大坝变形监测方案

合集下载

大坝变形监测实施方案

大坝变形监测实施方案

水电站大坝变形监测实施方案二〇一八年九月目录1 工程概述 (4)1.1 概述 (4)1.2 监测区域工程布置 (5)2 作业技术规范及依据 (6)3 工作内容及工作量 (7)4 采用系统 (7)4.1 坐标系统 (7)4.2 高程系统 (7)5 人员配置 (7)5.1 组织结构 (7)5.2 工作职能设置 (7)5.3 主要人员配置 (8)6 设备配置 (8)6.1 设备配置 (8)6.2 设备检校 (9)6.2.1 GNSS 接收机的检校: (9)6.2.2 Leica TCA2003 全站仪的检校: (9)6.2.3 气象仪表检校 (10)6.2.4 水准仪的检验 (10)6.2.5 水准标尺的检验 (10)6.2.6 其它 (10)7 监测网基准点、监测点布设 (11)7.1 基准点的选定及布设 (11)7.2 自动监测基准点选定及埋设 (12)7.2.1 观测环境 (12)7.2.2 地质环境 (13)7.2.3 依托保障 (13)7.3 监测点的选定和布设 (14)8 观测实施及技术要求 (14)8.1.1 水平位移全网观测 (14)8.1.2 垂直位移全网观测 (14)8.1.3 监测点水平位移观测 (15)8.1.4 监测点垂直位移观测 (16)8.2 观测技术要求 (15)8.2.1 水平位移监测GNSS 观测 (15)8.2.2 垂直位移监测网 (16)8.2.3 监测点水平位移监测 (18)8.2.4 监测点垂直位移监测 (19)9 数据处理 (19)9.1 水平位移B 级GNSS 监测网解算 (19)9.2 垂直位移监测网解算 (19)9.3 监测点水平位移解算 (20)9.4 监测点垂直位移解算 (20)10 资料整理及成果资料清单 (20)10.1 资料整理 (20)10.2 项目完成后拟提交的成果资料 (20)11 质量保证体系及质量保证措施 (21)11.1 质量保证体系 (21)11.2 质量目标 (21)11.3 质量保证措施 (22)12 安全生产措施 (23)12.1 安全教育、培训 (23)12.2 制定严格的安全生产规章制度 (23)12.3 安全措施 (23)12.3.1 野外作业安全措施 (23)12.3.2 高空作业安全措施 (24)13 现场文明施工与环境保护 (25)13.1 文明施工与职业健康 (25)14 现场应急处置 (26)14.1 夏季防暑降温应急预案 (26)14.2 施工现场触电应急救援预案 (27)15 附件: (29)水电站人工变形监测实施方案1 工程概述1.1 概述水电站位于省市县乡燕子窝村,为嘉陵江梯级水电开发的第九级,由大电站、小电站、扩建电站组成。

水库大坝GNSS位移自动监测系统方案

水库大坝GNSS位移自动监测系统方案

水库大坝GNSS位移自动监测系统方案一、方案背景我国已拥有水库大坝9.8万余座,其中95%以上为土石坝,95%以上是上个世纪80年代以前建设的老坝。

虽然近10年来我国进行了大规模的病险水库除险加固,但水库大坝数量多,土石坝多,出险的几率非常高。

大坝作为一种大型水工建筑物,其投资和建成后产生的效果都是巨大的,同时由于其结构、运行环境等因素的复杂性,加上设计、施工、运维的不确定性,如果发生意外变形,失事后造成的灾难也是极其严重的。

因此对水利水电大坝运行状态进行持续的实时监测,是十分有必要的,不仅可以为大坝提供安全评估,保证大坝的安全运行,对水库大坝安全自动化监测预警意义重大。

二、系统组成水库大坝GNSS位移自动监测系统采用无人值守自动化监测,以物联网、互联网、北斗+等技术为理论基础,以自主研发的监测平台及各类传感器为核心,充分利用各种监测手段,建立地表和地下深部的三维立体监测网,对水库大坝坡进行系统、可靠的变形监测。

实时监测水库大坝不同部位各类型裂缝的发展过程,岩土体松弛以及局部坍塌、沉降、隆起活动;地下、地面变形动态(包括滑坡体变形方向、变形速速、变形范围等);地下水水位、水量、水化学特征变化;倾斜和大坝各种建筑物变形状况;降雨以及地震活动等外部环境变化等,据此对水库大坝滑坡变形发展和变形趋势作出预测,判断其稳定状态给出水库大坝失稳预警值,指导施工,反馈设计和检验治理效果,了解工程实施后的变化特征,为设计施工及灾害预警提供科学依据。

可以把高水库大坝综合在线监测分为四层:感知层、网络层、平台层、应用层。

感知层:实时感应水库大坝监测参数传感器的状态,如GNSS表面位移监测、地下水位、土壤含水率、土压力、和视频监控摄像机,降雨量等前端感知设备;网络层:支持数据通信,可上、下双向通讯,支持无线蜂窝网络、短信、北斗、PSTN、超短波、ZigBee等通信方式。

感应设备可通过监测预警平台的通讯方式,上行发送至监测控制中心平台。

大坝变形监测技术综述

大坝变形监测技术综述

大坝变形监测技术综述大坝是人类用于蓄水、发电、灌溉等目的的重要水利工程。

随着大坝的运行和使用年限的增加,大坝的变形监测逐渐成为确保大坝安全运行的关键任务。

本文将综述目前常用的大坝变形监测技术,包括测量原理、监测方法、优缺点以及应用案例等内容。

1. 测量原理大坝的变形监测通过测量大坝的形变变化来判断其安全性。

常用的测量原理包括全站仪测量、GPS测量、激光雷达测量、振动传感器监测等。

全站仪利用现代光学技术测量地面的三维坐标,可以测量大坝的形变位移。

GPS技术通过卫星信号测定接收器的三维坐标变化,精度较高。

激光雷达利用激光束扫描目标,通过测量反射回来的激光信号来计算目标物体的位置和形状。

振动传感器则通过测量大坝的振动,来判断其变形情况。

2. 监测方法大坝变形监测方法多种多样,可以分为定点测量和连续监测两种方式。

定点测量通常采用全站仪、GPS等测量仪器,在不同的时间点对大坝进行测量。

这种方法适合对局部区域或特定地点的变形进行测量。

连续监测则是采用激光雷达、振动传感器等设备,可以实时地监测大坝的变形情况。

这种方法适合对大坝整体的变形进行长期监测。

3. 优缺点不同的大坝变形监测技术有各自的优点和缺点。

全站仪测量方法精度较高,但需要专业人员操作,且测量时间较长。

GPS技术可以实时监测大坝的变形,但精度受到卫星定位精度的限制。

激光雷达测量方法速度较快,但在大坝表面有遮挡物时会影响测量结果。

振动传感器能够实时监测大坝的振动情况,但只能监测到振动造成的变形,无法测量其他形变。

4. 应用案例大坝变形监测技术在实际工程中得到广泛应用。

例如,中国的三峡大坝项目采用了全站仪、GPS和振动传感器等多种监测技术,对大坝的变形进行定期检测。

根据监测数据,可以及时发现大坝的异常变形,采取相应的维护和保护措施。

在国外,美国的背水坝坝体变形监测系统可以实时监测大坝的变形情况,并通过无线传输技术将数据传输到远程维护中心。

结论:大坝变形监测技术的发展与进步为大坝的安全运行提供了重要的保障。

大坝变形监测施工与观测方法及要求

大坝变形监测施工与观测方法及要求

(一)大坝变形监测施工与观测方法及要求1.技术标准和规范:承建工程变形监测仪器设备的检验、率定、埋设安装与施工期观测,应严格执行现行国家行业技术标准和规范,以及设计文件、承包合同要求。

应执行的现行国家行业技术标准和规范主要有(但不限于):(1)《混凝土大坝安全监测技术规范》(SDJ336—89)(2)《土石坝安全监测技术规范》(SL60—94)(3)《国家一、二等水准测量规范》(GB12897—91)(4)《国家三角测量规范》(GB/T17942-2000)(5)《水利水电工程测量规范》(SL197—97)(6)《水利水电工程施工测量规范》(SL52—93)2.变形监测仪器设备购置、加工:变形监测仪器设备购置、加工应按照经监理工程师批准的设计图纸、仪器设备清单进行。

仪器设备购置、加工前应向监理工程师报送:(1)仪器设备购置、加工计划:(2)仪器设备检验、率定计划。

仪器设备运抵施工现场后,应会同监理工程师开箱检查验收,应向仪器设备供应方索取仪器设备出厂合格证,计量检测证。

仪器、设备检验合格后应妥善保管。

3.倒垂孔、钢管标、钢铝管双金属标造孔施工与埋设安装:倒垂孔、钢管标、钢铝管双金属标应在施工部位形成后进行。

按照设计坐标、高程进行钻孔孔位定位、放样。

钻机就位,应认真进行校正。

经校正安装固定的钻机,主轴必须严格垂直,钻孔孔位定位精度须满足设计要求。

钻孔施工过程中应每进尺1 m~2m,采用倒垂浮体组配合弹性导中器进行钻孔垂直度检测,以控制钻孔质量,进而指导调整钻孔施工。

倒垂孔钻孔垂直度应满足保护管安装埋设完成后,其保护管有效孔径必须在大于100mm。

钢管标、钢、铝管双金属标钻孔垂直度应满足保护管安装埋设的要求。

钻孔进尺满足设计要求后,应通知设计、地质、监理工程师,参加钻孔终孔验收,并进行单项工程阶段性验收签证。

终孔验收后,及时进行倒垂孔保护管、钢管标、钢、铝管双金属标安装埋设。

各类金属管材、材质型号、加工均应满足设计要求。

大坝位移监测设备实施方案

大坝位移监测设备实施方案

大坝位移监测设备实施方案一、前言。

大坝是水利工程中重要的组成部分,其安全性直接关系到人民群众的生命财产安全。

为了及时监测大坝的位移情况,保障大坝的安全运行,需要对大坝进行位移监测。

本文档旨在提出大坝位移监测设备的实施方案,以期为相关工程提供技术支持。

二、设备选择。

1. 位移监测仪器,选择精度高、稳定性好的位移监测仪器,能够实时、准确地监测大坝的位移变化。

2. 通信设备,选择稳定可靠的通信设备,能够实现远程数据传输和监测。

3. 供电设备,选择稳定可靠的供电设备,保障监测设备的正常运行。

三、设备布置。

1. 位移监测仪器的布置,根据大坝的实际情况,合理布置位移监测仪器,覆盖大坝的关键部位,确保监测数据的全面性和准确性。

2. 通信设备的布置,合理布置通信设备,保证监测数据能够及时传输到监测中心。

3. 供电设备的布置,合理布置供电设备,保证监测设备的持续供电。

四、监测方案。

1. 实时监测,监测设备应能够实时监测大坝的位移情况,一旦发现异常,能够及时报警。

2. 数据存储,监测设备应具有数据存储功能,能够长期保存监测数据,为后续分析提供支持。

3. 远程监测,监测设备应能够实现远程监测,监测中心能够随时随地获取监测数据。

五、数据处理与分析。

1. 数据采集,监测设备采集到的数据应该准确完整,不受外界干扰。

2. 数据传输,监测数据应能够及时传输到监测中心,保证数据的及时性。

3. 数据分析,监测中心应对监测数据进行及时分析,发现问题及时处理。

六、总结。

大坝位移监测设备的实施方案对于大坝的安全运行至关重要。

通过选择合适的监测设备、合理布置设备、制定科学的监测方案和及时的数据处理与分析,能够有效保障大坝的安全运行。

希望本文档提出的实施方案能够为相关工程提供参考,确保大坝的安全稳定运行。

大坝位移监测实施方案

大坝位移监测实施方案

大坝位移监测实施方案一、背景介绍。

大坝是水利工程中重要的构筑物,其安全稳定对周边地区的人民生命财产安全具有重要意义。

大坝位移监测是保障大坝安全的重要手段之一,通过对大坝位移进行实时监测,可以及时发现大坝变形情况,为大坝安全运行提供数据支持。

二、监测目的。

1. 及时发现大坝变形情况,预警可能存在的安全隐患;2. 为大坝结构设计和维护提供数据支持;3. 为大坝运行管理提供科学依据。

三、监测内容。

1. 大坝水平位移监测,通过设置水平位移监测点,实时监测大坝在水平方向上的位移情况;2. 大坝竖向位移监测,设置竖向位移监测点,对大坝在竖向上的位移进行实时监测;3. 大坝倾斜监测,通过设置倾斜监测点,对大坝的倾斜情况进行实时监测;4. 大坝温度监测,设置温度监测点,对大坝温度变化进行实时监测。

四、监测方案。

1. 监测设备选择,选择高精度、高稳定性的位移监测仪器,确保监测数据的准确性和可靠性;2. 监测点设置,根据大坝的具体情况,合理设置监测点,覆盖大坝的各个部位;3. 监测频率,根据大坝的重要性和特殊情况,确定监测频率,一般情况下,对于重要大坝,监测频率不低于每日一次;4. 数据处理,对监测数据进行及时处理和分析,建立监测数据库,形成监测报表;5. 预警机制,建立大坝位移监测预警机制,确定预警数值,一旦监测数据超出预警数值,立即启动应急预案。

五、监测管理。

1. 监测责任人,明确大坝位移监测的责任人,建立监测管理团队;2. 监测记录,建立完整的监测记录,包括监测数据、分析报告、维护记录等;3. 监测维护,定期对监测设备进行维护和校准,确保监测设备的正常运行;4. 监测评估,定期对大坝位移监测方案进行评估,不断改进和完善监测方案。

六、总结。

大坝位移监测是大坝安全管理的重要组成部分,合理实施位移监测方案,可以及时发现大坝变形情况,为大坝安全运行提供数据支持。

希望各相关单位能够重视大坝位移监测工作,确保大坝安全稳定运行。

大坝变形监测技术与数据分析

大坝变形监测技术与数据分析

大坝变形监测技术与数据分析大坝是水力工程中重要的建筑物,用于蓄水、防洪和发电等目的。

然而,由于长期受到水压和土体的作用,大坝可能会发生变形,导致其结构稳定性和安全性受到威胁。

因此,大坝变形监测技术和数据分析在保障大坝的安全运行方面起到了至关重要的作用。

一、大坝变形监测技术1. GPS技术:GPS(全球定位系统)是一种通过卫星定位测量的技术,可用于测量大坝的位移变形。

通过安装在大坝上的GPS接收器,可以精确测量大坝的坐标变化,并实时监测其变形情况。

通过GPS技术,可以及时发现大坝的变形趋势,为进一步的分析和预测提供数据支持。

2. 建筑物振动监测技术:震动传感器和振动检测设备可用于监测大坝的振动情况。

通过安装在大坝上的传感器,可以实时测量大坝的振动频率、振幅和振动模态等参数,从而判断大坝的结构变形情况。

这些数据可以帮助工程师监测大坝的状况,并进行相应的结构分析和评估。

3. 应变监测技术:应变测量传感器可用于测量大坝结构的应变情况。

通过在大坝表面安装应变测量设备,可以获取到大坝不同部位的变形情况。

这些数据对于分析大坝的结构稳定性和安全性非常重要,可以帮助工程师判断大坝是否存在变形问题,并采取相应的措施进行修复。

二、大坝变形数据分析1. 数据处理与分析:收集到的大坝变形数据需要进行处理和分析。

首先,需要对原始数据进行筛选和去噪,排除异常值和干扰因素。

然后,将数据进行整理和归类,建立适当的数据库。

接下来,可以利用统计学和数据分析方法来分析大坝的变形趋势、变形速率等参数,以及变形与其他因素的关系,如降雨量、温度等。

2. 变形预警与预测:通过对大坝变形数据的分析,可以建立变形的预警模型。

根据大坝的历史数据和相关参数,可以进行变形预测,及时发现潜在的变形趋势,并采取必要的措施进行修复和加固。

预测模型的准确性将直接影响到大坝的安全性和可靠性。

3. 结构健康评估:通过大坝变形数据的分析,可以对大坝进行结构健康评估。

水库大坝监测工程方案怎么写

水库大坝监测工程方案怎么写

水库大坝监测工程方案怎么写一、前言水库大坝是国家重点工程之一,在工程建设期间和使用过程中,需要定期进行监测工作,以确保大坝的安全稳定。

本方案旨在对水库大坝监测工程进行详细的规划和安排,以保障工程的顺利实施和大坝的安全运行。

二、工程背景水库大坝是一项复杂的水利工程,其建设和运行过程中受到多种因素的影响,包括地质条件、水文条件、自然灾害等。

因此,对水库大坝进行监测工作显得尤为重要。

监测工作可以及时发现大坝可能出现的问题,并采取相应的措施加以解决,从而确保大坝的安全稳定。

三、监测目标本次水库大坝监测工程的主要目标包括:1. 监测大坝的变形情况,包括水平位移、垂直位移、倾斜变形等;2. 监测大坝的渗流情况,包括渗流量、水压变化等;3. 监测大坝周边地质环境情况,包括地下水位、地表沉降等。

四、监测方案1. 监测设备的选择和布设为了实现监测目标,需要选择合适的监测设备,并合理布设在大坝及其周边环境中。

监测设备主要包括变形测量仪、渗流监测仪、地质环境监测仪等。

这些监测设备需要能够实时监测并传输监测数据,以便工作人员及时获取监测结果。

2. 监测方案的制定在选择监测设备的基础上,需要制定具体的监测方案,包括监测点的选取、监测参数的确定、监测频次的安排等。

监测点的选取应该能够全面反映大坝的变形情况和周边环境的变化情况,同时考虑到方案的实施成本和效益。

监测参数的确定要根据实际情况确定,一般包括变形量、流量、压力等参数。

监测频次的安排应该能够保证监测数据的及时性和准确性,一般会根据实际情况制定相应的监测计划。

3. 监测工作的实施监测工作实施需要专业的监测人员和设备支持,以确保监测数据的准确性和可靠性。

在实施监测工作的过程中,需要注重监测设备的日常维护和保养,以确保设备的正常运行。

同时,监测人员需要及时处理监测数据,并对监测结果进行分析和评估,以便及时发现问题并采取相应措施。

4. 监测报告的编制监测工作完成后,需要编制监测报告,对监测结果进行总结和分析,并提出相应的建议和措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大坝变形监测方案
1. 简介
大坝是人类工程中保护水源、调节水量的重要设施之一。

由于大坝长期承受水
压和地质运动的力量,随着时间的推移,大坝可能会发生变形。

为了保障大坝的安全性,需要进行定期的变形监测。

本文档将介绍一种大坝变形监测方案,帮助工程师进行科学有效的大坝变形监测。

2. 监测目标
大坝变形监测的主要目标是提前发现大坝的变形情况,以防止严重事故的发生。

监测的主要内容包括以下几个方面:
•大坝的水平位移变形:主要指大坝在水平方向上的位移情况,通过测量水平位移来判断大坝是否存在下滑或滑坡的风险。

•大坝的竖向位移变形:主要指大坝在垂直方向上的位移情况,通过测量垂直位移来判断大坝是否存在沉降的风险。

•大坝表面的裂缝情况:通过监测大坝表面的裂缝情况,可以了解大坝是否存在结构破裂或渗漏的风险。

3. 监测方法
3.1 测量仪器选择
为了进行大坝变形的定量测量,需要选择合适的测量仪器。

以下是一些常见的
大坝变形监测仪器:
•GPS测量仪:可用于测量大坝的水平位移变形,具有高精度、实时性强的特点。

•倾斜仪:可用于测量大坝的竖向位移变形,一般采用水平方向和垂直方向两个方向的倾斜角度进行测量。

•应变计:可用于测量大坝表面的应变情况,一般通过电阻、电容或光纤等方式进行测量。

3.2 监测方案设计
根据大坝的具体情况,制定相应的监测方案。

以下是一个常见的大坝变形监测
方案设计示例:
1.确定监测点位:根据大坝的结构和地质条件,确定监测点位,包括水
平位移监测点和竖向位移监测点。

2.布设测量仪器:根据监测点位,布设相应的测量仪器。

GPS测量仪可
以布设在大坝上不同位置进行水平位移监测,倾斜仪可以布设在大坝表面进行竖向位移监测,应变计可以布设在大坝表面的关键部位进行应变监测。

3.数据采集与处理:定期采集测量仪器的数据,并进行数据处理。

可以
使用专业的监测设备自带的软件对数据进行分析和展示,也可以使用
MATLAB或Excel等软件进行数据处理。

4.结果分析与报告:对监测数据进行分析,判断大坝的变形情况,并及
时生成监测报告。

报告应包括变形数据的图表展示、变形趋势的分析以及安全预警等内容。

4. 监测频率和时长
大坝变形监测需要定期进行,监测频率和时长应根据大坝的具体情况确定。

一般来说,对于新建的大坝,可以采用较高的监测频率,比如每天或每周进行监测。

对于老化的大坝,监测频率可以适当降低,比如每月或每季度进行监测。

监测时长一般建议至少持续一年,以获得全面的变形情况。

5. 结论
大坝变形监测方案是保证大坝安全运行的重要手段之一。

通过选择合适的测量仪器,制定科学合理的监测方案,并进行实时数据采集和分析,可以提前发现大坝的变形情况,预防大坝发生严重事故。

在大坝变形监测中,监测频率和时长也需要根据实际情况进行调整,以确保监测结果的准确性和全面性。

相关文档
最新文档