金属材料的力学性能

合集下载

金属材料的力学性能

金属材料的力学性能
2、布氏硬度值 用球面压痕单位面积上所承受有平均压力 表达。 如:120HBS 500HBW 600HBS1/30/20 3、优缺陷
(1)测量值较精确,反复性好,可测组织不均匀材料(铸铁)(2) 可测旳硬度值不高(3)不测试成品与薄件(4)测量费时,效率低
4、测量范围
用于测量调质钢、铸铁、非金属材料及有色金属材料等.
6
第一章 金属旳力学性能
引言:
第二节 硬度
1、定义:指材料局部体积内抵抗弹性、塑性变形、压 痕和划痕旳能力。它是衡量材料软硬程度旳指标,其物 理含义与试验措施有关。
2、硬度旳测试措施 (1)布氏硬度 (2)洛氏硬度 (3)维氏硬度
7
§1-2 硬度
一、布氏硬度
1、布氏硬度试验(布氏硬度计)
原理:用一定直径旳球体(淬火钢球或硬质合金球)以相应旳试验力 压入待测材料表面,保持要求时间并到达稳定状态后卸除试验力,测量 材料表面压痕直径,以计算硬度旳一种压痕硬度试验措施。
布氏硬度计
返回
16
洛氏硬度计
返回
17
维氏硬度计
返回
18
布洛维氏硬度计
19
8
§1-2 硬度
二、洛氏硬度
1、洛氏硬度试验(洛氏硬度计)
原理: 用金刚石圆锥或淬火钢球,在试验力旳作用下压入试样表面, 经要求时间后卸除试验力,用测量旳残余压痕深度增量来计算硬度旳一
种压痕硬度试验。
2、洛氏硬度值 出。如:50HRC 3、优缺陷
用测量旳残余压痕深度表达。可从表盘上直接读
(1)试验简朴、以便、迅速(2)压痕小,可测成品、薄件(3)数据 不够精确,应测三点取平均值(4)不能测组织不均匀材料,如铸铁。
4、测量范围

金属材料的力学性能

金属材料的力学性能

(一)、布氏硬度
1、布氏硬度试验(布氏硬度计)
原理:用一定直径的球体(淬火钢球或硬质合金球)以相应的试验力压入待测 材料表面,保持规定时间并达到稳定状态后卸除试验力,测量材料表面压痕直径, 以计算硬度的一种压痕硬度试验方法。
2、布氏硬度值 用球面压痕单位面积上所承受有平均压力表示。 如: 120HBS 500HBW 600HBS1/30/20
它是设计和选材的主要依据之一,是工程技术上的主要强度。
二、刚度和弹性 由图1-2可测出材料的弹性模量,即可确定该材料的刚度和弹性。弹性模量
是指金属材料在弹性状态下的应力与应变的比值,即
在应力-应变曲线上,弹性模量就是试样在弹性变形阶段线段的斜率。它表 示了金属材料抵抗弹性变形的能力,工程上将材料抵抗弹性变形的能力称为刚 度。
金属材料的力学性能
材料的力学性能,是指材料在外力(载荷)作用下所表现出来的性能,或称机 械性能,包括强度、刚性、弹性、塑性、硬度及疲劳强度。
一、强度 金属材料抵抗塑性变形或断裂的能力称为强度。抵抗外力的能力越大,则强
度越强。 依据载荷的不同,可分为抗拉强度、抗压强度、抗弯强度、抗剪强度以及抗
扭强度等几种。
1、拉伸试样
Hale Waihona Puke 2、材料的拉伸曲线oe——弹性变形阶段:变形量与外加载荷成正比,当载荷去掉后试样变形 完全恢复。
es——屈服阶段:此阶段伴随着弹性变形,还发生了塑性变形,当去除载 荷后,试样部分形变恢复,还有一部分形变不能恢复,将这部分不能恢复的形 变称为塑性变形。s为屈服点。
sd——明显塑性变形阶段:该阶段中载荷不再增加或是微量增加,试样却 继续变形。
2、洛氏硬度值 用测量的残余压痕深度表示。可从表盘上直接读出。如: 50HRC

金属材料力学性能

金属材料力学性能

金属材料力学性能金属材料是工程领域中最常用的材料之一,其力学性能对于材料的应用具有至关重要的作用。

力学性能包括材料的强度、韧性、硬度、塑性等指标,这些指标直接影响着材料在工程中的使用效果。

本文将重点介绍金属材料的力学性能及其影响因素。

首先,我们来谈谈金属材料的强度。

材料的强度是指其抵抗外部力量破坏的能力,通常用抗拉强度、抗压强度、抗弯强度等指标来表示。

金属材料的强度受到晶格结构、晶粒大小、合金元素等因素的影响。

晶格结构的完整性和晶粒尺寸的大小都会影响金属材料的强度,而添加合金元素则可以改善金属材料的强度和硬度。

其次,韧性是金属材料力学性能中的另一个重要指标。

韧性是材料抵抗断裂的能力,也是材料在受到外力作用时能够发生塑性变形的能力。

金属材料的韧性受到晶粒大小、晶格结构、冷加工程度等因素的影响。

通常情况下,晶粒细小的金属材料具有较好的韧性,而经过适当的热处理和冷加工的材料也可以提高其韧性。

此外,硬度是金属材料力学性能中的另一个重要指标。

硬度是材料抵抗划伤和穿刺的能力,通常用洛氏硬度、巴氏硬度等指标来表示。

金属材料的硬度受到晶粒大小、晶格结构、合金元素等因素的影响。

晶粒细小的金属材料通常具有较高的硬度,而添加合金元素也可以提高金属材料的硬度。

最后,塑性是金属材料力学性能中的重要指标之一。

塑性是材料在受到外力作用时能够发生可逆形变的能力,通常用延伸率、收缩率等指标来表示。

金属材料的塑性受到晶格结构、晶粒大小、合金元素等因素的影响。

晶格结构完整、晶粒细小的金属材料通常具有较好的塑性,而添加合金元素也可以提高金属材料的塑性。

综上所述,金属材料的力学性能受到多种因素的影响,包括晶格结构、晶粒大小、合金元素等。

了解这些影响因素对于合理选择和应用金属材料具有重要意义,也有助于优化材料的力学性能。

希望本文的介绍能够对读者有所帮助,谢谢阅读!。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能使用性能⎪⎩⎪⎨⎧性)高温。

氧化性(热稳定化学性能:耐蚀性、抗密度、熔点等性、导热性、热膨胀、物理性能:电学性、磁、塑性、韧性、钢度等力学性能:强度、硬度工艺性能⎪⎪⎪⎩⎪⎪⎪⎨⎧切削加工焊接性压力加工(冲压性)铸造性可锻性金属材料的力学性能:金属材料在一定的温度条件和受外力作用下,抵抗变形、断裂的能力称材料的力学性能又称为机械性能。

主要有四大指标:1、 强度指标:抗拉强度b σ 屈服强度s σ:(疲劳强度、屈强比)2、塑性指标⎩⎨⎧断面收缩率伸长率(延伸率)δ 3、硬度指标⎪⎪⎩⎪⎪⎨⎧D HL HV HRC HB )里氏硬度()维氏硬度()洛氏硬度()布氏强度( 4、韧性指标⎩⎨⎧IC k k K A a 断裂韧度冲击韧性1、强度指标将规定尺寸的试棒在拉伸实验机上进行静拉伸实验,以测定该试件对外力载荷的抗力,可求强度指标和塑性指标。

(1)拉伸曲线图(2)应力应变图应力0A 外力=σ (单位面积所受力) 应变0L L ∆=ε (单位长度的变形量)对原材料、焊接工艺及焊接试板均有严格的标准进行规定。

对圆形拉伸试样分标准试样和比例试样,每种又分为长试样和短试样⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧===(短)(长)任意选用比例试样:短试样)长试样)标距标准试样:直径006000000065.53.11(5(1020A L A L d d L d L L d (3)拉伸试验分为四个阶段中碳钢 低碳钢(拉伸图) 变形量ΔL (应变ε)σ标距L 0①弹性变形阶段:变形量L ∆与外力(或应变和应力)成正比(即虎克定律)。

该阶段最高值:e ':P σ:称比例极限(即保持直线关系的最大负荷)。

e σ:弹性极限:我们把材料产生最大弹性变形时的应力称由于检测精度,国标规定以残余变形量为0.01%时的应力为弹性极限。

A F e e =σ 应力:单位面积上材料抵抗变形的力称为应力。

金属的力学性能有哪些

金属的力学性能有哪些

金属的力学性能有哪些金属材料的力学性能包括强度、屈服点、抗拉强度、延伸率、断面收缩率、硬度、冲击韧性等。

金属材料力学性能包括其中包括:弹性和刚度、强度、塑性、硬度、冲击韧度、断裂韧度及疲劳强度等,它们是衡量材料性能极其重要的指标。

1、强度:材料在外力(载荷)作用下,抵抗变形和断裂的能力。

材料单位面积受载荷称应力。

2、屈服点(6s):称屈服强度,指材料在拉抻过程中,材料所受应力达到某一临界值时,载荷不再增加变形却继续增加或产生0.2%L。

时应力值,单位用牛顿/毫米2(N/mm2)表示。

3、抗拉强度(6b)也叫强度极限指材料在拉断前承受最大应力值。

单位用牛顿/毫米2(N/mm2)表示。

如铝锂合金抗拉强度可达689.5MPa 4、延伸率(δ):材料在拉伸断裂后,总伸长与原始标距长度的百分比。

工程上常将δ≥5%的材料称为塑性材料,如常温静载的低碳钢、铝、铜等;而把δ≤5%的材料称为脆性材料,如常温静载下的铸铁、玻璃、陶瓷等。

5、断面收缩率(Ψ)材料在拉伸断裂后、断面最大缩小面积与原断面积百分比。

6、硬度:指材料抵抗其它更硬物压力其表面的能力,常用硬度按其范围测定分布氏硬度(HBS、HBW)和洛氏硬度(HRA、HRB、HRC)。

7、冲击韧性(Ak):材料抵抗冲击载荷的能力,单位为焦耳/厘米2(J/cm2)。

什么是金属材料金属材料是指具有光泽、延展性、容易导电、传热等性质的材料。

一般分为黑色金属和有色金属两种。

黑色金属包括铁、铬、锰等。

其中钢铁是基本的结构材料,称为“工业的骨骼”。

由于科学技术的进步,各种新型化学材料和新型非金属材料的广泛应用,使钢铁的代用品不断增多,对钢铁的需求量相对下降。

但迄今为止,钢铁在工业原材料构成中的主导地位还是难以取代的。

金属材料的力学性能指标

金属材料的力学性能指标

金属材料的力学性能指标金属材料是工程中常用的材料之一,其力学性能指标对于材料的选择和设计具有重要意义。

力学性能指标是评价金属材料力学性能的重要依据,主要包括强度、韧性、塑性、硬度等指标。

下面将对金属材料的力学性能指标进行详细介绍。

首先,强度是评价金属材料抵抗外部力量破坏能力的指标。

强度可以分为屈服强度、抗拉强度、抗压强度等。

其中,屈服强度是材料在受到外部力作用下开始产生塑性变形的应力值,抗拉强度是材料在拉伸状态下抵抗破坏的能力,抗压强度是材料在受到压缩力作用下抵抗破坏的能力。

强度指标直接影响着材料的承载能力和使用寿命。

其次,韧性是材料抵抗断裂的能力。

韧性指标包括冲击韧性、断裂韧性等。

冲击韧性是材料在受到冲击载荷作用下抵抗破坏的能力,断裂韧性是材料在受到静态载荷作用下抵抗破坏的能力。

韧性指标反映了材料在受到外部冲击或载荷作用下的抗破坏能力,对于金属材料的使用安全性具有重要意义。

再次,塑性是材料在受力作用下产生塑性变形的能力。

塑性指标包括伸长率、收缩率等。

伸长率是材料在拉伸破坏前的延展性能指标,收缩率是材料在受力破坏后的收缩性能指标。

塑性指标直接影响着金属材料的加工性能和成形性能,对于金属材料的加工工艺和成形工艺具有重要影响。

最后,硬度是材料抵抗划伤、压痕等表面破坏的能力。

硬度指标包括洛氏硬度、巴氏硬度等。

硬度指标反映了材料表面的硬度和耐磨性能,对于金属材料的耐磨性和使用寿命具有重要意义。

综上所述,金属材料的力学性能指标是评价材料性能的重要依据,强度、韧性、塑性、硬度等指标直接影响着材料的使用性能和工程应用。

在工程设计和材料选择中,需要根据具体的工程要求和使用环境,综合考虑各项力学性能指标,选择合适的金属材料,以确保工程的安全可靠性和经济性。

金属材料的力学性能

金属材料的力学性能

第1章工程材料1.1 金属材料的力学性能金属材料的性能包括使用性能和工艺性能。

使用性能是指金属材料在使用过程中应具备的性能,它包括力学性能(强度、塑性、硬度、冲击韧性、疲劳强度等)、物理性能(密度、熔点、导热性、导电性等)和化学性能(耐蚀性、抗氧化性等)。

工艺性能是金属材料从冶炼到成品的生产过程中,适应各种加工工艺(如:铸造、冷热压力加工、焊接、切削加工、热处理等)应具备的性能。

金属材料的力学性能是指金属材料在载荷作用时所表现的性能。

1.1.1 强度金属材料的强度、塑性一般可以通过金属拉伸试验来测定。

1.拉伸试样图1.1.1拉伸试样与拉伸曲线2.拉伸曲线拉伸曲线反映了材料在拉伸过程中的弹性变形、塑性变形和直到拉断时的力F时,拉伸曲线Op为一直线,即试样的伸长量与载荷学特性。

当载荷不超过p成正比地增加,如果卸除载荷,试样立即恢复到原来的尺寸,即试样处于弹性变形阶段。

载荷在Fp-Fe间,试样的伸长量与载荷已不再成正比关系,但若卸除载荷,试样仍然恢复到原来的尺寸,故仍处于弹性变形阶段。

当载荷超过Fe后,试样将进一步伸长,但此时若卸除载荷,弹性变形消失,而有一部分变形当载荷增加到Fs时,试样开始明显的塑性变形,在拉伸曲线上出现了水平的或锯齿形的线段,这种现象称为屈服。

当载荷继续增加到某一最大值Fb时,试样的局部截面缩小,产生了颈缩现象。

由于试样局部截面的逐渐减少,故载荷也逐渐降低,试样就被拉断。

3.强度强度是指金属材料在载荷作用下,抵抗塑性变形和断裂的能力。

(1) 弹性极限金属材料在载荷作用下产生弹性变形时所能承受的最大应力称为弹性极限,用符号σe 表示:(2) 屈服强度金属材料开始明显塑性变形时的最低应力称为屈服强度在拉伸试验中不出现明显的屈服现象,无法确定其屈服点。

所以国标中规定,以试样塑性变形量为试样标距长度的0.2%时,材料承受的应力称为“条件屈服强度”,并以符号σ0.2 表示。

1.1.2 塑性金属材料在载荷作用下,产生塑性变形而不破坏的能力称为塑性。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能
金属材料的力学性能是指材料在受到力的作用下的行为和性能。

常见的金属材料(如钢、铝、铜等)具有较高的强度和刚性,具有良好的塑性和延展性。

其主要的力学性能包括以下几个方面:
1. 强度:金属材料的强度是指材料在受到外力作用下抵抗变形和破坏的能力。

常见的强度指标有屈服强度、抗拉强度、抗压强度等。

2. 延展性:金属材料具有较好的延展性,即在受到外力作用下能够发生塑性变形。

延展性可以通过材料的延伸率、断面收缩率等指标来描述。

3. 韧性:金属材料的韧性是指材料能够在承受外力作用下吸收较大的能量而不发生断裂或破坏的能力。

韧性也可以通过断裂韧性、冲击韧性等指标来描述。

4. 硬度:金属材料的硬度是指材料抵抗局部变形和外界划
痕的能力。

硬度可以通过洛氏硬度、布氏硬度等进行测量。

5. 弹性模量:金属材料的弹性模量是指材料在受到外力后,能够恢复到原来形状的能力。

弹性模量可以描述材料的刚
度和变形的程度。

6. 疲劳性能:金属材料的疲劳性能是指材料在受到交替或
重复载荷下的疲劳寿命和抗疲劳性能。

疲劳性能可以通过
疲劳寿命、疲劳极限等指标来描述。

以上是金属材料的一些常见力学性能参数,不同的金属材
料在这些性能方面有所差异。

这些性能参数的好坏直接决
定了金属材料在工程实践中的应用范围和性能优势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计的依据。
精选课件
27
❖ ReL 和Rr 常作为零件选材和设计的依据。
❖ 传统的强度设计方法,对韧性材料,以屈服
强度为标准,规定许用应力[σ]= ReL /n,
安全系数n一般取2或更大。
精选课件
28
3.抗拉强度
材料在断裂前所能承受的最大应力,用符号Rm表 示。
计算公式
Rm=
Fb S0
精选课件
29
精选课件
19
❖ 材料强度的大小通常用单位面积上所承受 的力来表示,其单位为N/m2(Pa),但Pa 这个单位太小,所以实际工程中常用MPa (MPa=106Pa)作为强度的单位。
❖ 一般钢材的屈服强度在200~2000MPa 之间,如建造2008年北京奥运会主体育 场“鸟巢”外部钢结构的Q460E钢,其屈 服强度为460MPa。
式中:F0.2-残余延伸率达0.2%时的载荷 (N);
S0-试样原始横截面积(mm2)。
精选课件
25
R = r0.2
F0.2 S0
F
F0.2
0
0.2%L0
ΔL
精选课件
26
❖ 工程上各种构件或机器零件工作时均不允许
发生过量塑性变形,因此屈服强度ReL和规定 残余延伸强度Rr是工程技术上重要的力学性 能指标之一,也是大多数机械零件选材和设
❖ 在拉伸曲线上,与上、下屈服点相对应的应
力称为上、下屈服强度,分别用ReH和ReL表 示。ReH和ReL的计算公式如下:
R eH
F eH S0
R eL
F eL S精选课件0
22
精选课件
23
(3) 规定残余延伸强度
❖ 对于高碳淬火钢、铸铁等材料,在拉伸试验 中没有明显的屈服现象,无法确定其屈服强 度。
精选课件
2
精选课件
3
❖ 材料在外力的作用下将发生形状和尺寸变化,称 为变形。
❖ 外力去处后能够恢复的变形称为弹性变形。 ❖ 外力去处后不能恢复的变形称为塑性变形。
精选课件
4
力学性能
❖材料在力的作用下,诸如不同载荷所造成 的弹性变形、塑性变形、断裂(脆性断裂、 韧性断裂、疲劳断裂等)以及金属抵抗变 形和断裂能力的衡量指标。
精选课件
20
2.屈服强度
(1) 屈服现象
❖ 在金属拉伸试验过程中,
当应力超过弹性极限后,
变形增加较快,此时除
了弹性变形外,还产生
部分塑性变形。当外力
增加到一定数值时突然
下降,随后,在外力不
增加或上下波动情况下,
试样继续伸长变形,在
力-伸长曲线出现一个
波动的小平台,这便是
屈服现象。
精选课件
21
(2)屈服强度
第一章 金属材料的力学性能
精选课件
1
概述
❖ 使用性能:材料在使用过程中所表现的性能。包括力学性能、 物理性能和化学性能。
❖ 工艺性能:材料在加工过程中所表现的性能。包括铸造、锻 压、焊接、热处理和切削性能等。
❖ 金属材料的力学性能是指在承受各种外加载荷(拉伸、压缩、 弯曲、扭转、冲击、交变应力等)时,对变形与断裂的抵抗 能力及发生变形的能力。
ΔL
15
应力 = P/F0 应变 = (l-l0)/l0
精选课件
16
二、强度
1.弹性极限σe
弹性极限是指在产生完全弹性变形时材料所能承受的最 大应力,即:
e
Fe Ao
式中Fe——试样完全弹性变形时所能承受的最大载荷,N ; Ao——试样原始截面积,mm2。
精选课件
17
在实际工程应用中,在最大许用应力条件下是 否产生或产生多大微量塑性变形是重要的,具有实 际意义。
精选课件
18
❖ 强度是指金属材料抵抗塑性变形和断裂的能力,是 工程技术上重要的力学性能指标。
❖ 按照载荷的性质,材料强度有静强度、疲劳强度等; 按照环境条件,材料强度有常温强度、高温强度等, 高温强度又包括蠕变极限和持久强度。
❖ 除了上述材料强度外,还有机械零件和构件的结构 强度。
❖ 工程上常用的强度指标有强度指标有屈服强度、规 定残余延伸强度、抗拉强度等。
❖ 抗拉强度Rm的物理意义是塑性材料抵抗大量均匀塑 性变形的能力。
❖ 铸铁等脆性材料拉伸过程中一般不出现缩颈现象, 抗拉强度就是材料的断裂强度。
❖ 断裂是零件最严重的失效形式,所以,抗拉强度也 是机械工程设计和选材的主要指标,特别是对脆性 材料来讲。
精选课件
30
精选课件
31
4.强度的意义
❖ 强度是指金属材料抵抗塑性变形和断裂的能
❖ 国标GB228-2002规定,一般规定以试样达
到一定残余伸长率对应的应力作为材料的屈
服强度,称为规定残余延伸强度,通常记作
Rr。例如Rr0.2表示残余伸长率为0.2%时的
应力。
精选课件
24
❖ 例如Rr0.2 表示规定残余延伸率为0.2%时的应力。 其计算公式为:
Rr0.2=F0.2 / S0 (N/ mm2)
力,一般钢材的屈服强度在200~1000MPa
之间。
❖ 强度越高,表明材料在工作时越可以承受较 高的载荷。当载荷一定时,选用高强度的材 料,可以减小构件或零件的尺寸,从而减小 其自重。
❖ 因此,提高材料的强度是材料科学中的重要
课题,称之为材料的强化。
精选课件
32
三、塑性
(一) 定义 金属材料断裂前发生永久变形的能力。
弹性变形阶段 屈服阶段 强化阶段 颈缩现象
上一页 下精一选页课件回主页 返 回
12
(a)试样 (b)伸长 (精c选)产课件生缩颈 (d)断裂
13
拉 伸 试 样 的 颈 缩 现 象
精选课件
14
3. 脆性材料的拉伸曲线(与低碳钢试样相对比)
F
0
脆性材料在断裂前没有明显的屈服现象。
上一页 下精一选页课件回主页 返 回
(GB/T228-2002)
精选课件
7
1. 拉伸试样(GB6397-86)
长试样:L0=10d0 短试样:L0=5d0
上一页 下精一选页课件回主页 返 回
8
万能材料试验机
a) WE系列液压式 b) WDW系列电子式
精选课件9精Fra bibliotek课件10
精选课件
11
2. 力-伸长曲线 拉伸试验中得出的拉伸力与伸长量的关系曲线。
❖ 常用的力学性能有:强度、刚度、弹性、 塑性、硬度、冲击韧性及疲劳极限等。
精选课件
5
强度与塑性
❖ 强度是指金属材料在静载荷作用下,抵抗塑性 变形和断裂的能力。
❖ 塑性是指金属材料在静载荷作用下产生塑性变 形而不致引起破坏的能力。
❖ 金属材料的强度和塑性的判据可通过拉伸试验 测定。
精选课件
6
一、拉伸实验
(二)衡量指标 伸长率:试样拉断后,标距的伸长与原始标距的百分比。
断面收缩率:试样拉断后,颈缩处的横截面积的缩减量与原 始横截面积的百分比。
相关文档
最新文档