大学物理课后习题答案(第四章) 北京邮电大学出版社

合集下载

大学物理第六版上册北京邮电大学出版课后答案详解精选全文完整版

大学物理第六版上册北京邮电大学出版课后答案详解精选全文完整版

可编辑修改精选全文完整版大学物理第六版上册北京邮电大学出版课后答案详解1、行驶的汽车关闭发动机后还能行驶一段距离是因为汽车受到惯性力作用[判断题] *对错(正确答案)答案解析:汽车具有惯性2、用如图所示的装置做“探究小车速度随时间变化的规律”实验:1.小车从靠近定滑轮处释放.[判断题] *对错(正确答案)3、马德堡半球实验测出了大气压,其大小等于760mm高水银柱产生的压强[判断题]对错(正确答案)答案解析:托里拆利实验最早测出了大气压强4、11.小敏学习密度后,了解到人体的密度跟水的密度差不多,从而她估测一个中学生的体积约为()[单选题] *A.50 m3B.50 dm3(正确答案)C.50 cm3D.500 cm35、9.在某原子结构模型示意图中,a、b、c是构成该原子的三种不同粒子,能得出的结()[单选题] *A.a和c数量不相等B.b决定原子种类C.质量集中在c上D.a和c之间存在吸引的力(正确答案)6、4.静止在水平地面上的物体受到向上的弹力是因为地面发生了形变.[判断题] *对(正确答案)错7、下列有关力做功的说法中正确的是()[单选题]A.用水平力推着购物车前进,推车的力做了功(正确答案)B.把水桶从地面上提起来,提水桶的力没有做功C.书静止在水平桌面上,书受到的支持力做了功D.挂钩上的书包静止时,书包受到的拉力做了功8、1.与头发摩擦过的塑料尺能吸引碎纸屑。

下列与此现象所反映的原理相同的是()[单选题] *A.行驶的汽车窗帘被吸出去B.挤压后的吸盘吸在光滑的墙上C.用干燥的双手搓开的塑料袋会吸在手上(正确答案)D.两个表面光滑的铅块挤压后吸在一起9、下列措施中,能使蒸发减慢的是()[单选题]A.把盛有酒精的瓶口盖严(正确答案)B.把湿衣服晾在通风向阳处C.用电吹风给湿头发吹风D.将地面上的积水向周围扫开10、停放在水平地面上的汽车对地面的压力和地面对车的支持力是平衡力[判断题] *对错(正确答案)答案解析:相互作用力11、52.“凿壁偷光”原指凿穿墙壁,让邻舍的烛光透过来,后用来形容家贫而勤奋读书。

大学物理第二版答案(北京邮电大学出版社)

大学物理第二版答案(北京邮电大学出版社)

习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t xtt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααxytg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V(4) 质点的速度与加速度分别为i t Va j i tr V8d d ,28d d ==+==故t =1s 时的速度和加速度分别为 2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯ 即该星云是101009.2⨯年前和我们银河系分离的. 1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -= 代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---= 所以184.1)184.1(8.92111)(2121121120--⨯⨯+=∆-∆-+=t t t t g h v m /s 2.17=同理.122.1)122.1(8.92111)(2121121120--⨯⨯+=-'-'+='t t t t g h v ∆∆ m/s)(1.51=(2) 由于'>=123.1t s t ∆,所以第二石块不可能在第一块上升时与第一块相碰.对应于t 1时刻相碰,第二块的初速度为3.184.1)3.184.1(8.92111)(2122122120--⨯⨯+=--+="t t t t g h v ∆∆ m/s)(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v s h s t l h l lts v +-=-==负号表示船在水面上向岸靠近. 船的加速度为3202022d d d d d d s v h tl v h l ll t v a -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动.1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωg r n g r1-9 物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s 3='t 时的切向加速度,即)m/s (2.02='t a在s 3='t 时的法向加速度为)m/s (36.00.1)32.0()(2222=⨯='='=R t a R v a t n1-10 2m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m/s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h +=电梯下降的距离为习题1-9图 习题1-10图2021at t v h +='又20)(21t a g h h h -='-= 由此得s 59.02.18.95.1220=-⨯=-=a g h t而小球相对地面下落的距离为2021gt t v h += 259.08.92159.06.0⨯⨯+⨯= m 06.2= 1-11 人地风人风地v v v+=画出速度矢量合成图(a)又人地风人风地02v v v +'=,速度矢量合成如图(b )两图中风地v应是同一矢量.可知(a )图必是底角为︒45的等腰直角三角形,所以,风向应为西北风,风速为人地人地风地00245cos v v v =︒=)s m (23.41-⋅=1-12 (1) v LvL t 22==(2) 22212u v vLu v L u v L t t t -=++-=+= 1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v Lv L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v +=',则22u v V -='.习题1-12图习题1-11图2221222⎪⎭⎫⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V 而1212sin sin =⨯=='αβu V 船达到B 点所需时间)s (1000sin =='='=D V DV OB t βAB 两点之距βββsin cos D Dctg S == 将式(1)、(2)代入可得m)(1268)33(=-=D S(2) 由αβsin 101sin 3u V D t ⨯='=船到对岸所需最短时间由极值条件决定0cos sin 11d d 2=⎪⎭⎫⎝⎛-=αααu t 即 2/,0c o s παα==故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333m in=⨯=⨯=⨯=s u t π (3) 设l OB =,则ααββsin cos 2sin sin 22u uV V u D V D V D l -+=''==欲使l 最短,应满足极值条件.习题1-13图a a uV V u u D l '⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα 0cos 2sin sin 2222=⎥⎦⎤'-+''+αuV V u a a uV 简化后可得01cos cos 222=+'+-'αuVV u a即 01cos 613cos 2=+'-'αa 解此方程得32cos ='α︒=='-2.4832cos 1α 故船头与岸成︒2.48,则航距最短.将α'值代入(4)式得最小航程为222222m in 321232322321000cos 1cos 2⎪⎭⎫ ⎝⎛-⨯⨯⨯-+='-'-+-=ααu uv v u D lkm)(5.1m 105.13=⨯= AB 两点最短距离为km)(12.115.122min min =-=-=D l S第二章 质点动力学2-1 (1)对木箱,由牛顿第二定律,在木箱将要被推动的情况下如图所示,x 向:0cos m ax m in =-f F θ y 向:0sin m in =--Mg F N θ 还有 N f s m ax μ=解以上三式可得要推动木箱所需力F 的最小值为θμθμsin cos s s min -=MgF习题2-1图在木箱做匀速运动情况下,如上类似分析可得所需力F 的大小为θμθμsin cos k k min -=MgF(2)在上面m in F 的表示式中,如果0sin cos s →-θμθ,则∞→m in F ,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是0sin cos s ≤-θμθ由此得θ的最小值为s1arctanμθ=2-2 (1)对小球,由牛顿第二定律x 向:ma N T =-θθsin cosy 向:0cos sin =-+mg N T θθ 联立解此二式,可得N)(32.3)30sin 8.930cos 2(5.0)sin cos (=︒+︒⨯⨯=+=ααg a m T N)(74.3)30sin 230cos 8.9(5.0)sin cos (=︒-︒⨯⨯=+=ααa g m N由牛顿第三定律,小球对斜面的压力N)(74.3=='N N(2)小球刚要脱离斜面时N =0,则上面牛顿第二定律方程为mg T ma T ==θθsin ,cos由此二式可解得2m/s 0.1730tan /8.9tan /=︒==θg a2-3 要使物体A 与小车间无相对滑动,三物体必有同一加速度a ,且挂吊B 的绳应向后倾斜。

大学物理学第版修订版北京邮电大学出版社上册习题答案.docx

大学物理学第版修订版北京邮电大学出版社上册习题答案.docx

习题3 3.1 选择题(1)有一半径为 R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为 J,开始时转台以匀角速度ω0转动,此时有一质量为 m的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A)J0(B)J0mR2m) R 2J(J(C)J0(D) 0 mR2[ 答案: (A)](2)如题3.1(2)图所示,一光滑的内表面半径为10cm的半球形碗,以匀角速度ω 绕其对称轴OC旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm,则由此可推知碗旋转的角速度约为(A)13rad/s(B)17rad/s(C)10rad/s(D)18rad/s(a)(b)题3.1 ( 2)图[ 答案: (A)](3)如 3.1(3) 图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度?在距孔为 R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体(A)动能不变,动量改变。

(B)动量不变,动能改变。

(C)角动量不变,动量不变。

(D)角动量改变,动量改变。

(E)角动量不变,动能、动量都改变。

[ 答案: (E)]3.2 填空题(1)半径为 30cm的飞轮,从静止开始以 0.5rad ·s-2的匀角加速转动,则飞轮边缘上一点在飞轮转过240?时的切向加速度aτ =,法向加速度a n=。

[ 答案:0.15; 1.256 ](2)如题3.2 (2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴 O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的原因是。

木球被击中后棒和球升高的过程中,弹、细棒、地球系统的守恒。

守恒,对木球、子题3.2 (2)图[ 答案:对 o 轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对 o 轴的合外力矩为零,机械能守恒](3)两个质量分布均匀的圆盘 A 和 B 的密度分别为ρA和ρB ( ρA>ρB) ,且两圆盘的总质量和厚度均相同。

大学物理学答案(北京邮电大学第3版)赵近芳等编著#(精选.)

大学物理学答案(北京邮电大学第3版)赵近芳等编著#(精选.)

大学物理学(北邮第三版) 习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r -=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆrˆt r t d d d d d d r r r += 式中t rd d 就是速度径向上的分量,∴t r td d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ +=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

《大学物理》习题答案4-匡乐满主编-北京邮电大学出版社省名师优质课赛课获奖课件市赛课一等奖课件

《大学物理》习题答案4-匡乐满主编-北京邮电大学出版社省名师优质课赛课获奖课件市赛课一等奖课件

0.5
0.30s
7. 粒子在加速器中被加速到动能为静止能量旳4倍时,其质量 m
与静止质量 m0 旳关系为:
(A)m 4m0;(B) m 5m0;(C) m 6m0; (D) m 8m0
答案(B) mc2 Ek m0c2 4m0c2 m0c2 5m0c2
大学物理 盛忠志主讲
8. Ek 是粒子旳动能,p 是它旳动量,那么粒子旳静能 m0c 2等于
大学物理 盛忠志主讲
大学物理作业四参照答案
一、选择题
1. 一刚性直尺固定在S系中,它与 X 轴正向夹角 45,
在相对 S系以速度 u 沿 X 轴作匀速直线运动旳 S 系中,
测得该尺与 X 轴正向夹角为 (A) 45;(B) 45 ; (C) 45; (D)不懂得
答案(A)
大学物理 盛忠志主讲
2. 惯性系 S 、S沿X 轴做相对运动,在 S 系中测得两个同步发 生旳事件沿运动方向空间距离为1m,在 S系中测得这两个事件
旳空间间隔为2m。则在 S 系中测得这两个事件旳时间间隔为
(A)
3c

(B)1 3
c

(C) 3 c
; (D)3 c
x x
1
u c
2 2
答案(C)
u 3c 2
t t1 t2
1 (t u x) 3
1
u2 c2
c2
c
3. 两火箭A、B沿同一直线相向运动,测得两者相对地球旳速度
大小分别是 vA 0.9c ,vB 0.8c 。则两者互测旳相对运动速度为
(A)1.7c ; (B) 0.988c ; (C) 0.956c ; (D) 0.975c
答案(B)
v v u 0.9c (0.8c) 0.988c

大学物理学 (第3版.修订版) 北京邮电大学出版社 上册 第四章习题4 答案

大学物理学 (第3版.修订版)  北京邮电大学出版社 上册 第四章习题4 答案
∴ A 相对 B 的速度大小为
2 2 v v x v y 0.88 c
速度与 x 轴的夹角 为
tan
v y v x
1.07
46.8ο
题 4.10 图 4.11 静止在S系中的观测者测得一光子沿与 x 轴成 60 角的方向飞行.另一观测者静止于 S′系,S′系的 x 轴与 x 轴一致,并以0.6c的速度沿 x 方向运动.试问S′系中的观测者观 测到的光子运动方向如何? 解: S 系中光子运动速度的分量为
2
(D) c t 1 v / c
2
[答案:A ] (4)一宇航员要到离地球 5 光年的星球去旅行。如果宇航员希望把这路程缩短为 3 光年, 则他所乘的火箭相对于地球的速度 v 应为[ ]。 (A)0.5c (B)0.6c (C)0.8c (D)0.9c [答案:C ] (5) 某宇宙飞船以 0.8c 的速度离开地球, 若地球上测到它发出的两个信号之间的时间间隔 为 10s。则宇航员测出的相应的时间间隔为[ ]。 (A)6s (B)8s (C)10s (D)10/3s [答案:A ] 4.2 填空题 (1) 有一速度为u的宇宙飞船沿X轴正方向飞行,飞船头尾各有一个脉冲光源在工作,处 于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为_________;处于船头的观察 者测得船尾光源发出的光脉冲的传播速度大小为__________。 [答案:c,c; ] ( 2 ) S 系相对 S 系沿 x 轴匀速运动的速度为 0.8c ,在 S 中观测,两个事件的时间间隔
习题 4 4.1 选择题 (1)在一惯性系中观测,两个事件同时不同地,则在其他惯性系中观测,他们[ (A)一定同时 (B)可能同时 (C)不可能同时,但可能同地 (D)不可能同时,也不可能同地 [答案:D ] (2)在一惯性系中观测,两个事件同地不同时,则在其他惯性系中观测,他们[ (A)一定同地 (B)可能同地 (C)不可能同地,但可能同时 (D)不可能同地,也不可能同时 [答案:D ]

大学物理第四章课后答案

大学物理第四章课后答案

I = 625N ∆t
-4-
自治区精品课程—大学物理学
题库
2. 解: (1)由动量守恒定律
Mυ 2 − mυ1 = 0
(2)由动量定理:
υ 2 = 2.5 m s
方向与子弹飞行方向相反。
F=
Mυ 2 Mυ 2 = = 300 N t 0.05
3.
m , dt 时间内链条长 L 度变化为 dl ,即有 dl 长度的链条在 dt 时间内堆在地
自治区精品课程—大学物理学
题库
第四章 动量定理
一、 填空 1. 2. 3. 4. 是表示力在空间上累积作用的物理量, 是表示力在时间上累 积作用的物理量。 质点动量定理的微分形式是 。 质点动量定理的积分形式是 。 对于质点系来说,内力 ( “改变”或“不改变” )质点系中各个质点 的动量,但 ( “改变”或“不改变” )质点系的总动量。 若质点系沿某坐标方向所受的合外力为零,则 守恒。 如果两物体碰撞过程中,动能完全没有损失,这种碰撞称为 ,否则 就称为 ;如果碰撞后两物体以相同的速度运动,这种碰撞称 为 。 , 其中 υ10 ,υ1 是某一物
l
m M v0 V v
. 如图所示,在一铅直面内有一光滑的轨道,左边是一个上升的曲线,右边是 13 13. 足够长的水平直线, 两者平滑连接, 现有 A , B 两个质点, B 在水平轨道上静止, A 在曲 线部分高 h 处由静止滑下,与 B 发生完全弹 性碰撞, 碰后 A 仍可返回上升到曲线轨道某 处,并再度滑下,已知 A , B 两质点的质量 分别为 m A 和 m B 。求 A , B 至少发生两次碰 撞的条件。 14. 如图所示,两车厢质量均为 M ,左边车厢地板上放一质量为 M 的货箱,它 们共同以 υ 0 的速度向右运动。 另一车厢以 2υ 0 从相反方向向左运动并与左车厢碰

大学物理学(北京邮电大学出版)第一到五章答案

大学物理学(北京邮电大学出版)第一到五章答案

习题1(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr (B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2 (B) tRπ2,0 (C) 0,0 (D) 0,2tRπ[答案:B](1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。

[答案: 23m·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V行走。

如人相对于岸静止,则1V 、2V 和3V的关系是 。

[答案: 0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。

1.4 下面几个质点运动学方程,哪个是匀变速直线运动?〔1〕x=4t-3;〔2〕x=-4t 3+3t 2+6;〔3〕x=-2t 2+8t+4;〔4〕x=2/t 2-4/t 。

给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题四4-1 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动;(2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很短).题4-1图解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在 自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用0d d 222=+ξωξt描述时,其所作的运动就是谐振动.(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置;第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线 性回复力.(2)小球在题4-1图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题4-1图(b)所示.题 中所述,S ∆<<R ,故R S∆=θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有θθmg t mR -=22d d令R g=2ω,则有0d d 222=+ωθt4-2 劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题4-2图所示的两种方式连 接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.题4-2图解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有111x k F x k F -=-=串222x k F -=又有 21x x x +=2211k F k F k Fx +==串所以串联弹簧的等效倔强系数为2121k k k k k +=串即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为2121)(222k k k k m k mT +===ππωπ串(2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有2211x k x k x k +=并故 21kk k +=并同上理,其振动周期为212k k m T +='π4-3 如题4-3图所示,物体的质量为m ,放在光滑斜面上,斜面与水平面的夹角为θ,弹簧的倔强系数为k ,滑轮的转动惯量为I ,半径为R .先把物体托住,使弹簧维持原长,然 后由静止释放,试证明物体作简谐振动,并求振动周期.题4-3图解:分别以物体m 和滑轮为对象,其受力如题4-3图(b)所示,以重物在斜面上静平衡时位置为坐标原点,沿斜面向下为x 轴正向,则当重物偏离原点的坐标为x 时,有221d d sin t xm T m g =-θ①βI R T R T =-21②βR t x=22d d )(02x x k T +=③ 式中k mg x /sin 0θ=,为静平衡时弹簧之伸长量,联立以上三式,有kxRt xR I mR -=+22d d )(令I mR kR +=222ω 则有0d d 222=+x t x ω故知该系统是作简谐振动,其振动周期为)/2(22222K R I m kR I mR T +=+==ππωπ4-4 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A又πω8.0==A v m 1s m -⋅51.2=1s m -⋅2.632==A a m ω2s m -⋅(2)N63.0==m m a FJ 1016.32122-⨯==m mv EJ1058.1212-⨯===E E E k p 当pk E E =时,有pE E 2=,即 )21(212122kA kx ⋅=∴ m 20222±=±=A x(3) ππωφ32)15(8)(12=-=-=∆t t4-5 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)Ax -=0;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过2A x -=处向正向运动. 试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==0000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x )232cos(232πππφ+==t T A x )32cos(33πππφ+==t T A x )452cos(454πππφ+==t T A x 4-6 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量. 解:由题已知s 0.4,m 10242=⨯=-T A ∴1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x故振动方程为m )5.0cos(10242t x π-⨯= (1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向.(2)由题知,0=t 时,00=φ,t t =时3,0,20πφ=<+=t v A x 故且 ∴s322/3==∆=ππωφt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J 101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E4-7 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后 ,给予向上的初速度10s cm 0.5-⋅=v ,求振动周期和振动表达式.解:由题知 12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正)又s 26.12,51082.03===⨯==-ωπωT m k 即m 102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωφ==⨯⨯⨯=-=--即x v∴ m)455cos(1022π+⨯=-t x4-8 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.题4-8图解:由题4-8图(a),∵0=t 时,s2,cm 10,,23,0,0000===∴>=T A v x 又πφ即 1s rad 2-⋅==ππωT故 m)23cos(1.0ππ+=t x a由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x 01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴πω65=故 mt x b )3565cos(1.0ππ+=4-9 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动. (1)此时的振动周期与空盘子作振动时的周期有何不同? (2)此时的振动振幅多大?(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程.解:(1)空盘的振动周期为k M π2,落下重物后振动周期为k mM +π2,即增大. (2)按(3)所设坐标原点及计时起点,0=t 时,则k mg x -=0.碰撞时,以M m ,为一系统动量守恒,即0)(2v M m gh m +=则有M m ghm v +=20 于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω(3)g m M kh x v )(2tan 000+=-=ωφ(第三象限),所以振动方程为 ⎥⎦⎤⎢⎣⎡+++++=g m M kh t M m k g M m kh k m g x )(2arctan cos )(214-10 有一单摆,摆长m 0.1=l ,摆球质量kg 10103-⨯=m ,当摆球处在平衡位置时,若给小球一水平向右的冲量14s m kg 100.1--⋅⋅⨯=∆t F ,取打击时刻为计时起点)0(=t ,求振动的初位相和角振幅,并写出小球的振动方程.解:由动量定理,有0-=∆⋅mv t F∴1-34s m 01.0100.1100.1⋅=⨯⨯=∆⋅=--m t F v按题设计时起点,并设向右为x 轴正向,则知0=t 时,100s m 01.0,0-⋅==v x >0∴ 2/30πφ= 又1s rad 13.30.18.9-⋅===l g ω∴m 102.313.301.0)(302020-⨯===+=ωωv v x A故其角振幅rad 102.33-⨯==Θl A小球的振动方程为rad)2313.3cos(102.33πθ+⨯=-t4-11 有两个同方向、同频率的简谐振动,其合成振动的振幅为m 20.0,位相与第一振动的位相差为6π,已知第一振动的振幅为m 173.0,求第二个振动的振幅以及第一、第二两振动的位相差.题4-11图解:由题意可做出旋转矢量图如下. 由图知01.02/32.0173.02)2.0()173.0(30cos 222122122=⨯⨯⨯-+=︒-+=A A A A A∴ m 1.02=A设角θ为O AA1,则 θcos 22122212A A A A A -+=即1.0173.02)02.0()1.0()173.0(2cos 2222122221=⨯⨯-+=-+=A A A A A θ即2πθ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π.4-12 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x解: (1)∵ ,233712πππφφφ=-=-=∆∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=∆∴合振幅 0=A4-13 一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。

相关文档
最新文档