示36log 45.【例34】 设,,x y z 均为实数,且34x y =,试比较3x 与4y 的大小.题型三:对数方程【例35】 求底数:(1)533log -=x , (2)872log =x【例36】 已知2(3)log (3)1x x x ++=,求实数x 的值.【例37】 已知log log a a x c b =+,求x【例38】 证明:b xxa ab a log 1log log +=【例39】 求x 的值:①43log 3-=x②35log 2-=x ③()()1123log 2122=-+-x x x④()[]0log log log 432=x【例40】 解方程24lg lg 3x x +=【例41】 (1)方程lg lg(3)1x x ++=的解x = ;(2)设12,x x 是方程2lg lg 0x a x b ++=的两个根,则12x x 的值是 .【例42】 解方程()()1212log 21log 222x x --+--=-【例43】 解方程)12(log 2)22(log 212+=++x x【例44】 已知12()x f x a-=,且(lg )f a =a 的值.【例45】 解方程2lg lg 1020x x x +=【例46】 设a 为实常数,解关于x 的方程)lg()3lg()1lg(x a x x -=-+-.【例47】 设正数a ,b ,c 满足222c b a =+.(1)求证:1)1(log )1(log 22=-++++b ca a cb ; (2)又设1)1(log 4=++ac b ,32)(log 8=-+c b a ,求a ,b ,c 的值.。
高三数学对数与对数函数试题答案及解析

高三数学对数与对数函数试题答案及解析1.已知函数f(x)=x-1-(e-1)lnx,其中e为自然对数的底,则满足f(e x)<0的x的取值范围为.【答案】(0,1)【解析】因为由得:,又,所以由f(e x)<0得:【考点】利用导数解不等式2.函数f(x)=log2(2x-1)的定义域为________________.【答案】(,+∞)【解析】由2x-1>0,得x>.注意写成集合或者区间形式.考点:函数的定义域,对数函数的性质3.函数y=(-x2+6x)的值域()A.(0,6)B.(-∞,-2]C.[-2,0)D.[-2,+∞)【答案】D【解析】∵-x2+6x=-(x-3)2+9,∴0<-x2+6x≤9,∴y≥9=-2,故选D.4.设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a 【答案】A【解析】∵a=log3π>log33=1,b=log2<log22=1,∴a>b,又==(log23)2>1,∴b>c,故a>b>c.5.将函数的图象向左平移1个单位长度,那么所得图象的函数解析式为()A.B.C.D.【答案】C【解析】因为,所以将其图象向左平移1个单位长度所得函数解析式为.故C正确.【考点】1对数函数的运算;2函数图像的平移.6.设a=log36,b=log510,c=log714,则a,b,c的大小关系为________.【答案】a>b>c【解析】a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,则只要比较log32,log52,log72的大小即可,在同一坐标系中作出函数y=log3x,y=log5x,y=log7x的图像,由三个图像的相对位置关系,可知a>b>c.7. [2014·湛江模拟]已知函数y=loga(2-ax)在区间[0,1]上是关于x的减函数,则a的取值范围是()A.(0,1)B.(1,2)C.(0,2)D.(2,+∞)【答案】B【解析】由题意可知,a>0,故内函数y=2-ax必是减函数,又复合函数是减函数,所以a>1,同时在[0,1]上2-ax>0,故2-a>0,即a<2,综上可知,a∈(1,2).8.已知上的增函数,那么的取值范围是A.B.C.D.【答案】C【解析】由题设,故选C.【考点】1、分段函数;2、对数函数的性质;3、不等式组的解法.9. 2log510+log50.25=()A.0B.1C.2D.4【答案】C【解析】∵2log510+log50.25=log5100+log50.25=log525=2故选C.10.下列区间中,函数f(x)=|lg(2﹣x)|在其上为增函数的是()A.(﹣∞,1]B.C.D.(1,2)【答案】D【解析】∵f(x)=|lg(2﹣x)|,∴f(x)=根据复合函数的单调性我们易得在区间(﹣∞,1]上单调递减在区间(1,2)上单调递增故选D11.方程的解是.【答案】1【解析】原方程可变为,即,∴,解得或,又,∴.【考点】解对数方程.12.(1)设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差是,则a=________;(2)若a=log0.40.3,b=log54,c=log20.8,用小于号“<”将a、b、c连结起来________;(3)设f(x)=lg是奇函数,则使f(x)<0的x的取值范围是________;(4)已知函数f(x)=|log2x|,正实数m、n满足m<n且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m、n的值分别为________.【答案】(1)4(2)c<b<a(3)-1<x<0(4),2【解析】解析:(1)∵a>1,∴函数f(x)=loga x在区间[a,2a]上是增函数,∴loga2a-logaa=,∴a=4.(2)由于a>1,0<b<1,c<0,所以c<b<a.(3)由f(-x)+f(x)=0,得a=-1,则由lg<0,得解得-1<x<0.(4)结合函数f(x)=|log2x|的图象,易知0<m<1,n>1,且mn=1,所以f(m2)=|log2m2|=2,解得m=,所以n=2.13.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log4,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.【答案】(1)k=-.(2){-3}∪(1,+∞).【解析】(1)由函数f(x)是偶函数,可知f(x)=f(-x),∴log4(4x+1)+kx=log4(4-x+1)-kx.log4=-2kx,即x=-2kx对一切x∈R恒成立,∴k=-.(2)函数f(x)与g(x)的图象有且只有一个公共点,即方程log4(4x+1)-x=log4有且只有一个实根,化简得方程2x+=a·2x-a有且只有一个实根.令t=2x>0,则方程(a-1)t2-at-1=0有且只有一个正根.①a=1t=-,不合题意;②a≠1时,Δ=0a=或-3.若a=t=-2,不合题意,若a =-3t=;③a≠1时,Δ>0,一个正根与一个负根,即<0a>1.综上,实数a的取值范围是{-3}∪(1,+∞).14.已知实数a、b满足等式a=b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中所有不可能成立的关系式为________.(填序号)【答案】③④【解析】条件中的等式Û2a=3bÛa lg2=b lg3.若a≠0,则∈(0,1).(1)当a >0时,有a >b >0,即关系式①成立,而③不可能成立; (2)当a <0时,则b <0,b >a ,即关系式②成立,而④不可能成立; 若a =0,则b =0,故关系式⑤可能成立.15. 已知m 、n 为正整数,a >0且a≠1,且log a m +log a+log a+…+log a=log a m +log a n ,求m 、n 的值.【答案】【解析】左边=log a m +log a+log a+…+log a=log a=log a (m +n),∴已知等式可化为log a (m +n)=log a m +log a n =log a mn. 比较真数得m +n =mn ,即(m -1)(n -1)=1. ∵m 、n 为正整数,∴解得16. 若|log a |=log a ,|log b a|=-log b a,则a,b 满足的条件是( ) A .a>1,b>1 B .0<a<1,b>1 C .a>1,0<b<1 D .0<a<1,0<b<1【答案】B【解析】先利用|m|=m,则m≥0,|m|=-m,则m≤0,将条件进行化简,然后利用对数函数的单调性即可求出a 和b 的范围. ∵|log a |=log a ,∴log a ≥0=log a 1,根据对数函数的单调性可知0<a<1. ∵|log b a|=-log b a,∴log b a≤0=log b 1,但b≠1,所以根据对数函数的单调性可知b>1.17. 已知a>0,且a≠1,log a 3<1,则实数a 的取值范围是( ) A .(0,1) B .(0,1)∪(3,+∞) C .(3,+∞) D .(1,2)∪(3,+∞)【答案】B【解析】由已知得log a 3<log a a.当a>1时,3<a ,所以a>3;当0<a<1时,3>a ,因此0<a<1.综合选B.18. 已知A={x|,x ∈R },B={x||x-i|<,i 为虚数单位,x>0},则A B=( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)【答案】C 【解析】,即。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学同步测试(9)—对数与对数函数一、选择题: 1.3log 9log 28的值是 ( )A .32 B .1 C .23 D .2 2.若log 2)](log [log log )](log [log log )](log [log 55153313221z y x ===0,则x 、y 、z 的大小关系是( )A .z <x <yB .x <y <zC .y <z <xD .z <y <x 3.已知x =2+1,则lo g 4(x 3-x -6)等于( )A.23 B.45 C.0D.21 4.已知lg2=a ,lg3=b ,则15lg 12lg 等于( )A .ba ba +++12B .ba ba +++12C .ba ba +-+12D .ba ba +-+125.已知2 lg(x -2y )=lg x +lg y ,则y x 的值为( )A .1B .4C .1或4D .4 或 6.函数y =)12(log 21-x 的定义域为( )A .(21,+∞) B .[1,+∞)C .(21,1] D .(-∞,1)7.已知函数y =log 21 (ax 2+2x +1)的值域为R ,则实数a 的取值范围是 ( )A .a > 1B .0≤a < 1C .0<a <1D .0≤a ≤18.已知f (e x)=x ,则f (5)等于 ( )A .e5B .5eC .ln5D .log 5e9.若1()log (01),(2)1,()a f x x a a f f x -=>≠<且且则的图像是 ( )10.若22log ()y x ax a =---在区间(,1-∞-上是增函数,则a 的取值范围是( )A .[22]-B .)22⎡-⎣C .(22⎤-⎦D .()22-11.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 ( )A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或12.函数),1(,11ln+∞∈-+=x x x y 的反函数为( )A .),0(,11+∞∈+-=x e e y xx B .),0(,11+∞∈-+=x e e y xx C .)0,(,11-∞∈+-=x e e y xx D .)0,(,11-∞∈-+=x e e y xx 二、填空题:13.计算:log 2.56.25+lg1001+ln e +3log 122+= . 14.函数y =log 4(x -1)2(x <1=的反函数为___ _______. 15.已知m >1,试比较(lg m )0.9与(lg m )0.8的大小 .16.函数y =(log 41x )2-log 41x 2+5 在 2≤x ≤4时的值域为_____ _ .三、解答题:17.已知y =log a (2-ax )在区间{0,1}上是x 的减函数,求a 的取值范围.18.已知函数f (x )=lg[(a 2-1)x 2+(a +1)x +1],若f (x )的定义域为R ,求实数a 的取值范围.19.已知f (x )=x 2+(lg a +2)x +lg b ,f (-1)=-2,当x ∈R 时f (x )≥2x 恒成立,求实数a的值,并求此时f (x )的最小值?20.设0<x <1,a >0且a ≠1,试比较|log a (1-x )|与|log a (1+x )|的大小.21.已知函数f(x)=log a(a-a x)且a>1,(1)求函数的定义域和值域;(2)讨论f(x)在其定义域上的单调性;(3)证明函数图象关于y=x对称.22.在对数函数y=log2x的图象上(如图),有A、B、C三点,它们的横坐标依次为a、a+1、a+2,其中a≥1,求△ABC面积的最大值.对数函数参考答案一、选择题: ADBCB CDCBA AB 二、填空题:13.213,14.y =1-2x (x ∈R ), 15. (lg m )0.9≤(lg m )0.8,16.8425≤≤y 三、解答题:17.解析:先求函数定义域:由2-ax >0,得ax <2又a 是对数的底数,∴a >0且a ≠1,∴x <a2 由递减区间[0,1]应在定义域内可得a2>1,∴a <2 又2-ax 在x ∈[0,1]是减函数∴y =log a (2-ax )在区间[0,1]也是减函数,由复合函数单调性可知:a >1 ∴1<a <218、解:依题意(a 2-1)x 2+(a +1)x +1>0对一切x ∈R 恒成立.当a 2-1≠0时,其充要条件是:⎪⎩⎪⎨⎧<--+=∆>-0)1(4)1(01222a a a 解得a <-1或a >35 又a =-1,f (x )=0满足题意,a =1,不合题意. 所以a 的取值范围是:(-∞,-1]∪(35,+∞) 19、解析:由f (-1)=-2 ,得:f (-1)=1-(lg a +2)+lg b =-2,解之lg a -lg b =1,∴ba=10,a =10b . 又由x ∈R ,f (x )≥2x 恒成立.知:x 2+(lg a +2)x +lg b ≥2x ,即x 2+x lg a +lg b ≥0,对x ∈R 恒成立,由Δ=lg 2a -4lg b ≤0,整理得(1+lg b )2-4lg b ≤0即(lg b -1)2≤0,只有lg b =1,不等式成立. 即b =10,∴a =100.∴f (x )=x 2+4x +1=(2+x )2-3 当x =-2时,f (x ) min =-3.20.解法一:作差法|log a (1-x )|-|log a (1+x )|=|a x lg )1lg(- |-|a x lg )1lg(+|=|lg |1a (|lg(1-x )|-|lg(1+x )|)∵0<x <1,∴0<1-x <1<1+x∴上式=-|lg |1a [(lg(1-x )+lg(1+x )]=-|lg |1a ·lg(1-x 2) 由0<x <1,得,lg(1-x 2)<0,∴-|lg |1a ·lg(1-x 2)>0, ∴|log a (1-x )|>|log a (1+x )|解法二:作商法|)1(log ||)1(log |x x a a -+=|log (1-x )(1+x )|∵0<x <1,∴0<1-x <1+x ,∴|log (1-x )(1+x )|=-log (1-x )(1+x )=log (1-x )x+11 由0<x <1,∴1+x >1,0<1-x 2<1 ∴0<(1-x )(1+x )<1,∴x+11>1-x >0 ∴0<log (1-x )x+11<log (1-x )(1-x )=1 ∴|log a (1-x )|>|log a (1+x )| 解法三:平方后比较大小∵log a 2(1-x )-log a 2(1+x )=[log a (1-x )+log a (1+x )][log a (1-x )-log a (1+x )] =log a (1-x 2)·log axx +-11=|lg |12a ·lg(1-x 2)·lg x x +-11 ∵0<x <1,∴0<1-x 2<1,0<xx+-11<1∴lg(1-x 2)<0,lgxx+-11<0 ∴log a 2(1-x )>log a 2(1+x ),即|log a (1-x )|>|log a (1+x )| 解法四:分类讨论去掉绝对值当a >1时,|log a (1-x )|-|log a (1+x )|=-log a (1-x )-log a (1+x )=-log a (1-x 2)∵0<1-x <1<1+x ,∴0<1-x 2<1∴log a (1-x 2)<0,∴-log a (1-x 2)>0当0<a <1时,由0<x <1,则有log a (1-x )>0,log a (1+x )<0∴|log a (1-x )|-|log a (1+x )|=|log a (1-x )+log a (1+x )|=log a (1-x 2)>0 ∴当a >0且a ≠1时,总有|log a (1-x )|>|log a (1+x )| 21.解析:(1)定义域为(-∞,1),值域为(-∞,1)(2)设1>x 2>x 1∵a >1,∴12x x a a>,于是a -2x a <a -1x a则log a (a -a 2x a )<log a (a -1xa )即f (x 2)<f (x 1)∴f (x )在定义域(-∞,1)上是减函数(3)证明:令y =log a (a -a x )(x <1),则a -a x =a y ,x =log a (a -a y) ∴f -1(x )=log a (a -a x)(x <1)故f (x )的反函数是其自身,得函数f (x )=log a (a -a x)(x <1=图象关于y =x 对称. 22.解析:根据已知条件,A 、B 、C 三点坐标分别为(a ,log 2a ),(a +1,log 2(a +1)),(a +2,log 2(a +2)),则△ABC 的面积S=)]2(log [log 2)]2(log )1([log 2)]1(log [log 222222++-++++++a a a a a a222)]2([)1)(2(log 21+++=a a a a a )2()1(log 2122++=a a a a a a a 212log 21222+++=)211(log 2122aa ++= 因为1≥a ,所以34log 21)311(log 2122max =+=S(注:可编辑下载,若有不当之处,请指正,谢谢!)。