六年级上册数学全册基础知识

合集下载

(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总

(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总

(人教版)小学六年级数学上册全册各单元重要知识点梳理详解汇总第一单元 分数乘法(一)分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512×6.表示: 6个512相加是多少.还表示:512的6倍是多少。

2.一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

(二)分数乘法的计算法则1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数.所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)解决实际问题。

1、分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量512 例如:6×512,表示:6的是多少。

的27×512.27 表示: 512 是多少。

(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。

(4)根据已知条件和问题列式解答。

2、乘法应用题有关注意概念。

(1)乘法应用题的解题思路:已知一个数、求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找.注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思.那么谁比谁多,应该是“多比少多”,“多”的是指800千克.“少”的是指750千克.即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

六年级上册数学全部知识点

六年级上册数学全部知识点

六年级上册数学全部知识点一、分数1、理解分数概念:分数是由分子和分母组成,分子是分开的,分母是分子所在的总数,表示两个整数之间的比重;特征:分子与分母之间的比值;作用:用分数可以表示出一个数介于两个整数之间的任何数;2、运算(1)相同分母分数的加减法相同分数的加减法:将分子加减即可。

(2)不同分母分数的加减不同分数的加减法:先将分母统一,然后将分子加减即可。

(3)分数的乘除运算将两个分数相乘:将分子和分母分别相乘即可;将两个分数相除:将分子和分母交换再相乘即可。

三、根式1、根式的定义根式又称亚分式、立方根式,是表示平方根(或立方根)的一种式子。

是包含开方符号的一种数学运算表达式,它是一种特殊的正分式或正亚分式。

2、根式的展开展开根式:乘方法;联立根式:开根号法;3、根式的乘除运算二次方根式的乘法:将乘方的同类项相乘;三次方根式的乘法:将系数相乘,连分数乘积的分子、分母乘积;二次方根式的除法:把被除式减去除数,得出商;三次方根式的除法:把被除式分为分子和分母,把除数分为分子和分母,再分别将这两个分子和两个分母相乘,得到商;四、几何成比例1、定义几何成比例是指在一个相同的几何图形内,测量出的条形(或弧形)长或圆的半径之间,呈现出等比例。

2、求出成比例比求出比例比:将所测量出的两个数分别除以其中最小的一个数,得出两个数之间的比例比;3、判断几何图形是否成比例判断几何图形是否成比例:将该图形内测量出的长度和半径分别除以其中最小的一个,若所得到的两个数之间的比例比相同,即可判断该图形成比例;五、统计与概率1、统计统计是指收集与分析文字、表格或图表中的数字信息,以便准确地反映其情况。

它包括:(1)收集与分析数据;(2)求出变量的均值、方差、离差等;(3)使用中心弦图、直方图、折线图等工具绘制出数据的分布情况;(4)根据数据判断变量的特征;(5)利用函数描述数据的变化规律。

2、概率概率:指在多次实验中,当发生某一事件时的可能性大小。

部编版六年级上册数学全册知识点考点归纳

部编版六年级上册数学全册知识点考点归纳

部编版六年级上册数学全册知识点考点归

一、整数
- 正整数、负整数和零
- 整数的大小比较
- 整数的加法和减法运算
- 整数与自然数的关系
二、小数
- 小数的读法和写法
- 小数与分数的关系
- 小数的加法和减法运算
三、图形与几何
- 点、线、线段和射线的基本概念
- 角的基本概念
- 直线、曲线、折线和封闭曲线的区别
- 简单图形的认识和绘制:直线、折线、封闭曲线、矩形、正方形、三角形等
四、三角形
- 三角形的定义和性质
- 等边三角形、等腰三角形和普通三角形的区别
- 三角形的分类:锐角三角形、直角三角形和钝角三角形- 三角形的内角和等于多少
五、长度、面积和体积
- 长度的比较和单位的换算
- 长度的加法和减法运算
- 面积的认识和计算
- 体积的认识和计算
六、时间与空间
- 时、刻、秒的认识和运用
- 时间的计算:几点几分到几点几分的时间长度
- 方向与位置的概念
- 空间的认识和观察
七、数据和图表
- 数据的收集和整理
- 表格和图表的制作和分析
- 直方图和条形图的认识和绘制
八、应用题
- 实际问题的数学建模
- 运用所学知识解决实际问题
以上是部编版六年级上册数学全册的知识点和考点的归纳。

将这些知识点掌握并灵活运用,能够帮助学生更好地理解数学知识并解决实际问题。

请注意,以上总结的内容基于部编版六年级上册数学教材的内容,仅供参考。

具体教材知识点还请以教材为准。

六年级上册数学知识点归纳

六年级上册数学知识点归纳

六年级上册数学知识点归纳六年级上册数学知识点归纳(上)一、数的读法与数的大小比较1. 中文数字的读法及其书写;2. 常见的数的大小比较方法,包括数的比较和数的排列;3. 比较相同数位的数的大小、不同数位的数的大小以及有相同前缀的数的大小。

二、数的整除性与因数分解1. 再认识数的整除的定义和符号,包括定义、符号和性质;2. 熟练掌握计算数量积的方法,学会找出因数和公因数;3. 再认识数的分解因数的定义和方法,包括分解质因数的方法和定理。

三、分数与小数1. 熟练掌握分数的定义和基本概念,学会转化和化简分数;2. 熟练掌握小数的定义和基本概念,学会比较和换算小数;3. 掌握分数与小数间的转换关系和计算方法。

四、面积与周长1. 熟练掌握面积的基本概念和计算公式,学会计算常见图形的面积;2. 熟练掌握周长的基本概念和计算公式,学会计算常见图形的周长;3. 熟悉计算平行四边形和三角形面积的公式,学会解决实际问题。

五、容积与体积1. 熟练掌握容积的基本概念和计算公式,学会计算常见容器的容积;2. 熟练掌握体积的基本概念和计算公式,学会计算常见图形的体积;3. 熟悉不同形状的立体图形的特点和计算方法,学会解决实际问题。

六、平面图形的相似和全等1. 熟悉平面图形的相似和全等的定义和判定条件,学会通过变形来寻找相似或全等的方法;2. 了解相似和全等的性质,包括比例相等和角度相等;3. 掌握相似和全等图形之间的性质和应用,学会解决实际问题。

七、数据的收集和分析1. 熟悉收集数据的方法和工具,包括调查、测量和实验;2. 熟悉数据的表示方式和统计方法,包括表格、折线图和柱状图;3. 学会分析数据,并对数据进行简单的处理和解释,理解数据在生活和科学中的应用。

八、平面直角坐标系1. 熟悉平面直角坐标系的概念和表示方法,学会绘制基本图形;2. 熟悉平面直角坐标系的应用,包括表示点、确定距离和面积等;3. 熟悉平面直角坐标系与图形的关系,学会求出图形的坐标和方程。

六年级上册数学1-8单元知识点

六年级上册数学1-8单元知识点

一、整数运算(第一单元)1.整数的认识:整数是由正整数、零和负整数组成。

2.整数加法与减法:同号两数相加,异号两数相减,加减法运算的结果遵循同号得正、异号得负的原则。

二、小数的认识与运算(第二单元)1.小数的认识:小数是由整数部分和小数部分组成的数。

2.小数的加法和减法:小数的加法和减法运算与整数运算相似,需要对齐小数点,按位进行运算。

三、分数的认识与运算(第三单元)1.分数的认识:分数是一个整体被等分为若干个相等的部分,分数由分子和分母组成。

2.分数的加法、减法、乘法和除法:分数的运算需要找到最小公倍数,化为相同分母后进行运算。

四、比例与相似(第四单元)1.比例和比例式:比例是两个比较的数之间的等比关系,比例式是比例的一种表达方式。

2.比例的三项性质:给定三个已知比例中的三项,可以求解未知的第四项。

3.相似图形:相似图形的各个对应边成比例,对应角相等。

五、长方体与平面图形(第五单元)1.长方体的认识:长方体是一种具有六个矩形面的立体图形。

2.长方体的表面积与体积:长方体的表面积等于六个面的面积之和,体积等于底面积与高的乘积。

六、数据与统计(第六单元)1.统计图表的认识:包括条形图、折线图和饼图等,用于展示数据的分布情况。

2.数据的收集和处理:收集数据,统计频数、频率和百分比,分析数据的规律。

七、几何变换(第七单元)1.对称:平面图形关于一条直线对称,对称的图形具有相同的形状和大小。

2.平移:平移是一种沿着一个方向移动图形的变换,保持图形的大小和形状不变。

3.旋转:旋转是沿着一个点将图形转动一定的角度,使得图形保持大小和形状不变。

4.缩放:缩放是按照一定的比例因子改变图形的大小,保持图形的形状不变。

八、三角形(第八单元)1.三角形的分类:根据边长和角度的关系,可以将三角形分为等边三角形、等腰三角形、直角三角形和普通三角形等。

2.三角形的性质:例如三角形的内角和为180°,等边三角形的三个内角都是60°等。

人教版六年级数学上册全册知识点

人教版六年级数学上册全册知识点

第一单元分数乘法1、分数乘整数的意义:求几个相同数相加的简便运算;或者说求一个数的几倍是多少。

2、分数乘整数的方法:分母不变,整数和分子相乘,再约分。

3、分数乘分数的意义:求一个数的几分之几是多少4、分数乘分数的方法:分子相乘的积作积的分子,分母相乘的积作积的分母,再约分。

5、分数乘法的简便方法:交叉约分,再相乘。

6、判断积是否大于第一个因数的方法:因数和积的关系:(1)其中一个因数大于1,积大于另一个因数;(2)其中一个因数等于1,积等于另一个因数;(3)其中一个因数小于1,积小于另一个因数。

7、整数乘法的运算定律分数乘法同样适用。

交换律、结合律、分配律,8、分数乘法解决问题:(1)找准单位“1”,(2)列出关系式单位“1”乘以几分之几单位“1”乘以(1+几分之几)单位“1”乘以(1—几分之几)第二单元位置与方向第三单元分数除法1、分数除法的意义:已知两个因数的积和其中一个因数求另一个因数的运算2、分数除法的方法:除以一个数(0除外)等于乘以这个数的倒数3、判断商是否大于被除数的方法:除数和商的关系:(1)除数大于1,商小于被除数;(2)除数等于1,商等于被除数;(3)除数小于1,商大于被除数。

4、分数除法的混合运算:括号老大乘除老二加减老三。

5、除法简便运算的时候,先把所有的乘法写成除法。

6、分数除法解决问题:(1)找准单位“1”;(2)列出关系式比较量÷几分之几=单位“1”)比较量÷(1+几分之几)=单位“1”比较量÷(1—几分之几)=单位“1”对应量÷对应的几分之几=单位“1”是……比……占……相当于……后的是单位“1”分数前面的是单位“1”7、分数乘除法的解决问题:单位“1”已知用乘法单位“1”未知用除法8、倒数:乘积是1的两个数互为倒数,1的倒数是1,0没有倒数。

第四单元比1、比的意义:比的意义:两数相除又叫做两个数的比。

比的各部分的名称:“:”是比号,读作“比”。

六年级数学上册知识点总结

六年级数学上册知识点总结

六年级数学上册知识点总结六年级数学上册主要涵盖了数与代数、空间与图形、数据与概率三个大的知识点。

其中,数与代数包括整数运算、小数运算、分数运算、百分数运算、数的比较和数的表达等内容;空间与图形包括几何图形的认识、图形的性质和图形的变换等内容;数据与概率包括数据的收集整理和数据的呈现、概率与统计等内容。

下面将对这些知识点进行总结。

一、数与代数1. 整数运算六年级上册主要学习整数的加法、减法、乘法、除法以及运算性质和运算法则。

需要注意的是,整数运算中的符号规则和运算顺序,还有绝对值的求法和运算规律。

2. 小数运算六年级数学上册将小数运算落实到数的四则运算中,主要学习小数的加法、减法、乘法和除法。

此外,还会接触到小数与整数之间的运算和关系。

3. 分数运算分数运算是六年级上册数学中的重要知识点,主要学习分数的加法、减法、乘法和除法。

此外,还需要掌握分数的化简和比较大小。

4. 百分数运算百分数是表示数和比例的常见形式,六年级上册会介绍百分数的基本概念和表示法,并学习百分数的转化、运算以及与分数和小数的关系。

5. 数的比较在数与代数部分,还会学习数的比较大小,比如使用大于、小于、等于等符号进行数字的比较,并掌握不等式的性质和解不等式的方法。

6. 数的表达数的表达主要指的是将一些实际问题中的信息用数表示出来,并能够根据数的表达来解决实际问题。

这部分内容主要锻炼学生的应用能力和问题解决能力。

二、空间与图形1. 几何图形的认识六年级上册将介绍和学习一些几何图形的基本概念和性质,如点、线、线段、射线、角、三角形、四边形等。

2. 图形的性质在认识几何图形的基础上,还需要学习图形的性质,包括几何图形的边数、顶点数、对称性、直线对称和中心对称等。

3. 图形的变换图形的变换是六年级上册数学的重要内容,包括平移、旋转、翻转和对称等。

学生需要学习图形变换的定义、性质以及变换规则,并能够灵活运用图形变换进行解题。

三、数据与概率1. 数据的收集整理数据的收集整理是指学生需要学习如何收集和整理数据,包括用表格、图表和图像等形式记录数据,并通过统计和分析数据来解决实际问题。

六年级上册数学知识点大全

六年级上册数学知识点大全

六年级上册数学知识点大全1500字六年级上册数学知识点大全一、数的认识:1. 数的读法、写法;2. 形式相同的数与数相等。

二、数的比较:1. 掌握数的大小关系;2. 大于、小于的符号;3. 正整数的比较;4. 数排序。

三、数的组成:1. 两位数的由十位和个位组成;2. 分析两个数的关系;3. 比较两个数的大小。

四、数的运算:1. 了解数的加法和减法;2. 加法和减法的运算规则;3. 加法和减法的口算;4. 加法和减法的综合应用。

五、整数的认识:1. 正整数和零;2. 整数的概念;3. 整数的正负。

六、整数的大小比较:1. 整数的大小;2. 整数的绝对值。

七、整数的加法运算:1. 整数的加法运算规则;2. 整数的加法法则;3. 整数的加法口诀;4. 整数的加法计算方法;5. 整数的加法练习;6. 整数的加法的应用。

八、整数的减法运算:1. 整数的减法运算规则;2. 整数减法的性质;3. 整数减法运算的口诀;4. 整数减法计算方法;5. 整数减法的应用。

九、整数的乘法运算:1. 正整数的乘法运算;2. 整数的乘法运算规则;3. 整数的乘法口诀;4. 整数的乘法计算方法;5. 整数的乘法计算应用。

十、整数的除法运算:1. 正整数的除法运算;2. 整数的除法运算规则;3. 带余除法运算;4. 整数的除法运算应用。

十一、数的分数:1. 了解分数的定义;2. 看图分析分数;3. 转化分数为整数;4. 分数的大小比较;5. 分数的简便表示;6. 分数及其十分之一;7. 分数的意义。

十二、分数的加法运算:1. 分数的加法原则;2. 分子之和、分母保持不变;3. 分数的加法口诀;4. 分数的加法计算。

十三、分数字的减法运算:1. 分数的减法原则;2. 分子之差、分母保持不变;3. 分数的减法口诀;4. 分数的减法计算。

十四、分数的乘法运算:1. 分数和整数的乘法原则;2. 分数的乘法口诀;3. 分数乘法的计算方法;4. 分数和分数的乘法;5. 分数的乘法的简化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级上册基础知识班 级姓 名基础不牢地动山摇 基础不稳做题不准 夯实基础没商量第一单元 位置1、 用数对确定点的位置,如(3,5)表示:(第三列,第五行)↓↓竖排叫列 横排叫行(从左往右看) (从前往后看)2、平移时用“上”、“下”、“前”、“后”、“左”、“右”来表述。

3、 图形左、右平移:行不变图形上、下平移:列不变第二单元 分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如: 98×5表示求5个98的和是多少? 2、分数乘分数是求一个数的几分之几是多少。

例如: 98×43表示求98的43是多少? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。

2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。

4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“=”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为..倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。

(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

(4)、求小数的倒数: 把小数化为分数,再求倒数。

3、1的倒数是1; 0没有倒数。

因为1×1=1;0乘任何数都得0,1(分母不能为0) 4、 对于任意数(0)a a ≠,它的倒数为1a ;非零整数a 的倒数为1a ;分数b a 的倒数是a b ; 5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

第三单元 分数除法一、 分数除法1、分数除法的意义:乘法:因数×因数=积 除法:积÷一个因数=另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。

3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。

4、 “[]”叫做中括号。

一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

二、分数除法解决问题 【未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1” 】1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为X ,用方程解答。

(2)算术(用除法): 分率对应量÷对应分率=单位“1”的量3、求一个数是另一个数的几分之几:就一个数÷另一个数4、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位“1”的量 或: ①求多几分之几:大数÷小数 – 1② 求少几分之几:1 - 小数÷大数三、比和比的应用(一)、比的意义 1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

例如 15 :10 = 15÷10=23(比值通常用分数表示,也可以用小数或整数表示) ∶∶∶∶前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。

例:路程÷速度=时间。

4、区分比和比值 比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:①用比的前项和后项同时除以它们的最大公因数。

(1) ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

③两个小数的比:向右移动小数点的位置,先化成整数比再化简。

(2)用求比值的方法。

注意: 最后结果要写成比的形式。

如: 15∶10 = 15÷10 = 23 = 3∶2 5.按比例分配:把一个数量按照一定的比来进行分配。

这种方法通常叫做按比例分配。

如: 已知两个量之比为:a b ,则设这两个量分别为ax bx 和。

6、路程一定,速度比和时间比成反比。

(如:路程相同,速度比是4:5,时间比则为5:4) 工作总量一定,工作效率和工作时间成反比。

(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)第四单元 圆一、 认识圆1、圆的定义:圆是由曲线围成的一种平面图形。

2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

一般用字母O 表示。

它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r 表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

4、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d 表示。

直径是一个圆内最长的线段。

5、圆心确定圆的位置,半径确定圆的大小。

6、在同圆或等圆内,有无数条半径,有无数条直径。

所有的半径都相等,所有的直径都相等。

7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。

用字母表示为:d =2r 或r =2d 8、轴对称图形: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

9、长方形、正方形和圆都是对称图形,都有对称轴。

这些图形都是轴对称图形。

10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。

二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。

用字母C 表示。

2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。

发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。

3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

用字母π(pai)表示。

(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。

圆周率π是一个无限不循环小数。

在计算时,一般取π ≈ 3.14。

(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。

(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

4、圆的周长公式:C= πd d = C÷π或C=2π r r = C÷2π5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

6、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长÷2 计算方法:2π r÷2 即π r(2)半圆的周长:等于圆的周长的一半加直径。

计算方法:πr+2r即 5.14 r三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。

用字母S表示。

2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

顶点在圆心的角叫做圆心角。

3、圆面积公式的推导:(1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。

(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。

(3)、拼出的图形与圆的周长和半径的关系。

圆的半径 = 长方形的宽圆的周长的一半 = 长方形的长因为:长方形面积 = 长×宽所以: 圆的面积 = 圆周长的一半×圆的半径S 圆 = πr × r 圆的面积公式:S 圆 = πr 2÷π4、环形的面积:一个环形,外圆的半径是R ,内圆的半径是r 。

(R =r +环的宽度.)S 环=πR²-πr² 或环形的面积公式:S 环=π(R²-r²)。

5扇形的面积计算公式: S 扇=πr 2×360n (n 表示扇形圆心角的度数) 6、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

而面积扩大或缩小的倍数是这倍数的平方倍。

例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。

相关文档
最新文档