近红外光谱仪的性能指标

合集下载

近红外光谱仪特性及在牛肉制品检测中的应用

近红外光谱仪特性及在牛肉制品检测中的应用
r r s ntd. a ep e e e Ke y wor . ne nfa e pecr s opy; be f q lt ds r a i rr d s to c e ua iy; nu re s i tum e a al i ; qu iy an s f t ti nt ; nsr nt lan ys s alt d a e y
根 误 差 (o t a q aeerro air t n,R EC 、 ro ns u r ro fc l ai me b o MS )
倾 测 均方 根 误差 (o tme n q a ee r ro r dci n r o a s u r ro fp e it , o
有相 同基 团 但 结构 略 有 差别 的有 机物 , 常常 会 出现 谱 带
的 重 合 , 疑 给 分 析 带 来 了 困 难 。 为 了 解 决 这 样 的 问 无 题 ,在 未 知 样 品 分 析 前 ,用 一 组 样 品 作 为 校 正 集 , 测 定校 正 集 的 每一 个 样 品 的光 谱 吸 收和 性 质 组成 ,建 立 校
色 光 。
多 元 线 性 校 正 和 多 元 非 线 性 校 正 。 其 中 , 多 元 线 性 校
【 以最 小 二乘 法 为代 表 ,非 线 性校 以人 工神 经 网络 为 l 代 表 。模 建 立 以后 , 对 模 型 的 性 能 评 估 是 建 立 测 量 模 的甭 要 步骤 , 日前 通用 的评 价指 标 有 交互 验 证 均 方
b e r d c s M o e v r i e tr s r o a e t o e o t e mi c n l g e . i al ,t e eo me t r s e t e f o u t. p r o e ,t f au e ec mp d wi t s f h r i l t h o o is F n y i d v l p n o p c s s a r hh o s r a e l s p

医用电气设备 第2-71部分:功能性近红外光谱(NIRS)设备的基本安全和基本性能专用要求说明书

医用电气设备 第2-71部分:功能性近红外光谱(NIRS)设备的基本安全和基本性能专用要求说明书

ICS11.040.55CCS C30中华人民共和国国家标准GB 9706.271—202×医用电气设备第2-71部分:功能性近红外光谱(NIRS)设备的基本安全和基本性能专用要求Medical electrical equipment –Part 2-71: Particular requirements for the basic safety and essential performance of functional near-infrared spectroscopy (NIRS)equipment(IEC 80601-2-71:2015,MOD)(征求意见稿)在提交反馈意见时,请将您知道的相关专利连同支持性文件一并附上。

××××- ××- ××发布××××- ××- ××实施国家市场监督管理总局发布国家标准化管理委员会目录前言 (II)引言 (IV)201.1 范围、目的和相关标准 (1)201.2 规范性引用文件 (2)201.3 术语和定义 (2)201.4 通用要求 (5)201.5 ME设备试验的通用要求 (5)201.6 ME设备和ME系统的分类 (5)201.7 ME设备标识、标记和文件 (5)201.8 ME设备对电击危险的防护 (5)201.9 ME设备和ME系统对机械危险的防护 (5)201.10 对不需要的或过量的辐射危险(源)的防护 (6)201.11 对超温和其他危险(源)的防护 (6)201.12 控制器和仪表的准确性和危险输出的防护 (6)201.13 ME设备危险情况和故障情况 (13)201.14 可编程医用电气系统(PEMS) (13)201.15 ME设备的结构 (13)201.16 ME系统 (13)201.17 ME设备和ME系统的电磁兼容性 (13)附录 (14)附录C (15)附录AA (资料性)专用指南和原理说明 (16)附录BB (规范性)应用功能性近红外光谱成像法估ME设备性能 (18)附录CC (资料性)引用基本原则 (26)前言本文件按照GB/T 1.1-2020《标准化工作导则第1部分:标准化文件的结构和起草规则》的规定起草。

近红外分光光度法指导原则

近红外分光光度法指导原则

近红外分光光度法指导原则一、背景介绍近红外(Near Infrared,简称NIR)光是指介于可见光与中红外之间的电磁波,谱区范围是780~2526nm(12820~3959cm-1),通常又将此波长范围划分为近红外短波区(780~1100 nm)和近红外长波区(1100~2526 nm)。

与中红外相比,该区域主要是O-H,N-H,C-H,S-H等含氢基团振动光谱的倍频及合频汲取,谱带宽,重叠较严峻,而且汲取信号弱,信息解析简单,所以尽管该谱区被发觉较早,但分析价值始终未能得到足够的重视。

近年来,由于计算机与化学统计学软件的进展,特殊是化学计量学的深化讨论和广发应用,使近红外成为进展最快、最引人注目的光谱技术。

与传统的分析方法比较,近红外光谱分析技术拥有很多独到之处。

但和其它析方法一样,近红外分析方法也存在不足之处。

首先,它是一种间接的分析技术,需要通过收集大量具有代表性的标准样品,通过严格细致的化学分析测出必要的数据,再通过计算机建立数学模型,才能猜测未知样品的结果。

而模型的建立需耗用大量的人力、物力和财力;其次,由于NIR谱区为分子倍频与合频的振动光谱,信号弱,谱峰重叠严峻,所以目前还仅能用于常量分析,被测定组分的量一般应大于样品重量的0.1%;此外,在进行近红外光谱分析时,应考虑样品的特征、分析试验的设计及数据处理等多方面的问题,才能取得正确的分析结果,建立牢靠的校正模型是利用近红外实现胜利分析的关键。

二、原理及分析方法由于一张近红外光谱既可以给出活性成分、辅料的化学结构信息、还可以给出活性成分的工艺信息(如晶型、旋光度、密度等)以及制剂的工艺特征信息(如制粒的大小、硬度等)和部分包装材料的结构信息,所以利用近红外光谱,我们既可以做定性分析也可以做定量分析,但与常规的分析方法不同,近红外光谱技术不是通过观看供试品或测量供试品谱图参数直接进行定性或定量分析,而是首先通过测定样品校正集的光谱、组成或性质数据(组成或性质数据需通过其他认可的标准方法测定),采纳合适的化学计量学方法建立校正模型,再利用建立的校正模型与未知样品进行比较,从而实现定性或定量分析。

近红外分光光度法

近红外分光光度法

近红外分光光度法指导原则一、概述近红外(Near Infrared,简称NIR)光是指介于可见光与中红外之间的电磁波,谱区范围是780~2526 nm (12820~3959cm-1),通常又将此波长范围划分为近红外短波区(780~1100 nm)和近红外长波区(1100~2526 nm)。

与中红外相比,该区域主要是O-H、N-H、C-H和S-H等含氢基团振动光谱的倍频及合频吸收,谱带宽,重叠较严重,而且吸收信号弱,信息解析复杂,所以尽管该谱区被发现较早,但其分析价值一直未能得到足够的重视。

近年来,由于计算机与化学计量学软件的发展,特别是化学计量学的深入研究和广发应用,使NIR光谱分析技术成为发展最快、最引人注目的光谱分析技术。

与传统的分析方法比较,NIR光谱分析技术拥有分析速度快、多指标同时测定、样品无损等许多独到之处。

与其它分析方法一样,NIR光谱分析方法也存在不足之处。

首先,它是一种间接的分析技术,需要通过收集大量具有代表性的标准样品,通过已有的标准分析方法测出准确的参考数据,再运用化学计量学软件建立校正模型,才能预测未知样品的相关信息。

建立可靠的校正模型是NIR光谱分析技术实现成功分析的关键,而模型的建立需耗用大量的人力、物力和财力。

其次,由于NIR 谱区为分子倍频与合频的振动光谱,信号弱,谱峰重叠严重,所以目前还仅能用于常量分析,被测定组分的含量一般应大于0.1%。

此外,在进行NIR光谱分析时,应考虑样品的特征、分析实验的设计及数据处理等多方面的问题,才能获得准确的分析结果,这就需要在样品NIR光谱扫描条件的选择、标准分析方法的建立以及建模方法的优化等方面进行研究。

二、仪器相关背景(一)仪器NIR光谱仪的记录波长范围为780~2526 nm (12820~3959cm-1)。

NIR光谱仪按样品测定方式分为透射和反射两种类型。

仪器由光源、单色器(或干涉仪)、检测器、数据处理系统等组成。

常用的单色器有棱镜型、光栅型、声光可调型和傅立叶变换型。

药典-近红外分光光度法指导原则

药典-近红外分光光度法指导原则

药典-近红外分光光度法指导原则近红外分光光度法系通过测定被测物质的近红外谱区(波长范围约在780~2500nm,按波数计约为12820~4000cm-1)的特征光谱并利用适宜的化学计量学方法提取相关信息后,对被测物质进行定性、定量分析的一种分析技术。

近红外光谱主要由C-H、N-H、O-H和S-H等基团基频振动的倍频和合频组成,由于其吸收强度远低于中红外光谱(4000~400cm-1)的基频振动,而且吸收峰重叠严重,因此不能采用常规的红外光谱分析方法对被测物质进行定性、定量分析,而必须对测得近红外光谱数据经验证的数学方法处理后,才能对被测物质进行定性、定量分析。

一、应用范围近红外分光光度法具有快速、准确、对样品无破坏的检测特性,不仅可用于对“离线”供试品的检验,还能直接对“在线”样品进行检测。

可广泛地应用于药品的理化分析。

(一)化学分析1、定性分析可对药品的活性成分、辅料、制剂、中间产物、化学原料以及包装材料进行鉴别。

2、定量分析可定量测定药品的活性成分和辅料;测定某些脂肪类化合物的化学值,如羟值、碘值和酸值等,水分的测定,羟基化程度测定以及溶剂量的控制。

3、过程控制(二)物理分析1、晶型和结晶性、多晶性、假多晶型性和粒度测定。

2、溶出行为、崩解模式、硬度测定。

3、薄膜包衣性质检测。

4、制剂过程控制,如对混合和制粒过程的监测。

二、仪器和仪器性能指标的控制(一)仪器近红外分光光度计的记录波长范围为780~2500nm(按波数计为12820~4000cm-1)。

所有近红外光谱的测定分为透射和反射两种类型。

近红外分光光度计由光源、单色器(或干涉仪)、检测器、数据处理和评价系统等组成。

常用的单色器有声光可调型、光栅型和棱镜型。

高强度的光源石英壳钨灯,如石英卤素钨灯较为常用,钨灯光源较为稳定。

检测器常用的材料有硅、硫化铅、砷化铟、铟镓砷、汞镉碲和氘代硫酸三甘肽。

常规的普通样品池、光纤探头、液体透射池、积分球是一些常用的采样装置。

「近红外光谱仪的性能指标」

「近红外光谱仪的性能指标」

「近红外光谱仪的性能指标」近红外光谱仪是一种用于分析样品中化学成分和结构的重要仪器。

它利用近红外区的电磁波与样品相互作用,通过分析吸收、散射或透射的光波,获得样品的光谱信息。

近红外光谱仪的性能指标对于其使用效果和应用范围起到至关重要的作用。

本文将对近红外光谱仪的几个主要性能指标进行分析。

第一个性能指标是光谱分辨率。

在光谱仪中,光通过光栅或其他色散元件分散后,被检测器接收。

光谱分辨率是光谱仪能够分辨出两条光谱线之间最小的波长差。

分辨率越高,就能够分辨出更细微的差异。

在近红外光谱分析中,许多化学物质的结构和组成变化可能非常微小,因此需要高分辨率的光谱仪才能够准确分析。

第二个性能指标是光谱范围。

光谱范围是光谱仪能够测量的光的波长范围。

多数近红外光谱仪的波长范围为800-2500纳米。

这个波长范围非常适合分析各种化学物质,在近红外区域,很多化学键的振动具有特异性,因此不同结构的化合物会在该区域显示不同的红外光谱特征。

光谱范围越宽,就能够测量到更多的光谱信息。

第三个性能指标是信噪比。

信噪比是测量仪器的信号强度和背景噪声水平之比。

在近红外光谱测量中,样品发出的信号往往非常微弱,需要通过放大和处理才能得到可靠的光谱信息。

因此,光谱仪需要有较高的信噪比,以保证测量结果的准确性和重复性。

信噪比越高,测量结果越可靠。

第四个性能指标是采样速度。

近红外光谱仪的采样速度是指仪器每秒钟能够进行的光谱测量次数。

采样速度的快慢决定了仪器在特定时间内可以测量多少个样品。

对于一些需要高通量分析的应用,如制药和农业领域中的质量控制,较高的采样速度是非常重要的。

最后一个性能指标是仪器的稳定性和重复性。

仪器的稳定性指的是仪器对温度和湿度变化等环境因素的敏感程度。

稳定性越高,仪器在不同的环境条件下测量结果的差异越小。

重复性是指在相同条件下,仪器对同一样品进行多次测量所得结果的一致性。

稳定性和重复性都对于仪器的可靠性和精确性至关重要。

总结起来,近红外光谱仪的性能指标对于其在化学分析中的应用起到重要作用。

近红外光谱标准

近红外光谱标准

近红外光谱标准近红外光谱技术作为一种重要的分析技术,在多个领域得到了广泛的应用。

为了规范近红外光谱技术的使用和推广,制定了一系列近红外光谱标准。

本文将介绍近红外光谱标准的主要内容,包括近红外光谱仪器标准、近红外光谱分析方法标准、近红外光谱样品制备标准、近红外光谱数据解析标准、近红外光谱应用领域标准、近红外光谱质量评估标准、近红外光谱安全操作标准以及近红外光谱数据处理标准。

近红外光谱仪器标准近红外光谱仪器是进行近红外光谱分析的基础设备,因此其性能和质量对分析结果有着至关重要的影响。

近红外光谱仪器标准主要包括仪器的基本参数、性能指标、稳定性、可靠性等方面的规定。

例如,仪器的主要技术指标应符合相应的测试方法及技术要求,仪器的稳定性应满足测试要求,仪器的操作应简单方便,仪器的安全性能应符合相关规定等。

近红外光谱分析方法标准近红外光谱分析方法标准是针对具体分析对象和方法制定的标准。

这些标准通常包括样品的前处理方法、光谱采集条件、谱图解析方法等方面的规定。

例如,样品的前处理应遵循一定的流程和规范,以保证样品的代表性和均匀性;光谱采集时应选择合适的波长范围和扫描次数,以保证光谱的质量和可靠性;谱图解析时应采用合适的数学方法和模型,以获得准确的分析结果。

近红外光谱样品制备标准近红外光谱样品制备是进行近红外光谱分析的重要环节之一。

样品制备不当可能会影响光谱的质量和分析结果的准确性。

近红外光谱样品制备标准主要包括样品的制备方法、样品制备过程中的质量控制等方面的规定。

例如,样品制备时应保证样品的代表性和均匀性,样品制备过程中应避免外部因素对样品的影响等。

近红外光谱数据解析标准近红外光谱数据解析是将采集的光谱数据转化为有用的分析结果的过程。

数据解析过程中涉及到数学建模、模型验证等方面,因此需要制定相应的标准来规范这一过程。

近红外光谱数据解析标准主要包括模型建立的方法、模型验证的方法、模型评价等方面的规定。

例如,模型建立时应选择合适的波长范围和变量,模型验证时应采用交叉验证等方法,模型评价时应根据实际应用情况进行评估等。

近红外光谱

近红外光谱

子振动的合频与倍频。近红外光谱包含了丰富的含氢基团的信息(C-H、O-H、 酚类和醇类的一级倍频在 7092cm-1、二级倍频在10000cm-1;N-H键的伸缩 振动一级倍频在 6666cm-1。因此近红外光谱法常被用来测定含有含氢
N-H、S-H),如水分子组合频在 5155cm-1、伸缩振动一级倍频在6944cm-1;
可定量测定活性成分和辅料;测定 某些脂肪类化合物的化学值(羟值、 碘值、酸值等);水分测定;羟基 化程度测定;溶剂量控制等。
近红外光谱的应用 在药物分析方面的应用
分析方法
晶型和结晶性、多晶性、假多晶性和粒度测定
物理分析
溶出行为、崩解模式、硬度测定 薄膜包衣性质检测 制剂过程控制,如对混合制粒过程的监测
药物波谱解析
近红外光谱及其应用
小组成员:王磊 张丽莎 葛婷 周碧辉 申基琛 骆潇婧
目录
基 仪 器 介 绍 分
Contents










目录

础 仪 器 介 绍 分 析 方 法
Contents






人 文 背 景
基础知识
Herschel在 1800 年进行 太阳光谱可见区红外部分 能量测量中发现近红外光 谱区,为了纪念他的历史 性发现,人们将近红外谱
基团的有机物的含量。
200 nm
200nm
12820 cm-1 780 nm
9090 cm-1 1100 nm
3959 cm-1 2526 nm
25000 nm
紫外可见光谱区域
近红外光谱区域
近红外短波区域 近红外长波区域
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近红外光谱仪器的主要性能指标
北京英贤仪器有限公司销售工程师王燕岭
在近红外光谱仪器的选型或使用过程中,考虑仪器的哪些指标来满足分析的使用要求,这是分析工作者需要考虑的问题。

对一台近红外光谱仪器进行评价时,必须要了解仪器的主要性能指标,下面就简单做一下介绍。

1、仪器的波长范围
对任何一台特定的近红外光谱仪器,都有其有效的光谱范围,光谱范围主要取决于仪器的光路设计、检测器的类型以及光源。

近红外光谱仪器的波长范围通常分两段,700~1100nm的短波近红外光谱区域和1100~2500nm的长波近红外光谱区域。

2、光谱的分辨率
光谱的分辨率主要取决于光谱仪器的分光系统,对用多通道检测器的仪器,还与仪器的像素有关。

分光系统的光谱带宽越窄,其分辨率越高,对光栅分光仪器而言,分辨率的大小还与狭缝的设计有关。

仪器的分辨率能否满足要求,要看仪器的分析对象,即分辨率的大小能否满足样品信息的提取要求。

有些化合物的结构特征比较接近,要得到准确的分析结果,就要对仪器的分辨率提出较高的要求,例如二甲苯异构体的分析,一般要求仪器的分辨率好于1nm。

[1]
3、波长准确性
光谱仪器波长准确性是指仪器测定标准物质某一谱峰的波长与该谱峰的标定波长之差。

波长的准确性对保证近红外光谱仪器间的模型传递非常重要。

为了保证仪器间校正模型的有效传递,波长的准确性在短波近红外范围要求好于0.5nm,长波近红外范围好于1.5nm。

[1]
4、波长重现性
波长的重现性指对样品进行多次扫描,谱峰位置间的差异,通常用多次测量某一谱峰位置所得波长或波数的标准偏差表示(傅立叶变换的近红外光谱仪器习惯用波数cm-1表示)。

波长重现性是体现仪器稳定性的一个重要指标,对校正模型的建立和模型的传递均有较大的影响,同样也会影响最终分析结果的准确性。

一般仪器波长的重现性应好于0.1nm。

[1]
5、吸光度准确性
吸光度准确性是指仪器对某标准物质进行透射或漫反射测量,测量的吸光度值与该物质标定值之差。

对那些直接用吸光度值进行定量的近红外方法,吸光度的准确性直接影响测定结果的准确性。

6、吸光度重现性
吸光度重现性指在同一背景下对同一样品进行多次扫描,各扫描点下不同次测量吸光度之间的差异。

通常用多次测量某一谱峰位置所得吸光度的标准偏差表示。

吸光度重现性对近红外检测来说是一个很重要的指标,它直接影响模型建立的效果和测量的准确性。

一般吸光度重现性应在0.001~0.0004A之间。

7、吸光度噪音
吸光度噪音也称光谱的稳定性,是指在确定的波长范围内对样品进行多次扫描,得到光谱的均方差。

吸光度噪音是体现仪器稳定性的重要指标。

将样品信号强度与吸光度噪音相比可计算出信噪比。

8、吸光度范围
吸光度范围也称光谱仪的动态范围,是指仪器测定可用的最高吸光度与最低
能检测到的吸光度之比。

吸光度范围越大,可用于检测样品的线性范围也越大。

9、基线稳定性
基线稳定性是指仪器相对于参比扫描所得基线的平整性,平整性可用基线漂移的大小来衡量。

基线的稳定性对我们获得稳定的光谱有直接的影响。

10、杂散光
杂散光定义为除要求的分析光外其它到达样品和检测器的光量总和,是导致仪器测量出现非线性的主要原因,特别对光栅型仪器的设计,杂散光的控制非常重要。

杂散光对仪器的噪音、基线及光谱的稳定性均有影响。

一般要求杂散光小于透过率的0.1%。

[1]
11、扫描速度
扫描速度是指在一定的波长范围内完成1次扫描所需要的时间。

不同设计方式的仪器完成1次扫描所需的时间有很大的差别。

例如,电荷耦合器件多通道近红外光谱仪器完成1次扫描只需20ms,速度很快;一般傅立叶变换仪器的扫描速度在1次/s左右;传统的光栅扫描型仪器的扫描速度相对较慢,目前较快的扫描速度也不过2次/s左右。

[1]
12、数据采样间隔
采样间隔是指连续记录的两个光谱信号间的波长差。

很显然,间隔越小,样品信息越丰富,但光谱存储空间也越大;间隔过大则可能丢失样品信息,比较合适的数据采样间隔设计应当小于仪器的分辨率。

13、测样方式
测样方式在此指仪器可提供的样品光谱采集形式。

有些仪器能提供透射、漫反射、光纤测量等多种光谱采集形式。

14、软件功能
软件是现代近红外光谱仪器的重要组成部分。

软件一般由光谱采集软件和光谱化学计量学处理软件两部分构成。

前者不同厂家的仪器没有很大的区别,而后者在软件功能设计和内容上则差别很大。

光谱化学计量学处理软件一般由谱图的预处理、定性或定量校正模型的建立和未知样品的预测三大部分组成,软件功能的评价要看软件的内容能否满足实际工作的需要。

参考文献
1.陆婉珍,袁洪福,徐广通,强冬梅.现代近红外光谱分析技术.38~40。

相关文档
最新文档