红外光谱检测技术
红外光谱检测原理

红外光谱检测原理红外光谱检测原理概述在化学领域,红外光谱检测是一项重要的分析检测技术。
它利用物质分子在红外光谱范围内的特征振动和转动来识别和定量分析样品中的化学物质。
其原理是将样品置于红外光源和探测器之间,通过照射样品后所发生的红外光谱状况得出一系列信息,用以分析样品中的化学物质成分、分子结构、状态等相关信息。
红外光谱的基本原理红外光谱是指物质在特定波长的红外辐射下发生量子激发而产生的谱线,这些谱线所呈现的振动和转动信息可以用于判定物质的结构和成分。
红外光谱的来源是红外辐射,也称为红外线,波长通常在8000至200cm^-1之间。
这段区间可以根据波数描绘,波数为每秒振动,以cm^-1作单位。
该波长区间涵盖了分子中振动模式的主要类型,因此足以用于分析和鉴定物质的结构和成分。
小分子分子的红外吸收谱由振动-转动谱和原子自由移动谱组成。
基于布尔定理和运动求和原理,每种化学键类型都能具有一定的红外吸收频率和强度(与其振动模式有关)。
C-H,O-H和N-H 都具有不同的吸收频率,根据这些频率,我们可以确定样品成分和分子结构。
红外光谱的实验流程在进行红外光谱检测时,一般需要进行以下步骤:1. 收集样品:从要测试的原料或者样品中获取一个可以测试的组分(例如气体或者溶液)。
2. 预处理样品:对样品进行必要的预处理。
去除杂质和水分等。
3. 测试样品:使用一个红外光谱仪测试样品。
4. 分析数据:根据样品振动和转动的谱线以及吸收频率和强度等参数来确定样品成分、分子结构等信息。
红外光谱仪1. 光源:红外光谱仪中使用红外辐射光源,如Nernst灯、热电导灯和Halogen灯等。
2. 互相作用的样品和光线:通过对样品处于放置于一个样品池中,在此把紫外线、红外线或可见光投射至此处的方式来激发样品,样品吹风机息怀发生转动和振动。
这些相位发生了变化之后便会与样品中的质子或化学基团之间相互作用进而发生吸收。
3. 接受器:红外光谱仪的接受器会检测样品中吸收的红外线光量。
红外光谱技术在材料检测中的应用

红外光谱技术在材料检测中的应用随着科技的不断发展,红外光谱技术越来越受到人们的关注和重视,作为一种新型检测技术,红外光谱技术在材料检测中发挥着不可替代的作用。
一、红外光谱技术介绍红外光谱技术是一种利用样品吸收红外光的谱线特性,对其进行分析的方法。
该方法适用于对各种材料和化学元素进行检测分析,尤其是在材料质量检测、识别和鉴别方面得到了广泛应用。
在红外光谱技术中,红外光可以被分为多种不同的波长,这些波长经过样品后,会与样品中不同的化学成分相互作用。
在每个波长处都会出现各自的吸收峰,从而形成一个红外光谱图,通过对这个谱图进行分析,就可以获得样品的化学信息。
二、红外光谱技术在材料检测中的应用1. 聚合物材料中的应用红外光谱技术在聚合物材料的检测中得到了广泛应用。
通过红外光谱技术,可以对聚合物材料的成分进行分析,特别是在确认小分子杂质的类型和浓度方面表现出了其独特的优势。
此外,红外光谱技术还可以用于判别不同化学氧化阶段下聚合物材料的结构和性质变化,以及检测聚合物材料的降解情况。
2. 金属材料中的应用红外光谱技术在金属材料的检测中也有很多应用。
例如,可以通过红外光谱技术对金属表面的化学官能团进行分析,评估其表面质量和处理效果。
此外,红外光谱技术还可以用于金属材料的合金成分分析,以及对金属材料中的杂质进行检测。
3. 箱包材料中的应用随着消费者对箱包质量的更高要求,厂家对于箱包材料的检测也非常重视。
红外光谱技术在箱包材料检测中的应用,主要是通过红外光谱仪检测箱包材料的成分和材质,以便准确判断箱包质量是否符合标准。
此外,红外光谱技术还可以进行箱包大宗材料的原料检验和质量效果检测。
三、红外光谱技术应用的优势1. 获得精准的分析结果红外光谱技术可以提供高精度的分析结果,能够准确识别不同物质的分子结构和性质变化。
由于不影响样品的化学组成和形态,红外光谱技术也可以用于对添加剂、杂质和晶相等进行检测。
2. 操作简便,可靠性高红外光谱技术操纵简便,操作实现自动化,检测过程中也不会受到环境、人为等影响而产生误差。
化学分析中的红外光谱技术

化学分析中的红外光谱技术红外光谱技术是一种重要的分析方法,广泛应用于化学领域。
它主要通过测定物质在红外光区域的吸收特性,从而获取有关物质结构和组成的信息。
以下是关于红外光谱技术的一些关键知识点:1.红外光谱的原理:红外光谱是利用物质对红外光的吸收作用,分析物质分子内部结构的一种技术。
红外光的波长范围在4000-400cm-1之间,不同类型的化学键和官能团在红外光区域有特定的吸收频率。
2.红外光谱仪:红外光谱仪是进行红外光谱分析的主要仪器设备。
它主要由光源、样品室、分光镜、检测器等部分组成。
样品通过红外光源照射,经过样品室后,由分光镜分离出不同波长的光,最后由检测器检测吸收的光强。
3.红外光谱图:红外光谱图是表示物质红外光谱吸收情况的图表。
横轴表示波数(cm-1),纵轴表示吸收强度。
红外光谱图可以用来分析物质的分子结构、化学键类型和官能团等信息。
4.红外光谱的应用:红外光谱技术在化学分析领域具有广泛的应用,可以用于定性分析、定量分析、结构分析、混合物分析等。
例如,通过红外光谱可以确定有机化合物的分子结构,分析高分子材料的组成等。
5.红外光谱的解析:红外光谱的解析主要包括峰的识别、峰的归属和峰的积分等步骤。
通过对红外光谱图中的吸收峰进行识别和归属,可以确定物质中的化学键类型和官能团,从而推断出物质的结构信息。
6.红外光谱的优点:红外光谱技术具有快速、简便、灵敏、准确等优点,是一种非常重要的分析方法。
它不仅适用于固体、液体样品,还可以用于气体和薄膜样品的研究。
7.红外光谱的局限性:虽然红外光谱技术具有很多优点,但也存在一定的局限性。
例如,红外光谱信号易受样品环境、化学计量比等因素的影响,因此在分析过程中需要注意样品的制备和测试条件的控制。
以上是关于化学分析中红外光谱技术的一些关键知识点,希望对您有所帮助。
习题及方法:1.习题:红外光谱图中,吸收峰的位置与哪个因素有关?解题思路:此题考查对红外光谱图的基本理解。
红外光谱技术的原理与应用

红外光谱技术的原理与应用近年来,红外光谱技术因其在分析领域中的广泛应用而备受瞩目。
它是一种非破坏性的分析技术,能够准确地确定目标物质的分子结构和功能组成。
本文将介绍红外光谱技术的原理、基础知识和应用。
一、红外光谱技术的原理红外光谱技术是一种利用物质对红外辐射的吸收和发射谱线进行分析的技术。
红外辐射可以被物质中的化学键吸收或发射,这些化学键的振动和转动运动产生了特定的谱线,对应于物质的分子结构。
红外光谱图展示了分子内各个化学键的谱线,可用于确定样品中不同分子的存在和浓度。
二、基础知识:红外光谱图的读取红外光谱图由x轴和y轴组成。
x轴表示波数(单位为cm-1),而y轴则表示对应波数下吸收带的相对强度。
红外光谱图的预处理非常重要。
为了获得最佳效果,我们需要对光谱图进行基线校正、去除噪声、调整基于吸收线强度等组合过程的光谱数据。
在光谱图上,各吸收带也需要进行标记和解释。
三、红外光谱技术的应用1. 化学分析红外光谱技术可以用于分析有机化合物的结构和组成。
化学家们可以用红外光谱图来检测样品中特定的化学键,以及确定这些化学键的类型和位置。
这项技术对于药物合成、有机化学和聚合物工程等领域的研究非常重要。
2. 食品安全红外光谱技术可以用于检测食品中的有害物质和营养成分。
例如,它可以用于测量食品中各种脂肪、糖类和蛋白质的含量。
此外,红外光谱技术还可以分析食品中的添加剂和农药残留情况。
3. 医学诊断红外光谱技术对于疾病的早期诊断和治疗也具有很大的帮助作用。
例如,红外光谱技术可以用于分析血液样品中患者的代谢物质,以及检测特定疾病标志物的存在。
此外,它还可以用于研究不同组织和器官的结构和组成。
4. 环境监测红外光谱技术可以用于分析环境样品中的有害物质和化学物质。
例如,可以通过分析水体中的化学物质来确保其安全饮用。
它还可以测定大气中的污染物质和土壤中的重金属含量。
四、未来发展随着科技的进步和新技术的出现,红外光谱技术也在不断发展。
红外光谱检测技术的研究与应用

红外光谱检测技术的研究与应用红外光谱技术是一种目前非常流行的分析技术,因为它在分析方面的性能是极为出色的。
红外光谱技术具有很强的选择性、快速度和分析能力,使分析师更轻松地分析样品并得到精确的结果。
本文将介绍红外光谱检测技术的基本原理、分类别以及优点,并提及其在工业中的应用。
红外光谱检测技术的基本原理红外光谱技术是通过检测样品受的吸收光线的强度、波长和振动来识别物质。
当样品暴露在红外光波范围内时,会吸收某些红外光,而其他红外光则透过样品。
根据样品的化学特性和吸收强度而产生的吸收峰,红外光谱技术可以快速地识别和定量分析样品中的各种化合物。
红外光谱检测技术的分类基于红外光谱技术原理和分析对象的不同,红外光谱检测技术可以被分为傅里叶红外光谱技术和干涉红外光谱技术两类。
傅里叶红外光谱技术是将样品暴露于全谱范围的红外光下,并收集不同波长的光线被吸收的信息。
这种技术需要使用傅里叶换算将信号转换成吸收谱,从而帮助分析师识别化合物。
而干涉红外光谱技术则是采用干涉法检查样品对吸收光线的强度和波长进行检测,这种技术更加直观和可靠。
红外光谱检测技术的优点红外光谱检测技术的优点在于它可以快速地分析和识别化合物。
而且,由于它可以识别很小的化合物,因此可以用来检测大高分子化合物的特性。
此外,它也不需要样品与红外光谱仪之间的物理接触,降低了污染的风险。
工业中的红外光谱检测技术红外光谱检测技术在工业中被广泛应用,与许多生产和设备相关的实践密切相连。
例如,可以使用红外光谱检测技术检测生产线上的原材料、成品等,并对其进行识别和分析。
此外,红外光谱检测技术还被用于分析和识别化妆品、药品、食品等领域的样品。
除此之外,红外光谱检测技术也被应用于环境保护领域,例如,可以使用红外光谱检测技术监测工业区域的污染物。
总结红外光谱检测技术是一种非常珍贵的技术,它在分析和识别化合物方面的性能非常出色,可以为许多工业和环保实践提供支持。
由于现代技术的发展,红外光谱检测技术在各行各业中的应用越来越广泛,未来有望成为实验室和工业领域中最受欢迎的分析方法之一。
品检中的红外光谱技术及应用

品检中的红外光谱技术及应用红外光谱技术是一种广泛应用于品质检测和质量控制领域的分析方法。
其原理是利用物质分子在红外光波长范围内的特殊吸收能力,通过检测吸收谱图来判断样本的组成和质量特性。
红外光谱技术具有快速、无损、准确等优势,在食品、药品、化工等领域得到了广泛应用。
在品检中,红外光谱技术被广泛用于分析和鉴定样品的成分和结构。
通过测量样品在红外光谱范围内的吸收光谱,可以得到与样品相应的红外光谱图。
这些图像中的峰值和谱带位置可以提供有关样品分子结构和化学成分的信息。
与传统的化学分析方法相比,红外光谱技术不需要任何样品的前处理,能够在非破坏性的条件下进行快速分析,大大提高了样品检测的效率。
红外光谱技术在食品行业中的应用尤为重要。
通过分析食品样品的红外光谱图像,可以检测食品中的主要营养成分,如蛋白质、脂肪、碳水化合物等,并确定其含量。
红外光谱技术还可以鉴定食品中的添加剂、防腐剂、污染物等,对食品的安全进行评估。
红外光谱技术还可以用于检测食品的质量和新鲜度。
例如,通过测量肉类和鱼类的红外光谱,可以判断其贮存时间和是否变质,保证食品的品质安全。
在制药行业中,红外光谱技术也扮演着重要的角色。
通过红外光谱技术,可以对药物中的活性成分进行定性和定量分析,以确保药品的有效性和安全性。
红外光谱技术还可以识别药品中的杂质和控制药物的生产过程。
通过红外光谱技术与化学计量学方法的结合,可以实现药品的追踪和质量控制,提高药品的合格率和制药过程的效率。
化工行业中,红外光谱技术可用于物质的快速鉴定和质量监控。
通过红外光谱技术,可以鉴定化工原料和产品中的有机、无机和多元化合物,并确定其组成和结构。
红外光谱技术还可以测量物质的纯度,用于质量控制和工艺优化。
通过红外光谱技术在化工过程中的应用,可以提高产品的合格率和工艺的稳定性,降低生产成本和环境污染。
总之,红外光谱技术作为一种非常实用的分析方法,在品检中发挥着重要的作用。
无论是食品、药品还是化工行业,红外光谱技术都可以用于分析样品的成分、结构和质量特性。
红外光谱分析技术及其应用

红外光谱分析技术及其应用红外光谱是一种被广泛应用于分析化学和材料科学领域的技术。
该技术通过测量物质在红外区域的光吸收和散射来研究物质的结构和成分。
红外光谱分析技术在药物研发、环境监测、食品安全等众多领域都有重要应用。
本文将从红外光谱的原理、仪器设备以及应用领域等方面进行论述。
一、红外光谱的原理红外光谱分析是利用物体对红外辐射的吸收特性来研究物质的结构和成分。
物体中的化学键(如C-H、O-H等)能够在特定波长的红外光下发生共振吸收。
通过对吸收光谱的测定和解释,可以确定物质中存在的官能团以及分子结构。
红外光谱技术作为一种非破坏性的分析方法,对于固体、液体、气体等不同状态的物质都有适用性。
二、红外光谱仪的设备红外光谱仪是进行红外光谱分析的关键设备。
它由光源、样品区、光学元件、光谱仪和探测器等部分组成。
光源通常采用红外线辐射源,如热辐射源或者红外激光器。
样品区是红外光谱仪中样品放置的区域,通常采用透明的窗口材料,如钠氯化物盘、锂氟化镁片等。
光学元件的作用是将红外光束聚焦到样品上,并将经过样品的光线收集和分散。
常用的红外光学元件有平面反射镜、棱镜和光栅等。
其中,平面反射镜常用于固体样品的测量,棱镜和光栅常用于液体样品或气体样品的测量。
光谱仪用于解析红外光谱仪所收集到的光信号。
常见的光谱仪包括单色仪、分光仪和差分光谱仪等。
探测器用于将光信号转化为电信号,以供进一步的处理和分析。
常用的探测器有热电偶、焦平面阵列和光电二极管等。
三、红外光谱分析的应用红外光谱分析技术在各个领域都有广泛的应用。
以下将介绍几个常见的应用领域。
1. 化学领域:红外光谱分析技术在化学合成、反应动力学、物质结构以及化学品的成分分析中起到关键作用。
通过红外光谱分析,可以快速准确地确定化合物的官能团和分子结构,推测反应机理,并进行催化剂的表征。
2. 药物研发:红外光谱分析在药物研发过程中具有重要意义。
通过红外光谱分析,可以对药物中的活性成分、溶剂残留、纯度、晶型等进行检测和分析,保证药物的质量和安全性。
基于红外光谱的无损检测技术研究

基于红外光谱的无损检测技术研究无损检测技术是工业制造中广泛采用的技术,可以在不破坏被检测物的情况下对其进行检测,避免了可能出现的二次损伤。
而基于红外光谱的无损检测技术,是一种利用物质的红外吸收光谱特征进行检测的新兴技术。
本文将介绍基于红外光谱的无损检测技术的原理、应用和发展前景。
一、基于红外光谱的无损检测技术原理什么是红外光谱?红外辐射波长(波长大于0.75μm)与物质分子相互作用引起分子振动和转动,使得辐射中能量被吸收,产生红外吸收光谱。
不同的分子会在不同的频率范围内吸收红外光,从而形成独特的红外吸收光谱特征。
基于红外光谱的无损检测技术,就是利用物质的红外吸收光谱特征进行检测。
将待测物放在光路中心,通过外部光源将红外光照射在样品表面,检测样品在不同频率下吸收光的强度,从而得知不同物质的化学成分和结构信息。
二、基于红外光谱的无损检测技术应用1.食品安全检测食品安全问题一直备受关注,尤其是农药残留问题。
传统的农药检测方法都需要破坏样品,而基于红外光谱的无损检测技术可以直接对农产品表面进行测试,避免了二次污染和对样品的破坏。
2.原料鉴别越来越多的制药和化妆品企业开始重视原料的质量检测,基于红外光谱的无损检测技术可以对原料进行非破坏性检测和鉴别,节省了时间和成本。
3.材料检测材料在工业制造中的重要性不言而喻。
基于红外光谱的无损检测技术可以检测材料的结构、成分、缺陷等信息,并能够对不同的材料进行鉴别和分类。
三、基于红外光谱的无损检测技术发展前景基于红外光谱的无损检测技术在人类生产和生活中具有广泛的应用前景。
随着科技的不断发展,基于红外光谱的无损检测技术也在不断完善和创新。
未来,这项技术将会在以下几个方面得到更好的应用:1.精准检测随着技术和算法的不断更新,基于红外光谱的无损检测技术可以达到更高的精度和准确度,大大提高工业生产的效率和成品率。
2.与机器人技术结合机器人技术被广泛应用于工业自动化领域,与基于红外光谱的无损检测技术结合,可以实现对生产线上的物品进行快速检测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以后改动策划类的文档可以用批注简单、明了
中药材红外光谱鉴别技术操作规程
一、红外光谱分析原理
分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱。
红外吸收光谱也是一种分子吸收光谱。
当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。
记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱(产生红外光谱的基本条是:要有偶矩的变化)。
1 红外光区的划分
红外光谱在可见光区和微波光区之间,波长范围约为 0.75 - 1000µm,根据仪器技术和应用不同,习惯上又将红外光区分为三个区:近红外光区(0.75 -2.5µm ),中红外光区(2.5- 25µm ),远红外光区(25-1000µm )。
1.1 近红外光区(0.75-
2.5µm )
近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收等产生的。
该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。
1.2 中红外光区(
2.5-25µm )
绝大多数有机化合物和无机离子的基频吸收带出现在该光区。
由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。
同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数
据资料,因此它是应用极为广泛的光谱区。
通常,中红外光谱法又简称为红外光谱法。
1.3 远红外光区(25-1000µm )
该区的吸收带主要是由气体分子中的纯转动跃迁振动-转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。
由于低频骨架振动能很灵敏地反映出结构变化,所以对异构体的研究特别方便。
此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究。
但由于该光区能量弱,除非其它波长区间内没有合适的分析谱带,一般不在此范围内进行分析。
曲线或T-λ红外吸收光谱一般用T-1(单位为µm ),或波数(单位为cm-1)。
λ波数曲线表示。
纵坐标为百分透射比T%,因而吸收峰向下,向上则为谷;横坐标是波长
中红外区的波数范围是4000-400 cm-1 。
二、红外光谱法的特点
紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。
因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。
除光学异构体,某些高分子量的高聚物以及在分子量上只有微小差异的化合物外,凡是具有结构不同的两个化合物,一定不会有相同的红外光谱。
通常红外吸收带的波长位置与吸收谱带的强度,反映了分子结构上的特点,可以用来鉴定未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与分子组成或化学基团的含量有关,可用以进行定量分析和纯度鉴定。
由于红外光谱分析特征性强,气体、液体、固体样品都可测定,并具有用量少,分析速度快,不破坏样品的特点。
因此,红外光
谱法不仅与其它许多分析方法一样,能进行定性和定量分析,而且该法是鉴定化合物和测定分子结构的最有用方法之一。
产生红外吸收的条件
1 辐射光子具有的能量与发生振动跃迁所需的跃迁能量相等
红外吸收光谱是分子振动能级跃迁产生的。
因为分子振动能级差为0.05~1.0eV,比转动能级差(0.0001 0.05eV)大,因此分子发生振动能级跃迁时,不可避免地伴随转动能级的跃迁,因而无法测得纯振动光谱,但为了讨论方便,以双原子分子振动光谱为例说明红外光谱产生的条件。
若把双原子分子(A-B)的两个原子看作两个小球,把连结它们的化学键看成质量可以忽略不计的弹簧,则两个原子间的伸缩振动,可近似地看成沿键轴方向的间谐振动。
在室温时,分子处于基态,此时,伸缩振动的频率很小。
当有红外辐射照射到分子时,若红外辐射的光子所具有的能量恰好等于分子振动能级的能量差时,则分子将吸收红外辐射而跃迁至激发态,导致振幅增大。
只有当红外辐射频率等于振动量子数的差值与分子振动频率的乘积时,分子才能吸收红外辐射,产生红外吸收光谱。
2 辐射与物质之间有耦合作用没看懂
为满足这个条件,分子振动必须伴随偶极矩的变化。
红外跃迁是偶极矩诱导的,即能量转移的机制是通过振动过程所导致的偶极矩的变化和交变的电磁场(红外线)相互作用发生的。
分子由于构成它的各原子的电负性的不同,也显示不同的极性,称为偶极子。
通常用分子的偶极矩来描述分子极性的大小。
当偶极子处在电磁辐射的电场中时,该电场作周期性反转,偶极子将经受交替的作用力而使偶极矩增加或减少。
由于偶极子具有一定的原有振动频率,显然,只有当辐射频率与偶极子频率相匹时,分子才与辐射相互作用(振动耦合)而增加它的振动能,使振幅增大,即分子由原来的基态振动跃迁到较高振动能级。
因此,并
非所有的振动都会产生红外吸收,只有发生偶极矩变化的振动才能引起可观测的红外吸收光谱,该分子称之为红外活性的。
当一定频率的红外光照射分子时,如果分子中某个基团的振动频率和它一致,二者就会产生共振,此时光的能量通过分子偶极矩的变化而传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁。
如果用连续改变频率的红外光照射某样品,由于试样对不同频率的红外光吸收程度不同,使通过试样后的红外光在一些波数范围减弱,在另一些波数范围内仍然较强,用仪器记录该试样的红外吸收光谱,进行样品的定性和定量分析。
三、样品的制样方法
1 在红外光谱分析的具体操作中,对于固体样品,常用的制样方法有以下四种:(1)压片法,是把固体样品的细粉,均匀地分散在碱金属卤化物中并压成透明薄片的一种方法;
(2)粉末法,是把固体样品研磨成2μm以下的粉末,悬浮于易挥发溶剂中,然后将此悬浮液滴于KBr片基上铺平,待溶剂挥发后形成均匀的粉末薄层的一种方法;
(3)薄膜法,是把固体试样溶解在适当的的溶剂中,把溶液倒在玻璃片上或KBr 窗片上,待溶剂挥发后生成均匀薄膜的一种方法;
(4)糊剂法,是把固体粉末分散或悬浮于石蜡油等糊剂中,然后将糊状物夹于两片KBr等窗片间测绘其光谱[1]。
其中最常用的是压片法,但此法常因样品浓度不合适或因片子不透明等问题需要一再返工。
2 对于液体样品,常用的制样方法有以下三种:
(1)液膜法,是在可拆液体池两片窗片之间,滴上1~2滴液体试样,使之形成一薄的液膜;
(2)溶液法,是将试样溶解在合适的溶剂中,然后用注射器注入固定液体池中进行测试;
(3)薄膜法,用刮刀取适量的试样均匀涂于窗片上,然后将另一块窗片盖上,稍加压力,来回推移,使之形成一层均匀无气泡的液膜。
其中最常用的是液膜法,此法所使用的窗片是由整块透明的溴化钾(或氯化钠)晶体制成,制作困难,价格昂贵,稍微使用不当就容易破裂,而且由于长期使用也会被试样中微量水分将其慢慢侵蚀,到一定时候这对窗片也就报废了。
现在采用溴化钾压片作片基,在得到同等效果图谱的情况下,降低了重新压片的次数,减少了清洗液体池和窗片的时间,避免了窗片破裂和损耗的可能性,而且此方法成本很低。
四分析测试
1 实验条件测定方式:
积分球漫反射,扫描范围:4 050~7 500cm-1,分辨率:4cm-1,扫描次数:64次,光谱处理:21点平滑后求一阶导数、25点平滑后求二阶导数,用OPUS/INDENT定性分析软件,进行聚类分析。
2 考察影响实验因素
2.1 考察粒度大小
取经60℃干燥的样品,粉碎,分别过28、40、80、100、200目筛,取约2g 样品在上述条件下进行测定,取光谱重现性好样品进行测定。
2.2 考察装样量差异
分别取约0.25、0.50、1.0、1.5、2.0、4.0g过筛的样品进行测定。
观察光谱变化情况,筛选出合适的装样量。
2.3 考察分辨率
分辨率分别设置为2、4、8、16、32、64cm-1时,取样品进行测定,根据光谱信息丰富,噪音的影响不大的要求来确定条件。
2.4 考察扫描次数
扫描次数分别设置为2、4、8、16、32、64、100、150次时,取样品进行测定,筛选出噪音影响较小者。
2.5 考察重复测定次数
为了减小重复装样时的误差,一般需测定多次,求平均光谱。
取样品,重复测定8次,选择平均光谱的结果较好者。
2.6 考察谱区范围
选择近红外仪的扫描波长范围为3 700~12 000cm-1,通过全谱区扫描,确定谱区进行数据处理。
2.7 考察光谱预处理
用NIR原谱及原谱经一、二阶导数预处理后到的一、二阶导数光谱分别用于鉴别,筛选鉴别效果最佳的条件。
五结果分析
3.1 可以进行聚类分析,找出具有共性的特征。
3.2 从峰位、峰强、峰形加以直观鉴别。