成盐反应
盐的化学方程式

盐的化学方程式盐是一种常见的无机化合物,由阳离子和阴离子组成。
它们可以通过酸碱反应、氧化还原反应、盐的加热等方法制备。
下面,我们将介绍一些常见的盐及其化学方程式。
1. 氯化钠(NaCl)氯化钠是一种常见的盐,它的化学式为NaCl。
氯化钠可以通过以下反应制备:NaOH + HCl → NaCl + H₂O在这个反应中,钠氢氧化物和盐酸反应生成氯化钠和水。
2. 碳酸钙(CaCO₃)碳酸钙是一种广泛存在的天然矿物,它也是珊瑚和牡蛎的主要成分。
碳酸钙可以通过以下反应制备:Ca(OH)₂ + CO₂ → CaCO₃ + H₂O在这个反应中,氢氧化钙和二氧化碳反应生成碳酸钙和水。
3. 硫酸铜(CuSO₄)硫酸铜是一种蓝色的化合物,常用于金属腐蚀、染色和原子吸收光谱分析。
硫酸铜可以通过以下反应制备:Cu + H₂SO₄ + H₂O₂ → CuSO₄ + 2H₂O在这个反应中,铜和硫酸反应生成硫酸铜和水。
加入过氧化氢可以加速反应速度。
4. 硫酸钠(Na₂SO₄)硫酸钠是一种无色、无臭的盐,常用于工业生产和实验室操作。
硫酸钠可以通过以下反应制备:Na₂CO₃ + H₂SO₄ → Na₂SO₄ + CO₂ + H₂O在这个反应中,碳酸钠和硫酸反应生成硫酸钠、二氧化碳和水。
5. 硫酸铵(NH₄₂SO₄)硫酸铵是一种白色晶体,常用于制造氨、丝绸和合成纤维。
硫酸铵可以通过以下反应制备:2NH₃ + H₂SO₄ → (NH₄)₂SO₄在这个反应中,氨和硫酸反应生成硫酸铵。
6. 碘化钾(KI)碘化钾是一种白色固体,常用于化学实验室。
碘化钾可以通过以下反应制备:KOH + HI → KI + H₂O在这个反应中,氢氧化钾和碘化氢反应生成碘化钾和水。
以上是几种常见的盐及其化学方程式。
盐在我们的日常生活中起着重要的作用,这些化学方程式使我们深入理解了它们的制备和用途。
十种成盐规律

十 种 成 盐 规 律●王爱忠对初学化学者来说,,化学方程式书写的入门是一个难点,但化学方程式正确快速书写是学习化学者自始自终必须面对的一个极其重要的问题。
酸、碱、盐、氧化物相互反应的关系是化学反应中最为基本的,它们大体上可用十种成盐规律来概括。
掌握这十种成盐规律,将会对深入学习化学大有裨益。
一、金属+非金属—→无氧酸盐1.成盐规律:金属和非金属(氧元素除外)可以发生化合反应,生成无氧酸盐。
2.成盐条件:(1)化学活泼性较强的金属单质(如K 、Na 、Ca 等)跟化学活泼性较强的非金属单质在加热条件下就能发生化合反应。
例如,2K+Cl 22KCl2Na+Cl 22NaCl2Na+I 22NaI(2)化学活泼性较强的金属单质与化学活泼性较弱的非金属单质通常在高温下才发生化合反应。
例如, 2Cu+S Cu 2S 特例:Hg+S HgS (摩擦即反应)2Ag+S===Ag 2S二、碱性氧化物+酸性氧化物—→含氧酸盐1.成盐规律:碱性氧化物与酸性氧化物相互反应能生成含氧酸盐。
2.成盐条件:除了很活泼的金属氧化物能在常温下吸收二氧化碳生成碳酸盐外,其他氧化物之间通常要在高温下才能发生反应。
例如:Na 2O+CO 2===Na 2CO 3 CaO+SiO 2 CaSiO 3 PbO+SiO 2 PbSiO 3三、金属+酸—→盐+氢气1.成盐规律:活泼的金属与稀酸反应生成盐和氢气。
2.成盐条件:位于金属活动性顺序表中氢前面的金属与稀酸(H 2SO 4或盐酸),可以置换出酸中的氢。
例如,Zn+H 2SO 4(稀)===ZnSO 4+H 2↑Mg+2HCl(稀)===MgCl 2+H 2↑离子方程式为:Zn+2H +===Zn 2++H 2↑Mg+2H +===Mg ++H 2↑但是有例外。
例如,Pb+H 2SO 4≠PbSO 4+H 2↑因为铅与硫酸(浓度低于80%)接触后,在它表面上会迅速生成难溶盐PbSO 4,它阻碍了铅与硫酸继续接触从而使反应停止。
第一章八大成盐反应

6.碱 + 盐 = 新碱 + 新盐 (1) 2NaOH + MgCl2= Mg(OH)2 + 2NaCl (2) 3NaOH + FeCl3= Fe(OH)3 + 3NaCl (3) 2NaOH + CuCl2= Cu(OH)2 + 2NaCl (4)2NaOH+(NH4)2SO4 = Na2SO4+2H2O+NH3 (5) 2NaOH+(NH4)2CO3 = Na2CO3+2H2O+NH3 (6) Ca(OH)2 + Na2CO3= CaCO3 + 2NaOH (7) Ca(OH)2 + K2CO3 = CaCO3 + 2KCl (8) Ba(OH)2 + K2CO3 = BaCO3 + 2KCl (9) Ba(OH)2 + Na2CO3 = BaCO3 + 2NaCl
2.酸 + 金属氧化物 = 盐 + 水 (1) 3H2SO4 + 2Fe2O3 = Fe2(SO4)3 + 2H2O (2) H2SO4 + CuO = CuSO4 + H2O (3) H2SO4 + ZnO = ZnSO4 + H2O (4) H2SO4 + MgO = MgSO4 + H2O (5) 6HCl + Fe2O3 = 2FeCl3 + 3H2O (6) 2HCl + CuO = CuCl2 + H2O (7) 2HCl + ZnO = ZnCl2 + H2O (8) 2HCl + MgO = MgCl2 + H2O
பைடு நூலகம்
酸碱中和反应与盐类生成

酸碱中和反应与盐类生成酸碱中和反应是一种常见的化学反应,它涉及酸和碱的反应产物,即盐和水。
这种反应在日常生活中广泛应用,不仅在实验室中用于制备盐,还在许多工业过程和生物体内发挥重要作用。
本文将探讨酸碱中和反应的机理以及盐类的生成过程。
一、酸碱中和反应的机理酸碱中和反应是指酸和碱在一定条件下混合反应,生成盐和水的化学反应。
在这个过程中,酸和碱之间的氢离子(H+)和氢氧根离子(OH-)结合成水,并形成离子间键,产生盐。
以硫酸(H2SO4)和氢氧化钠(NaOH)的反应为例:H2SO4 + 2NaOH -> Na2SO4 + 2H2O在这个反应中,硫酸是酸,氢氧化钠是碱。
当它们混合时,硫酸中的氢离子与氢氧化钠中的氢氧根离子结合,形成水,并且残留的离子形成盐(硫酸钠)。
这个反应是呈放热反应的,同时有明显的酸碱指示剂颜色变化。
二、盐类的生成过程盐类是由酸碱反应生成的,其成分是由正离子和负离子组成的化合物。
酸中的氢离子会与碱中的氢氧根离子结合形成水,其余的正离子和负离子组合形成盐。
例如,以氯化氢(HCl)和氯化钠(NaCl)的反应为例:HCl + NaOH -> NaCl + H2O在这个反应中,氯化氢是酸,氯化钠是盐。
当它们混合时,氯化氢中的氢离子与氢氧根离子结合,形成水,并形成盐(氯化钠)。
这个反应是无-color的反应,没有酸碱指示剂颜色的变化。
盐类的生成过程中,还有一些特殊的情况。
例如,碳酸氢钠(NaHCO3)和盐酸(HCl)的反应:NaHCO3 + HCl -> NaCl + H2O + CO2↑在这个反应中,碳酸氢钠是酸性物质,盐酸是酸,它们的混合不仅会生成盐(氯化钠),还会产生水和二氧化碳气体。
这种反应在烘焙过程中常被用于制作面包和蛋糕,二氧化碳气体的释放导致面团膨胀发酵,使烘焙食品更加松软。
总体来说,酸碱中和反应中的酸和碱会发生化学反应,生成盐和水。
而具体生成的盐种类取决于酸和碱的组成成分。
盐和盐反应方程式

盐和盐反应方程式
盐和盐反应方程式是指两种不同的盐相互反应,生成新的盐的化学反应。
在这个过程中,离子交换和结晶是主要的化学反应机制。
盐是一种化学物质,由正离子和负离子组成。
正离子通常是金属离子,负离子通常是非金属离子。
当两种不同的盐相互反应时,其中的正离子和负离子会重新组合,形成新的盐。
例如,我们来看一下氯化钠和硫酸铜的反应。
氯化钠的化学式是NaCl,硫酸铜的化学式是CuSO4。
在这个反应中,氯离子和硫酸铜中的钠离子会交换位置,形成新的盐化合物。
反应方程式可以表示为:
NaCl + CuSO4 → Na2SO4 + CuCl
在这个反应中,氯化钠和硫酸铜反应生成了硫酸钠和氯化铜。
氯离子和钠离子交换位置,形成了硫酸钠,而硫酸铜中的铜离子和氯离子结合形成了氯化铜。
这个反应是一种离子交换反应,也被称为双替代反应。
在反应过程中,正离子和负离子重新组合,形成了新的盐化合物。
盐和盐反应的机制是离子间的相互作用。
当两种不同的盐接触到一起时,它们中的离子会相互吸引,形成新的化学键。
这个过程中,原来的盐分子会解离成离子,然后重新组合成新的盐化合物。
除了离子交换,盐和盐反应还涉及到结晶。
当反应产生的盐溶解在溶液中时,如果溶液中的盐浓度超过了饱和点,就会发生结晶反应,盐化合物会从溶液中析出形成固体晶体。
总结起来,盐和盐反应是指两种不同的盐相互作用,通过离子交换和结晶反应生成新的盐化合物。
这个过程中,原来的盐分子解离成离子,然后重新组合成新的盐化合物。
这种反应机制在化学研究和工业生产中具有重要的应用价值。
酸碱盐的反应规律

酸碱盐的反应规律
酸碱盐的反应规律可以总结为以下几点:
1. 酸与碱的反应:酸与碱反应生成相应的盐和水。
例如,硫酸与氢氧化钠反应生成硫酸钠和水的反应方程式为:H2SO4 +
2NaOH → Na2SO4 + 2H2O。
2. 酸与金属反应:酸与金属反应生成相应的盐和氢气。
例如,硫酸与铁反应生成硫酸亚铁和氢气的反应方程式为:H2SO4 + Fe → FeSO4 + H2。
3. 酸与碳酸盐的反应:酸与碳酸盐反应生成相应的盐、水和二氧化碳。
例如,盐酸与碳酸钠反应生成氯化钠、水和二氧化碳的反应方程式为:2HCl + Na2CO3 → 2NaCl + H2O + CO2。
4. 酸与氧化物反应:酸与氧化物反应生成相应的盐和水。
例如,硫酸与氧化铜反应生成硫酸铜和水的反应方程式为:H2SO4 + CuO → CuSO4 + H2O。
5. 碱与盐酸的反应:碱与盐酸反应生成相应的盐和水。
例如,氢氧化钠与盐酸反应生成氯化钠和水的反应方程式为:NaOH + HCl → NaCl + H2O。
总体而言,酸碱盐的反应规律遵循了物质守恒定律,反应中原物质的质量总量保持不变。
酸碱盐的反应还可通过pH指示剂
进行酸碱中和反应的检测,其中酸性溶液的pH值小于7,碱
性溶液的pH值大于7,中性溶液的pH值等于7。
初中化学-常见的盐的性质 八大成盐反应
如:HCl + AgNO3 = AgCl↓ + HNO3
3、某些可溶的盐能与金属反应,发生置换反应。
如:CuSO4 + Fe = Cu + FeSO4
4、某些盐能与某些碱反应,生成另一种盐和另一种碱。
如:Ca(OH)2 + Na2CO3 = CaCO3 ↓+ 2NaOH
5、酸+碱——盐+水
HCl + NaOH H2SO4
HNO3 +
= NaCl + H2O
Ba(OH)2 = BaSO ↓+2H O 4 2
NH3· H2O =
NH4NO3+ H2O
OH = H2O
a.反应实质: H+ +
b.中和反应: 属于复分解反应
+
6、酸+盐——新酸+新盐 a.特征反应 HCl+AgNO3 = HNO3 + AgCl↓
(8) Cu(OH)2 + Na2SO4─ (9) NaOH + BaCl2─ (10) CuCl2 + NaOH─ (11) Ca(OH)2 + K2CO3─ (12) NaOH + FeCl3─ (13) CaCO3 + NaCl ─ (14) NaCl + KNO3─ (15) BaCl2 + Na2CO3─ (16) AgNO3 + KCl ─
知识回顾:酸 的 通 性
酸能跟酸碱指示剂起反应 酸能跟活泼金属起反应 酸能跟某些金属氧化物反应 酸能跟某些盐反应 酸能跟碱反应
碱
的
通
单质到盐的转化关系
单质到盐的转化关系单质到盐的转化关系1. 什么是单质和盐?•单质:单质是指由同一种化学元素组成的纯净物质,比如金属铜、气态氧等。
•盐:盐是由金属离子和非金属离子通过离子键相结合而形成的一类化合物,比如氯化钠、硫酸铁等。
2. 单质到盐的转化关系单质到盐的转化关系可以通过以下过程进行说明:1.单质与非金属反应形成离子化合物:当单质与非金属元素反应时,通常会形成离子化合物。
例如,氧气与金属钠反应会生成氧化钠:2Na + O2 -> 2Na2O2.单质与酸反应形成盐:某些单质与酸反应时,会产生相应的盐。
例如,金属锌与盐酸反应会生成氯化锌:Zn + 2HCl -> ZnCl2 + H23.单质与氧化剂反应形成盐:一些金属单质与氧化剂(比如过氧化氢)反应时,也会生成相应的盐。
例如,铁与过氧化氢反应会生成铁(III)盐:2Fe + 3H2O2 -> 2Fe(III) + 3H2O4.单质与酸性氧化物反应形成盐:一些金属单质与酸性氧化物(含氧量较高的物质,比如二氧化硫)反应也能生成盐。
例如,铜与二氧化硫反应会生成红色的硫酸铜:Cu + SO2 -> CuSO45.单质与非金属氧化物反应形成盐:某些金属单质与非金属氧化物反应时,也能生成相应的盐。
例如,钠与硫反应会生成硫化钠:2Na + S -> Na2S结论单质与盐的转化关系非常广泛,可以通过与非金属、酸、氧化剂、酸性氧化物以及非金属氧化物等的反应来实现。
这些转化过程在化学反应中起着重要作用,既能合成盐,也能提供不同性质和应用的化合物。
3. 解释说明单质到盐的转化关系是化学反应中一种常见的转化过程。
在这个过程中,单质与其他化合物或元素发生反应,形成新的化合物,即盐。
单质可以是金属或非金属元素,而盐一般是由金属离子和非金属离子通过离子键相结合而形成的化合物。
单质与非金属元素反应时,通常会形成离子化合物。
例如,氧气与金属钠反应会生成氧化钠(Na2O)。
合成盐的概念
合成盐的概念合成盐是指通过化学反应将金属离子和非金属离子结合在一起形成化合物的过程。
盐可以分为无机盐和有机盐两类。
无机盐由金属离子和非金属离子组成,如氯化钠(NaCl),硫酸铜(CuSO4)等;有机盐则由含有羧基(COOH)的有机化合物和金属离子组成,如乙酸铜(Cu(CH3COO)2)。
合成盐在日常生活中广泛应用,例如食用盐(氯化钠)、各种药物、肥料等。
合成盐的主要方法有溶液反应、直接相互作用和气体反应等。
其中最常见的方法是溶液反应,将金属离子和非金属离子溶解在水中反应生成盐。
一个常见的例子是氯化钠的合成。
首先将钠金属与氯气在高温下反应,生成氯化钠的气体,然后通过将氯化钠气体冷凝为固体,并与水反应形成溶液,得到晶体状的氯化钠盐。
在化学实验室中,合成盐的方法通常涉及到配平反应。
配平反应是指通过反应产物的化学计量比来确定反应物的摩尔比例。
对于没有化学计量比的反应物,需要通过化学计量比的技巧来确定其比例。
除了溶液反应外,还可以通过直接相互作用来合成盐。
例如,金属锌与硫酸反应,会生成硫酸锌。
这个反应是通过将金属与酸直接接触进行的,产生盐和释放出氢气。
气体反应也可以用来合成盐。
例如,氢气和氯气可以通过电火花反应生成盐酸。
这个反应可以通过将氯气和氢气通入一个反应容器,然后通过电火花来引发反应,生成盐酸和水。
合成盐的应用非常广泛。
食用盐是最常见的应用之一。
食用盐是由氯化钠制成的,它是维持正常体液平衡和神经肌肉活动所必需的。
此外,盐也被广泛用于制药、农业等领域。
药物中常用的盐包括硫酸铁、硫酸镁等,它们常用于治疗贫血、缺镁症等疾病。
在农业中,氯化钾、硝酸钠等盐被用作肥料,它们提供植物所需的营养元素。
合成盐的过程涉及到化学原理和实验技术。
在实验室中,合成盐的过程需要控制反应条件,例如温度、压力、反应时间等。
此外,溶液的浓度、溶剂的选择等也需要进行合理的设计。
总之,合成盐是将金属离子和非金属离子通过化学反应结合在一起形成盐的过程。
能生成盐的反应
能生成盐的反应
盐是一种由阳离子和阴离子组成的化合物。
在化学中,盐可以通过许多反应生成。
以下是一些能够生成盐的反应:
1. 酸和碱反应:酸和碱反应生成盐和水。
例如,将盐酸和氢氧化钠反应会生成氯化钠和水。
2. 双盐析反应:双盐析反应是指两种盐在水中混合反应,生成两种新的盐。
例如,将硫酸铝和氯化钠混合反应会生成氯化铝和硫酸钠。
3. 酸和金属反应:酸和金属反应可以生成盐和氢气。
例如,将盐酸和锌反应会生成氯化锌和氢气。
4. 水解反应:水解反应是指将一种盐溶解在水中,然后形成酸或碱的反应。
例如,将氯化铵溶解在水中会形成氨气和盐酸。
这些反应都可以生成不同种类的盐,从而用于许多化学和工业应用。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
QueryQuery Results Date1. Query 19 reactions in2014-11-18 01h:54m:50s (EST)ReaxysSearch as: Product, As drawn, No salts, No mixtures色氨酸甲酯盐酸盐的制备在冰浴下,增加了100毫升圆底烧瓶与60毫升的甲醇,然后慢慢加4毫升SOCl2 恒压滴液漏斗(干燥管顶部),和氢氧化钠溶液吸收废气。
搅拌1小时后,8mmol的色氨酸(3 d)补充道,在室温下搅拌30分钟,然后回流在66°c 6 h。
反应是由薄层色谱跟踪,直到原料消失,2%茚三酮在乙醇溶液为显色剂。
溶剂蒸发了获得色氨酸甲酯盐酸盐。
收益率:100%。
+→Rx-ID: 3829969 View in Reaxys 1/19 Yield Conditions & References100 % thionyl chloride, Time= 4h, Heating; Tetrahedron; 57; nb. 51; (2001); p. 10181 - 10189View in Reaxys100 %(2) Preparation of L-Tryptophan Methyl Ester Hydrochloride Under ice bath, 100 ml round-bottom flask was addedwith 60 ml of methanol, and then slowly added with 4 ml of SOClthrough constant pressure dropping funnel (with adrying tube on the top), and NaOH solution was used to absorb exhaust. After stirring for 1 h, 8 mmol of L-tryptophan (3d) was added and stirred at room temperature for 30 min, and then refluxed at 66° C. for 6 h. Thereaction was tracked by TLC until the raw material disappears, with a solution of 2percent ninhydrin in ethanol aschromogenic reagent. The solvent was evaporated out to obtain L-tryptophan methyl ester hydrochloride. Yield:100percent.thionyl chloride methanol, ethanol, Time= 1h, Cooling with ice, Time= 6.5h, T= 20 - 66 °C; ; US2014/206741; (2014); (A1) English View in Reaxys98 % thionyl chloride, Time= 8h, Heating; Organic Preparations and Procedures International; 33; nb. 4; (2001); p. 341 - 349View in Reaxys98 % thionyl chloride, T= 0 - 60 °C; ACS Medicinal Chemistry Letters; 4; nb. 2; (2013); p. 235 - 238View in Reaxys97 % thionyl chloride, Time= 24h, T= -15 - 20 °C , Saturated gas, Inert atmosphere; Chemical Communications; 50; nb. 23; (2014); p. 3052 - 3054View in Reaxys96 % thionyl chloride, Time= 0.666667h, T= 25 - 30 °C , microwave irradiation; Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry; 45; nb. 8; (2006); p. 1942 - 1944Viewin Reaxys95 % acetyl chloride; Journal of Medicinal Chemistry; 57; nb. 8; (2014); p. 3324 - 3341View in Reaxys93 % thionyl chloride, T= 5 °C , RefluxTime= 4h, Reflux; Chirality; 25; nb. 10; (2013); p. 656 - 662View in Reaxys92 % thionyl chloride, Time= 6.5h, T= -10 - 25 °C; Journal of Chemical Information and Modeling; 53; nb. 1; (2013); p. 176 - 187View in Reaxys73 % thionyl chloride, Time= 7h, T= 60 - 70 °C; Bioorganic and Medicinal Chemistry; 15; nb. 14; (2007); p. 4903 - 4909View in Reaxys67 % thionyl chloride, Time= 9h, T= 20 °C; Dalton Transactions; 40; nb. 18; (2011); p. 5018 - 5025View in Reaxys63 % hydrogenchloride, T= 0 °C; Archiv der Pharmazie; 344; nb. 8; (2011); p. 494 - 504View in Reaxysthionyl chloride, Ambient temperature; Heterocycles; 32; nb. 10; (1991); p. 1879 - 1895View in Reaxysthionyl chloride, Time= 15h, Heating; European Journal of Medicinal Chemistry; 21; nb. 4; (1986); p. 333 - 338View in Reaxysthionyl chloride, Time= 18h, Heating, Yield given; Canadian Journal of Chemistry; 66; (1988); p. 779 - 782View in Reaxysacetyl chloride, Time= 4h, Heating; Synthetic Communications; 25; nb. 4; (1995); p. 561 - 568View in Reaxysthionyl chloride, 1.) -15 deg, 1 h, 2.) overnight, Yield given. Multistep reaction; Tetrahedron: Asymmetry; 6; nb. 8; (1995); p. 1947 - 1956View in Reaxysthionyl chloride, Time= 18h, Heating; Journal of Physical Organic Chemistry; 9; nb. 9; (1996); p. 639 - 644View in Reaxysthionyl chloride; Bioorganic and Medicinal Chemistry; 7; nb. 6; (1999); p. 1223 - 1236View in Reaxysthionyl chloride, T= -30 - -10 °C; Tetrahedron; 57; nb. 20; (2001); p. 4437 - 4442View in Reaxys3.84 g thionyl chloride, Time= 48h, T= 20 °C; Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry; 45; nb. 12; (2006); p. 2710 - 2715Viewin Reaxysthionyl chloride, Time= 6h; Tetrahedron; 63; nb. 31; (2007); p. 7334 - 7348View in Reaxysthionyl chloride, T= -42 °C; Bioorganic and Medicinal Chemistry Letters; 18; nb. 21; (2008); p. 5750 - 5752View in Reaxysthionyl chloride, T= 20 °C , Cooling; Chemistry - A European Journal; 14; nb. 35; (2008); p. 10888 - 10891View in Reaxysthionyl chloride, Time= 7h, T= 60 - 70 °C; European Journal of Medicinal Chemistry; 44; nb. 10; (2009); p. 3922 - 3929View in Reaxysthionyl chloride, Time= 2.5h, T= 0 °C , Reflux, Inert atmosphere; Tetrahedron; 66; nb. 45; (2010); p. 8722 - 8728View in Reaxysthionyl chloride; European Journal of Organic Chemistry; nb. 14; (2008); p. 2423 - 2429View in Reaxys; Zeitschrift furAnorganische und Allgemeine Chemie; 636; nb. 1; (2010); p. 236 - 241View in Reaxysthionyl chloride; Journal of Chemical Research; 35; nb. 1; (2011); p. 47 - 50View in Reaxys; Journal of Chemical Research; 36;nb. 4; (2012); p. 206 - 209View in Reaxysthionyl chloride, T= 0 - 25 °C; Chemistry - An Asian Journal; 6; nb. 1; (2011); p. 189 - 197View in Reaxysthionyl chloride; Letters in Organic Chemistry; 8; nb. 3; (2011); p. 210 - 215View in Reaxysthionyl chloride, T= 60 - 70 °C; Journal of Enzyme Inhibition and Medicinal Chemistry; 26; nb. 5; (2011); p. 688 - 695View in Reaxysthionyl chloride, Reflux; Journal of Peptide Science; 18; nb. 8; (2012); p. 535 - 540View in ReaxysExample 7 Synthesis of Amide 7: N-(D)-tryptophanamide of AmB In another preferred embodiment the inventionprovides the AmB analogue denominated amide 7: N-(D)-tryptophanamide of AmB, represented by formula VII;using D-tryptophan as the starting amine. Fort this derivative the same structural aspects of the synthesis of amide6 were taken into account and it was observed in its synthesis the possible effect on the antibiotic activity that hasthe change in the stereochemistry of this derivative regarding amide 6. For L-tryptophan and D-tryptophan, beforethe amide synthesis, it was necessary to perform the sterification reaction of the carboxylic acid to protect it in formof hydrochloride of the methyl ester of tryptophan. This synthesis was performed by reacting 1 equivalent of theamino acid L-tryptophan or D-tryptophan (L-Trp or D-Trp) with excess MeOH and 2 equivalents of Me3SiCl toprocure the white precipitate of the hydrochloride of the methyl ester of L-tryptophan or D-tryptophan. Scheme 6shows the reaction mechanism proposed for this synthesis. The first step in the reaction consists of thenucleophilic addition of the tryptophan carboxyl function (E) on the Si of MeSiCl (F) inducing the displacement ofthe Cl ion. The silicon esters (intermediates G and H) are in an equilibrium in which it is proposed that thedeprotonated form is more susceptible to the nucleophilic addition of MeOH. This will form the hydrochloride of themethyl ester tryptophan with trymethylsilanol as a byproduct of the reaction. The hydrochloride of the tryptophanmethyl ester is used for the synthesis of the amides of AmB incorporating only an excess of EtN as basic reagentin the method of Jarzebski. This liberates the form of the methyl ester of the tryptophan to act as amine in thereaction. It is reported that by incorporating the tryptophan structure in AmB polyene molecules they fluoresceunder UV light. The tryptophan methyl ester was used for the synthesis of AmB amides as a means to procureamides that fluoresce under UV light. This is a desirable characteristic for experiments of electrophysiology in unitchannel as because of this, the channels would present this type of fluorescence. Characterization of Amide N-(D)-tryptophanamide of AmB. The IR spectrum of the product is almost identical to that of amide 6, showing onlyslight differences in the intensity of the signals. The derivative had a value of R=0.62 for which it is qualitativelyconsidered that this product is non-polar regarding AmB. These two results help confirm that amide 7 has the samestructure of amide 6, and its epimer. During the process of purification of amide 7 two products were isolated:amide 7a and amide 7b. The IR spectra of both amides have a similar difference to that of amide 2a and amide 2bin the absorption band of the polyhydroxylated chain. Here the difference in the intensity of the bands is not toolarge. Because of this it is believed that this is the same structure, and it is supposed that the solvation with ether(of the purification) occurred in the polyhydroxylated chain for the amide 7b. Moreover, it is likely that the antibioticbehavior is diminished because the actual concentration of the derivative could be less than that contemplated inthe preparation of the amide solution. It is noteworthy that the rest of the spectra of both products are the same.Here, being the epimer (D) of the N-(L)-tryptophanamide, the same values of the derivative 6 are contemplated.Therefore, this synthesis is to determine whether the difference the epimers (L)-(D) stereochemistry will affect theantibiotic activity.chloro-trimethyl-silane; ; US2014/256663; (2014); (A1) English View in Reaxys+→Rx-ID: 3830149 View in Reaxys 2/19 Yield Conditions & References100 % thionyl chloride, Time= 4h, Heating; Tetrahedron; 57; nb. 51; (2001); p. 10181 - 10189View in Reaxys98 % Synthesis of methyl esters of L- and D-tryptophanes chlorohydrates; :1a,b 2a,b a : D b : L[0344] Thionylchloride(0.064 mol) was slowly added to a cooled (OC) suspension of tryptophane (0.049 mol) in methanol (150 mL). Thereaction mixture was warmed up to 4OC and stirred at this temperature for six hours. All solvents were removedand the solid residue was triturated with ether. The solid was filtered off to give the required product.[0345] D-tryptophane (2a): yield 98 percent, M.p. 232-233°C. NMRH (δ, ppm,DMSO-dψ, 300 MHz): 3.39 (2H, m, CH); 3.63(3H, s, CHO); 4.20 (1 H t, CH, J = 5.5 Hz); 7.07 (2H, dt, Ar, J = 21 Hz, 6 Hz); 7.26 (1 H, d, H, JH = 3 Hz); 7.39 (1 H,d, Ar, JH = 7.8 Hz); 7.53 (1 H, d, Ar, J = 7.8 Hz). NMRC (δ, ppm, DMSO-d6, 125.76 MHz): 26.01 (s), 52.61 (d),106.26(s), 111.45(s), 117.84(s), 118.50(s), 121.05(s), 124.80(s), 126.79(s), 136.13(s), 169.57(s). / 218(M).thionyl chloride, Time= 6h, T= 0 - 40 °C; ; WO2008/103470; (2008); (A2) English View in Reaxys97 % thionyl chloride, Time= 4h, T= 40 °C; RSC Advances; 4; nb. 3; (2014); p. 1204 - 1211View in Reaxys92.4 %thionyl chloride methanol, Time= 1 - 2h, Heating / reflux; ; WO2004/11463; (2004); (A1) English View in Reaxys92 % thionyl chloride, Time= 6.5h, T= -10 - 25 °C; Journal of Chemical Information and Modeling; 53; nb. 1; (2013); p. 176 - 187View in Reaxys86 % thionyl chloride, Time= 24h, Reflux; Organic and Biomolecular Chemistry; 11; nb. 19; (2013); p. 3255 - 3260View in Reaxys86 % Thionyl chloride (9.87 mmol, 0.72 mL) was added dropwise to a solution of D-tryptophan (1.000 g, 4.89 mmol) inmethanol (33 mL). The reaction was heated to reflux with vigorous stirring for 24 h. After cooling, the reactionmixture was concentrated under reduced pressure and residual methanol traces removed by azeotropic distillationwith dichloromethane (10 mL) under reduced pressure to give the title compound as a white solid (1.070 g,86percent). [0401] H NMR (500 MHz, DO) δ=7.52 (1H, d, J=7.9, 9-H), 7.46 (1H, d, J=8.1, 12-H), 7.26-7.10 (3H, m,4, 5, 9-H), 4.37 (1H, t, J=6.0, 2-H), 3.73 (3H, s, β-H), 3.44-3.31 (2H, m, 4-H). [0402] C NMR (126 MHz, DO)δ=170.4 (2-C), 136.3 (7-C), 126.4 (8-C), 125.4 (6-C), 122.3 (11-CH), 119.6 (10-CH), 118.1 (9-CH), 112.1 (12-CH),106.0 (5-C), 53.6 (13-CH), 53.3 (2-CH), 25.7 (4-CH). [0403] IR (diamond, v, cm) 3261 (NH st), 2870 (N-H st), 2023(Ar comb), 1748 (C═O st), 1229, 1211 (CO—O st as), 1181 (C—O st as). [0404] Acc. Mass (FAB): CHNOFound:219.1120 m/z Calculated: 219.1128 m/z.thionyl chloride, Time= 24h, Reflux; ; US2014/39200; (2014); (A1) English View in Reaxys80 % D-tryptophan (100 g) was suspended in methanol (500 mL) and the suspension added to a solution of thionylchloride (82.14 g) in methanol (500 mL) at 25-30° C under nitrogen atmosphere. The resultant solution was stirredat reflux for 3 to 4 hours and the reaction mixture was concentrated to a residual volume of 150 mL. To theconcentrated mixture dichloromethane (700 mL) was added and the resultant solution was cooled to 0- 5° C withcontinuous stirring for 0.5 hours. The solid so obtained was filtered, washed with dichloromethane (200 mL) anddried in air at 40-45° C to afford D-tryptophan methyl ester hydrochloride.Yield: 10O g (80percent)thionyl chloride, Time= 3 - 4h, T= 25 - 30 °C , Heating / reflux; ; WO2009/4557; (2009); (A2) English View in Reaxysthionyl chloride, Time= 18h, Heating, Yield given; Canadian Journal of Chemistry; 66; (1988); p. 779 - 782View in Reaxysthionyl chloride, Time= 0.5h, T= 0 °C Heating; Journal of Medicinal Chemistry; 49; nb. 24; (2006); p. 7215 - 7226View in Reaxyshydrogenchloride, Time= 3.5h, Heating, Esterification; Journal of Organic Chemistry; 65; nb. 10; (2000); p. 3173 - 3191View in ReaxysThionyl chloride (SOCl; 2.4 ml) is added to a suspension of D-tryptophan (3g; 14.7 mmoles) in 20 ml methanol,stirring under nitrogen atmosphere in ice bath. The solution is then refluxed (~68°C) for 1.5 hour. Methanol isevaporated and 20 ml of tert-butyl- methyl ether (MTBE) are added. The solution is stirred in ice bath for 1 hour,then it is filtered and the product is washed with cold MTBE. The obtained white solid is dried under vacuum at60C.thionyl chloride, Time= 1.5h, T= 0 - 68 °C; ; WO2009/37556; (2009); (A1) English; WO 2009/037556 A1View in Reaxysacetyl chloride, Reflux; Journal of Medicinal Chemistry; 56; nb. 7; (2013); p. 2936 - 2947View in Reaxys→Rx-ID: 25199344 View in Reaxys 3/19 Yield Conditions & References92.54 % General procedure: To a solution of DL-tryptophane (8.16 g, 0.040 mol) in methanol (80 mL) was added dropwiseSOCl (14.28 g, 0.120 mol), and the mixture was stirred at rt for 30 min. The solution was concentrated and filtered,then the residue was washed with acetone and dried under infrared light (IR) to give the compound 3a as a whitesolid (8.07 g, 92.54 percent). Mp = 220°C, lit. Mp = 221–222°C.thionyl chloride methanol, T= 20 °C; Bioorganic and Medicinal Chemistry; 21; nb. 21; (2013); p. 6466 - 6476View in ReaxysSynthesis of DL-tryptophan amide 50 g of DL-tryptophan available from Nakarai Chemicals, Kyoto, Japan, wassuspended in 500 ml of methanol and 40 ml of thionyl chloride was dropwise added thereto while vigorouslystirring. The reaction was exothermic and the reaction mixture was allowed to be refluxed for 10 hours whilestirring. Then, the solvent was distilled off and the resultant residue was washed with diethylether. Thus, DL-tryptophan methylester hydrochloride was obtained in the form of white crystals.thionyl chloride methanol; ; US4497957; (1985); (A1) English View in Reaxys+→Rx-ID: 33704021 View in Reaxys 4/19 Yield Conditions & References100 % EXAMPLE 2: SYNTHESIS OF TRYPTOPHAN METHYL ESTER APPENDEDNAPHTHALENETETRACARBOXYLICDIIMIDE (NDI 2)Synthesis of L-Tryptophan methyl ester hydrochloride:Anhydrous methanol (50 mL) is taken in a 100 mL 2-necked round bottom flask fitted with a reflux condenser andan additional dropping funnel and cooled to ice temperature. Acetylchloride (3 mL) is added drop wise through thedropping funnel. After 15 min, L-tryptophan (3 g) is added and the reaction mixture is refluxed at 70 °C for 6 h. Thereaction mixture is vacuo dried to obtain L-tryptophan methyl ester hydrochloride in quantitative yield and used forfurther reaction without purification.1 ,4,5, 8-Naphthalenetetracarboxy lie dianhydride (200 mg, 0.746 mmol) and L-tryptophan methyl ester hydrochloride (380 mg 1.491 mmol) are suspended in 20 mL of DMF in a 100 mL roundbottom flask. To this suspension is added 0.5 mL of triethylamine under inert atmosphere. The reaction mixture isrefluxed at 65 °C for 21 h. Solvent is evaporated under vacuo and the residue is purified by columnchromatography (15 percent methanol in chloroform) to obtain NDI 2 in good yield. Yield 86percent. H NMR: (400MHz, CDCI-CFCOOH) 8 3.64- 3.70, (dd, 2H, CH, J = 8 Hz, 8 Hz); 3.78-3.84, (dd, 2H, CH, J = 8 Hz, 8 Hz); 3.90 (s,6H, CH); 6.12-6.16 (dd, 2H, aCH, J = 8 Hz, 4 Hz); 6.86-7.02 (m, 6H, ArH); 7.13-7.15 (d, 2H, ArH, J = 8 Hz); 7.46-7.48 (d, 2H, ArH, J = 8 Hz); 8.57 (s, 4H, ArH). C NMR: (400 MHz, CDCI-CFCOOH) 8 24.5, 53.9, 55.1 , 1 10.2, 110.4, 1 18.6, 1 19.8, 122.4, 123.2, 126.1 , 126.6, 127.2, 131.8, 136.1 , 163.0, 172.5. MS (EI): m/z = 668.19 [M]+ forCH2N4O. Elemental analysis: Found: C, 68.23; H, 4.25; N, 8.35; Calcd: C, 68.26; H, 4.22; N, 8.38 for C38H8N0acetyl chloride, Time= 6h, T= 70 °C , Cooling; ; WO2012/98439; (2012); (A1) English View in Reaxys+→Rx-ID: 34011985 View in Reaxys 5/19 Yield Conditions & References86 % Synthesis Example 2a - (2f?)-3-(1H-indol-3-vl)-1-methoxy-1-oxopropan-2-aminium chlorideThionyl chloride (9.87mmol, 0.72 mL) was added dropwise to a solution of D- tryptophan (1.000 g, 4.89 mmol) in methanol (33 mL). Thereaction was heated to reflux with vigorous stirring for 24 h. After cooling, the reaction mixture was concentratedunder reduced pressure and residual methanol traces removed by azeotropic distillation with dichloromethane (10mL) under reduced pressure to give the title compound as a white solid (1.070 g, 86percent).H MR (500 MHz, D0)δ = 7.52 (1 H, d, 7=7.9, 9-H), 7.46 (1 H, d, 7=8.1 , 12-H), 7.26 - 7.10 (3H, m, 4, 5, 9-H), 4.37 (1H, t, J=6.0, 2-H),3.73 (3H, s, 3-H), 3.44 - 3.31 (2H, m, 4-H).1C NMR (126 MHz, D0) δ = 170.4 (2-C), 136.3 (7-C), 126.4 (8-C), 25.4(6-C),122.3 (11-CH), 119.6 (10-CH), 118.1 (9-CH), 112.1 (12-CH), 106.0 (5-C), 53.6 (13- CH), 53.3 (2-CH), 25.7(4-CH).IR (diamond, v cm) 3261 (NH st), 2870 (Nf-H st), 2023 (Ar comb), 1748 (C=0 St), 1229, 1211 (CO-0 st as),1181 (C-0 st as).Acc. Mass (FAB): CiH0 Found: 219.1120 m/z Calculated: 219.1128 m/zthionyl chloride methanol, Time= 24h, Reflux; ; WO2012/131313; (2012); (A1) English View in Reaxys+→Rx-ID: 3829903 View in Reaxys 6/19 Yield Conditions & References100 % hydrogenchloride, 3 A molecular sieve, Time= 2.5h, Heating; Synthetic Communications; 22; nb. 7; (1992); p. 979 - 985View in Reaxys92 % thionyl chloride, Time= 24h, T= -15 - 20 °C , Saturated gas, Inert atmosphere; Chemical Communications; 50; nb. 23; (2014); p. 3052 - 3054View in Reaxys91 % chloro-trimethyl-silane, Time= 12h, T= 20 °C; Molecules; 13; nb. 5; (2008); p. 1111 - 1119View in Reaxysthionyl chloride, Yield given; Bulletin des Societes Chimiques Belges; 103; nb. 4; (1994); p. 169 - 176View in Reaxysthionyl chloride, Time= 10h, T= 20 °C; Journal of Organic Chemistry; 73; nb. 14; (2008); p. 5609 - 5612View in Reaxysthionyl chloride, Reflux; Angewandte Chemie - International Edition; 52; nb. 49; (2013); p. 12942 - 12945; Angew. Chem.; 125; nb. 49;(2013); p. 13180 - 13183,4View in Reaxys→Rx-ID: 2992583 View in Reaxys 7/19 Yield Conditions & References96 % hydrogenchloride diethyl ether, T= 0 °C; Synthesis; nb. 7; (1988); p. 514 - 517View in Reaxys→Rx-ID: 33188001 View in Reaxys 8/19 Yield Conditions & References93% Preparation Example 25L-tryptophan Methyl Ester HydrochlorideUsing L-tryptophan as a raw material, the synthetic approach and work-up were analogous to that described in Preparation example 1. 3.02 g of white crystalwas obtained with a yield of 93p ercent, [α]D=+16.5° (c=1, CHOH), m.p.: 206-208° C.; ; US2012/135921; (2012); (A1) English View in Reaxys+→Rx-ID: 3829998 View in Reaxys 9/19 Yield Conditions & Referencesthionyl chloride water, Time= 0.666667h, T= 60 °C; Journal of the American Chemical Society; 112; nb. 7; (1990); p. 2566 - 2574View in Reaxys+→Rx-ID: 28197635 View in Reaxys 10/19 Yield Conditions & References73 % thionyl chloride, Time= 7h, T= 60 - 70 °C; European Journal of Medicinal Chemistry; 44; nb. 1; (2009); p. 131 - 142View in Reaxys+→Rx-ID: 1589804 View in Reaxys 11/19 Yield Conditions & References94.8 % thionyl chloride, 1) -10 deg C, 2 h; 2) RT, 2 d; Chemical and Pharmaceutical Bulletin; 32; nb. 4; (1984); p. 1313 - 1325View in Reaxys+Raney nickel →Rx-ID: 20378038 View in Reaxys 12/19 Yield Conditions & ReferencesReaction Steps: 21: 70 percent / EtAlCl / CHCl; hexane / 1 h / 0 °C2: 96 percent / 1N HCl / diethyl ether / 0 °Chydrogenchloride, ethylaluminum dichloride diethyl ether, hexane, dichloromethane; Synthesis; nb. 7; (1988); p. 514 - 517View in Reaxys+→Rx-ID: 31934484 View in Reaxys 13/19 Yield Conditions & Referenceswater-d2, T= 24.84 °C , pH= 7.1, aq. phosphate buffer; Organic and Biomolecular Chemistry; 9; nb. 21; (2011); p. 7457 - 7460View in Reaxys+→Rx-ID: 37905803 View in Reaxys 14/19 Yield Conditions & Referencesthionyl chloride, Time= 40h, T= 20 °C; Journal of the American Chemical Society; 136; nb. 16; (2014); p. 5900 - 5903View in Reaxys+→Rx-ID: 27237752 View in Reaxys 15/19 Yield Conditions & Referencesnot given; Journal of Organometallic Chemistry; 496; (1995); p. C1 - C4 ; (from Gmelin)View in Reaxys→Rx-ID: 37905797 View in Reaxys 16/19 Yield Conditions & ReferencesReaction Steps: 21: sodium; ammonia; Iron (III) nitrate nonahydrate / |Reflux2: thionyl chloride / 40 h / 20 °C Iron(III) nitrate nonahydrate, thionyl chloride, ammonia, sodium; Journal of the American Chemical Society; 136; nb. 16; (2014); p. 5900 - 5903View in Reaxys→Rx-ID: 38511770 View in Reaxys 17/19 Yield Conditions & ReferencesGeneral procedure: Example 7 Synthesis of Amide 7: N-(D)-tryptophanamide of AmB In another preferredembodiment the invention provides the AmB analogue denominated amide 7: N-(D)-tryptophanamide of AmB,represented by formula VII; using D-tryptophan as the starting amine. Fort this derivative the same structuralaspects of the synthesis of amide 6 were taken into account and it was observed in its synthesis the possible effecton the antibiotic activity that has the change in the stereochemistry of this derivative regarding amide 6. For L-tryptophan and D-tryptophan, before the amide synthesis, it was necessary to perform the sterification reaction ofthe carboxylic acid to protect it in form of hydrochloride of the methyl ester of tryptophan. This synthesis wasperformed by reacting 1 equivalent of the amino acid L-tryptophan or D-tryptophan (L-Trp or D-Trp) with excessMeOH and 2 equivalents of Me3SiCl to procure the white precipitate of the hydrochloride of the methyl ester of L-tryptophan or D-tryptophan. Scheme 6 shows the reaction mechanism proposed for this synthesis. The first stepin the reaction consists of the nucleophilic addition of the tryptophan carboxyl function (E) on the Si of MeSiCl (F)inducing the displacement of the Cl ion. The silicon esters (intermediates G and H) are in an equilibrium in which itis proposed that the deprotonated form is more susceptible to the nucleophilic addition of MeOH. This will form thehydrochloride of the methyl ester tryptophan with trymethylsilanol as a byproduct of the reaction. The hydrochlorideof the tryptophan methyl ester is used for the synthesis of the amides of AmB incorporating only an excess of EtNas basic reagent in the method of Jarzebski. This liberates the form of the methyl ester of the tryptophan to act asamine in the reaction. It is reported that by incorporating the tryptophan structure in AmB polyene molecules theyfluoresce under UV light. The tryptophan methyl ester was used for the synthesis of AmB amides as a means toprocure amides that fluoresce under UV light. This is a desirable characteristic for experiments of electrophysiologyin unit channel as because of this, the channels would present this type of fluorescence. Characterization of AmideN-(D)-tryptophanamide of AmB. The IR spectrum of the product is almost identical to that of amide 6, showing onlyslight differences in the intensity of the signals. The derivative had a value of R=0.62 for which it is qualitativelyconsidered that this product is non-polar regarding AmB. These two results help confirm that amide 7 has the samestructure of amide 6, and its epimer. During the process of purification of amide 7 two products were isolated:amide 7a and amide 7b. The IR spectra of both amides have a similar difference to that of amide 2a and amide 2bin the absorption band of the polyhydroxylated chain. Here the difference in the intensity of the bands is not toolarge. Because of this it is believed that this is the same structure, and it is supposed that the solvation with ether(of the purification) occurred in the polyhydroxylated chain for the amide 7b. Moreover, it is likely that the antibioticbehavior is diminished because the actual concentration of the derivative could be less than that contemplated inthe preparation of the amide solution. It is noteworthy that the rest of the spectra of both products are the same.Here, being the epimer (D) of the N-(L)-tryptophanamide, the same values of the derivative 6 are contemplated.Therefore, this synthesis is to determine whether the difference the epimers (L)-(D) stereochemistry will affect theantibiotic activity.chloro-trimethyl-silane; ; US2014/256663; (2014); (A1) English View in Reaxys→+Copyright © 2014 Reed Elsevier Properties SA. All rights reserved.Authorized use only. Reaxys® and the Reaxys® trademark are owned andprotected by Reed Elsevier Properties SA and used under license. 11/112014-11-18 01:57:42 Rx-ID: 25148199 View in Reaxys 18/19YieldConditions & References The tryptophan methylester hydrochloride thus obtained was suspended in 1 liter of ethyl acetate and 100 ml oftriethylamine was added thereto. The mixture was allowed to react for 1 hour while vigorously stirring. Theinsoluble matter (i.e. triethylamine hydrochloride) was filtered off and the filtrate was washed with a small amount of water. Thereafter, the solvent was distilled off to obtain 40 g of oily tryptophan methylester.; ; US4497957; (1985); (A1) English View in Reaxys →Rx-ID: 27883578 View in Reaxys 19/19YieldConditions & References 98 %; ; WO2008/103470; (2008); (A2) English View in Reaxys。