5kW光伏离网发电系统规划设计

合集下载

离网光伏系统设计方案

离网光伏系统设计方案

离网光伏系统设计方案一、概述二、需求分析1.电源需求:需确定离网负载需要供应的电能,包括负载功率、耗电时间等。

2.光伏资源:通过研究目标地区的光伏辐照度数据,确定该地区的光伏资源充足度。

3.系统可靠性:需要保证系统的可靠性和稳定性,使其能持续为负载提供电能。

三、系统组成1.光伏发电子系统:通过光伏组件将太阳能转化为直流电能,并通过充电控制器、功率优化器等电路对光伏发电系统进行控制和保护。

2.电池储能系统:储能系统由蓄电池组成,将光伏发电系统产生的电能进行储存,以供给离网负载使用。

根据负载需求和离网时间的长短,选择合适的电池容量和种类。

3.逆变器系统:将储存在电池中的直流电能转换为交流电能,以满足离网负载的使用需求。

逆变器系统还具有电压稳定、频率稳定和保护等功能。

4.控制系统:控制系统对光伏发电子系统、电池储能系统和逆变器系统进行集中控制和管理,确保系统的正常工作和高效运行。

四、系统设计考虑因素1.光伏组件的选择:根据目标地区光照条件选择高效的光伏组件,以提高系统的发电效率。

2.电池容量的确定:需根据负载需求和离网时间长短,以及光伏系统的发电能力,合理确定电池容量。

3.逆变器的选型:需选择适合离网光伏系统的逆变器,确保逆变器能够正常工作和输出满足负载需求的交流电。

4.控制系统的设计:控制系统需要具备监测、控制、保护和管理等功能,以实现对系统的全面控制和管理。

五、系统运行与维护1.系统运行:光伏发电系统将通过充电控制器对电池进行充电,并将电能转换为直流电供逆变器使用。

逆变器将直流电能转换为交流电供给离网负载使用。

2.系统维护:定期对光伏组件进行清洁和检查,确保其正常工作。

对电池进行定期充电和放电以防止过充和过放,延长电池寿命。

对逆变器和控制系统进行检查和维护,确保其正常工作。

六、系统优化1.节能优化:通过调整离网负载的使用电量,减少能量消耗,提高系统能量利用率。

2.多能互补:可通过增加其他可再生能源发电系统,如风力发电、水力发电等,与光伏系统组合使用,以增加系统的稳定性和可靠性。

离网光伏系统设计方案

离网光伏系统设计方案

离网光伏系统设计方案离网光伏系统设计方案离网光伏系统是一种独立的发电系统,不依赖于传统的电网供电,可以在没有电网供电的地方提供电力供应。

以下是一份离网光伏系统设计方案:1. 系统规模和功率需求:首先确定所需的发电容量和功率需求,考虑到用电设备的种类和数量,并预估每天的用电量。

根据这些信息,确定适当的系统规模和发电功率。

2. 太阳能电池板选择:选择高效的太阳能电池板以提供足够的电力。

考虑到可用的安装空间和太阳能资源的可利用程度,选择适当的太阳能电池板类型和数量。

3. 蓄电池选择:选择适当的蓄电池以存储白天收集到的电能,供应夜间或云天的电力需求。

选择高效的蓄电池,考虑其容量、充电和放电效率,以及寿命等因素。

4. 逆变器和控制器选择:逆变器将直流电转换为交流电,供应家庭和设备使用。

选择适当的逆变器,考虑其容量和转换效率。

控制器将太阳能电池板和蓄电池连接到逆变器,监控和管理系统运行。

5. 线路设计和安全:设计适当的电线和线路连接太阳能电池板、蓄电池、逆变器和用电设备,确保电力传输的安全和稳定。

6. 安全性和保护措施:考虑到天气条件和环境因素,对系统进行适当的安全性和保护措施。

例如,防雷、过压和短路保护装置。

7. 监控和维护:安装监控系统,监测太阳能电池板的发电效率和系统的运行情况。

定期维护和清洁太阳能电池板以最大程度地提高其效率和寿命。

8. 系统节能和优化:考虑到能源的有效利用和节约,设计系统以最大限度地提高能源利用率。

例如,使用高效的电器设备和灯具,合理设置用电时间和能源管理。

总之,离网光伏系统的设计方案应该充分考虑到用户的用电需求、可用的太阳能资源、系统组件的选择和配套、系统的安全性和稳定性,以及系统的监控和维护等方面。

同时,注重节能和优化,最大化提高能源利用效率。

离网型光伏发电系统

离网型光伏发电系统
离网型光伏发电系统
•一、离网型光伏发电系统构成
•1.1.1太阳电池伏安特性
Ø 一般来说,太阳电池的发电量随着日照强度的增加而按比例增 加。随着组件表面的温度升高而略有下降。
Ø 一般所谓的太阳电池板的功率是指在日照强度为1000W/M2,组 件表面温度为25℃时,Imax*Umax的值。
离网型光伏发电系统
• SN正弦波系列

根据实际需要选配控制器和逆变器,进行组合。可采用的柜体有
980机柜、1.2米机柜、1.8米机柜和2.26机柜。[定制]
离网型光伏发电系统
•二、离网型光伏发电系统产品
•2.逆变器 • 2.2分类 Ø 正弦波逆变器

DC12V系列

DC24V系列

DC48V系列

DC110V系列

• 太阳电池组件的功率 • P0=P×t×Q/(η1×T)=(5000×8×1.2)/(0.85×3)=18.8(KW) • 可选择105Wp(17V)180块的太阳电池组件,18块串联为1组,分成10个太阳电池阵列。
• 蓄电池组的容量 • C=P×t×T /(V×K×η2)=5000×8×2/(220×0.5×0.92)≈800(AH) • 可选择110节2V/800AH的蓄电池串联。

• 根据系统的电压和逆变器的功率来确定逆变器的规格型号。
离网型光伏发电系统
•一、离网型光伏发电系统构成
•2.系统配置方法 • 2.5案例
• 现有客户需设计一套光伏发电系统,当地的日平均峰值日照 •时数按照3小时考虑,所有日光灯的功率为5KW,每天使用8小时, •蓄电池按照连续阴雨天2天计算。请计算出该系统的配置。

SD1205A、SD1210A(1路输出);

光伏离网系统设计方案

光伏离网系统设计方案

光伏离网系统设计方案
离网光伏系统的设计方案主要包括组件选择、系统布置、控制器和逆变器选择以及系统运行和维护等方面。

首先,在组件选择方面,应选用具有高效率和良好耐候性能的太阳能光伏组件。

可以考虑使用单晶硅或多晶硅太阳能电池板,其高转换效率和长寿命能够保证系统的稳定和可靠运行。

其次,在系统布置方面,需要根据实际用电需求和光照条件合理布置光伏组件。

应选择光照条件良好、无遮挡物、日照时间充足的区域进行组件安装,并确保组件之间的间距合理,以充分利用太阳能资源。

再次,控制器和逆变器的选择也是离网光伏系统设计的重要方面。

控制器的主要功能是对电池的充放电过程进行控制和保护,确保电池的安全和稳定运行。

逆变器则负责将直流电转换为交流电供电使用。

应选用具有高效率和稳定性能的控制器和逆变器,以提高系统的整体效率和可靠性。

最后,系统运行和维护方面需要注意以下几点。

首先,应定期检查光伏组件的清洁情况,及时清除组件表面的灰尘和杂物,以确保光伏组件的发电效率。

其次,定期检查电池的充电和放电状态,及时补充不足的电量,防止电池失去充电能力。

同时,还应定期检查控制器和逆变器的运行状态,确保其正常工作。

最后,需要定期对系统进行巡检和维护,及时发现和处理故障,保证系统的正常运行。

综上所述,离网光伏系统的设计方案应综合考虑组件选择、系统布置、控制器和逆变器选择以及系统运行和维护等方面,以保证系统的高效率和可靠性。

新型离网光伏发电系统方案设计

新型离网光伏发电系统方案设计

新型离网光伏发电系统方案设计
一、研究背景
随着经济发展的加快,人们对能源的依赖也不断增加,其中电能的消
耗量不断增加,光伏发电作为可再生能源之一的优势越发凸显,越来越多
的人们开始重视这种可再生能源,认识到其能源的优势。

但是,传统的光
伏发电受电网接入限制,受地形和电网规划条件限制,导致很多人无法使
用这种技术,自给自足受到困扰,电力不足。

考虑到这个问题,研究开发
出离网光伏发电系统,从而解决用户的能源问题,真正实现自主发电,自
给自足,这是本文的研究背景。

二、研究内容
离网光伏发电系统是一种能够在电网外发电的能源系统。

它采用太阳
能转换成电能,利用电池存储电能,控制器调节发电,实现自主发电,解
决用户的电力不足问题。

本文针对此研究,主要是对其方案的设计,进行
如下研究内容:
1.在分析当地的气候条件,计算出需要的光伏发电系统容量,以便确
定所需的光伏发电系统组件的总容量;
2.确定系统组件的类型,并从技术性能,可靠性等方面考虑进行选型;
3.计算系统的配置,将系统组件分配到各个分支,达到最佳的配置;
4.计算系统指标。

离网型光伏发电系统设计方案

离网型光伏发电系统设计方案

离网型光伏发电系统设计方案一、引言离网型光伏发电系统是指将光伏发电系统与电网完全隔离,并通过储能设备储存电能,提供给用户使用。

光伏发电系统通过太阳能板将太阳能转换为直流电能,再经过逆变器将直流电转换为交流电,供电给用户使用。

在无法接入传统电网的地区或需要独立供电的应用场景中,离网型光伏发电系统具有广泛的应用前景。

二、系统组成1.光伏电池组:光伏电池组是光伏发电系统的核心部件,由多个太阳能电池板组成。

太阳能板能够将阳光转化为直流电能,为系统提供能源。

2.充放电控制器:充放电控制器主要负责对光伏电池组进行控制和管理,确保系统的充电和放电过程稳定。

充放电控制器还可监测电池组的电压、电流和温度等参数,以提高系统的安全性和效率。

3.储能设备:储能设备是离网型光伏发电系统的关键组成部分,用于储存多余的电能,并在需要时释放。

常见的储能设备包括蓄电池、超级电容、储氢罐等。

蓄电池是较常用的储能设备,能够将电能长时间存储,并通过逆变器将储存的直流电转换为交流电。

4.逆变器:逆变器是将光伏电池组输出的直流电转换为交流电的关键设备。

逆变器可以将直流电的电压和频率转换为符合用户需求的交流电。

三、系统设计1.太阳能资源评估:根据光照强度和日照时间等要素,评估系统所处地区可利用的太阳能资源。

通过太阳能资源评估,确定光伏电池组的组件类型和数量,以及逆变器的容量。

2.负载需求分析:根据用户的用电需求,确定系统的负载容量和负载类型。

负载需求的分析包括负载功率和运行时间的估算。

对于不同类型的负载,可以分配不同的储能容量。

3.储能容量设计:储能容量的设计需要考虑系统的负载需求和太阳能资源。

通过计算所需的电能储存量,确定储能设备的容量。

储能设备的容量应能满足负载的用电需求,并在连续阴天等情况下保证供电稳定。

4.系统可靠性设计:离网型光伏发电系统的可靠性设计是确保系统正常运行的重要因素。

采用双冗余设计可以提高系统的可靠性,例如采用多组光伏电池板、多台储能设备和逆变器等。

5KW光伏发电离网系统

5KW光伏发电离网系统

5KW离网PV系统配置太阳能电池方阵:发电容量5KW,采用多晶硅太阳能电池组件,转换效率13-14%,选用180W组件9串3并,工作电压325V,使用寿命25年以上。

工程安装面积40m2,倾斜安装。

蓄电池组:铅酸免维护电池220V200AH,由110个2v400ah电池串联组成,可以提供走廊照明灯连续工作3天,使用寿命5-7年。

智能控制器:额定功率5KW,额定工作电流为35A;带蓄电池过充电保护,过放电保护;输入反接保护,短路保护,过载保护,温度补偿,过热保护等。

正弦波逆变器:5KW,输入DC220V±20%,输出AC220V±10%,频率50Hz,波形为纯正弦波。

控制组柜:用于安装控制器和逆变器,以及存放电池,在控制组柜面板上可显示工作电流,电压等常见电路参数,以提高系统的安全性和可视化界面。

一、工程材料工程材料清单序号项目名称规格型号材料单价数量单位金额(元)1 太阳能电池方阵单晶硅5000 瓦2 蓄电池2V400Ah 110 只3 充电控制器220V35A 1 只4 逆变器5KW 1 只5 太阳能电池方阵钢架钢结构5000 瓦6 控制组柜钢结构 1 套7 线材铜芯电缆 1 批8 其他辅助材料 1 批When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you,And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fledAnd paced upon the mountains overheadAnd hid his face amid a crowd of stars.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from bothYet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart.The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.倚窗远眺,目光目光尽处必有一座山,那影影绰绰的黛绿色的影,是春天的颜色。

离网型光伏发电系统设计方案

离网型光伏发电系统设计方案

离网型光伏发电系统设计方案
一、系统基本原理离网型光伏发电系统广泛应用于偏僻山区、无电区、海岛、通讯基站和路灯等应用场所。

系统一般由太阳电池组件组成的光伏方阵、太阳能充放电控制器、蓄电池组、离网型逆变器、直流负载和交流负载等构成。

光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能充放电控制器给负载供电,同时给蓄电池组充电;在无光照时,通过太阳能充放电控制器由蓄电池组给直流负载供电,同时蓄电池还要直接给独立逆变器供电,通过独立逆变器逆变成交流电,给交流负载供电。

图1 离网型光伏发电系统示意图
(1)太阳电池组件
太阳电池组件是太阳能供电系统中的主要部分,也是太阳能供电系统中价值最高的部件,其作用是将太阳的辐射能量转换为直流电能;
(2)太阳能充放电控制器
也称光伏控制器,其作用是对太阳能电池组件所发的电能进行调节和控制,最大限度地对蓄电池进行充电,并对蓄电池起到过充电保护、过放电保护的作用。

在温差较大的地方,光伏控制器应具备温度补偿的功能。

(3)蓄电池组
其主要任务是贮能,以便在夜间或阴雨天保证负载用电。

(4)离网型逆变器
离网发电系统的核心部件,负责把直流电转换为交流电,供交流负荷使用。

为了提高光伏发电系统的整体性能,保证电站的长期稳定运行,逆变器的性能指标非常重要。

二、主要组成部件介绍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5kWp 光伏离网发电系统设计方案二零一六年元月目录一、太阳能离网发电系统简介及建设内容参数 (3)1.1 太阳能离网发电系统简介 (3)1.2 建设位置参数 (3)1.3 项目用户负载参数 (4)二、相关规范和标准 (5)三、系统组成与原理 (6)3.1 光伏太阳能离网发电系统组成 (6)3.2 光伏太阳能离网发电系统主要组成 (7)3.3 离网系统原理示意图 (7)四、离网发电系统方案设计过程 (8)4.1 方案简介 (8)4.2 使用具体要求信息 (8)4.3 蓄电池设计选型 (9)4.4组件设计选型 (14)4.5 离网逆变器设计选型 (18)4.6 控制器设计选型 (19)4.7 交直流断路器 (20)4.8 电缆设计选型 (22)4.9 方阵支架 (22)4.10 配电室设计 (23)4.11 接地及防雷 (23)4.12 数据采集检测系统 (24)五、设备配置清单及详细参数 (25)六、系统建设及施工 (25)6.1 施工顺序 (25)6.2 施工准备 (26)6.3 工程施工 (27)七、系统安装及调试 (27)7.1 太阳电池组件安装和检验 (27)7.2 总体控制部分安装 (29)7.3 检查和调试 (29)八、工程预算分析报告 (30)8.1 投资估算内容 (30)8.2 工程预算 (30)九、运行及维护注意事项 (32)9.1 日常维护 (32)9.2 注意事项 (35)一、太阳能离网发电系统简介及建设内容参数1.1 太阳能离网发电系统简介独立光伏电站是独立光伏系统中规模较大的应用。

它的主要特点就是集中供电,如在一个十几户的村庄就可建立光伏电站来利用太阳能,当然这是在该村庄地理位置较偏远,无法直接利用电力公司电能的情况下,所能用到的方法。

用这种方式供电便于统一管理和维护。

而户用系统是采用分散供电的方式提供电能,如果要在该村庄安装户用光伏系统,这样每一户都得需这么一套光伏系统,它比起独立光伏电站来,所需的元器件规格要小,控制器、逆变器和蓄电池及负载都比较小,但是独立光伏电站和户用光伏系统基本结构是完全一致的。

太阳能光伏建筑一体化(Building Integrated Photovoltaic——BIPV)是应用太阳能发电的一种新形式,简单的讲就是将太阳能发电系统和建筑的围护结构外表面如建筑幕墙、屋顶等有机的结合成一个整体结构,不但具有围护结构的功能,同时又能产生电能供本建筑及周围用电负载使用。

还可通过建筑物输电线路离网发电,向电网提供电能。

太阳能光伏方阵与建筑的结合由于不占用额外的地面空间,是光伏发电系统在城市中广泛应用的最佳安装方式,因而备受关注。

1.2 建设位置参数1、项目名称:;2、项目地点:湖北省武汉市;3、经度:114°30’,纬度:30°60’;4、平均海拔高度:23.3m;1.3 项目用户负载参数用户平均日用电量如下表所列清单:二、相关规范和标准光伏离网逆变系统的制造、试验和验收可参考如下标准:GB/T 18479-2001 《地面用光伏(PV)发电系统导则》GB/T 20046-2006 《光伏(PV)系统电网接口特性》GB2297-89 《太阳光伏能源系统术语》GB/T 18210-2000 《晶体硅光伏方阵I-V 特性的现场测量》GB/T 20514-2006 《光伏系统功率调节器效率测量程序》GB/T 20513-2006 《光伏系统性能监测测量、数据交换和分析导则》GBT 18911- 2002 IEC 61646:1999 《地面用薄膜光伏组件设计鉴定和定型》GBT 20047.1 2006 《光伏(PV)组件安全鉴定+第一部分结构要求》GB/T 14285-2006 《继电保护和安全自动装置技术规程》GB4064-1984 《电气设备安全设计导则》GB/T 14549-1993 《电能质量公用电网谐波》DL5027-1993 《电力设备典型消防规程》EN50178 《用于电力安装的电气设备》《中华人民共和国消防法》《电力监管条例》(国务院令〔2005〕第432 号)《中华人民共和国电力法》《太阳能光电建筑应用财政补助资金管理暂行办法》的通知关于加快推进太阳能光电建筑应用的实施意见(财建[2009]128 号)三、系统组成与原理3.1 光伏太阳能离网发电系统组成光伏太阳能离网发电系统组成主要包括:太阳能电池板(阵列)、控制器、蓄电池、逆变器、用户(即照明负载)等组成。

其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。

(1)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。

其作用是将太阳的辐射能量转换为电能,或送往蓄电池中存储起来,或推动负载工作。

太阳能电池板的质量和成本将直接决定整个系统的质量和成本;(2)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。

在温差较大的地方,合格的控制器还应具备温度补偿的功能。

其他附加功能如光控开关、时控开关都应当是控制器的可选项;(3)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。

其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。

(4)离网逆变器:在很多场合,都需要提供 220VAC、110VAC 的交流电源。

由于太阳能的直接输出一般都是12VDC、24VDC、48VDC、110VDC、220VDC。

为能向220VAC 的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC 逆变器。

在某些场合,需要使用多种电压的负载时,也要用到DC-DC逆变器,如将24VDC 的电能转换成5VDC 的电能(注意,不是简单的降压)。

3.2 光伏太阳能离网发电系统主要组成主要组成如下:(1)光伏电池组件及其支架;(2)太阳能控制器;(3)蓄电池(组);(4)离网逆变器;(5)系统的通讯监控装置;(6)系统的防雷及接地装置;(7)土建、配电房等基础设施;(8)系统的连接电缆及防护材料。

3.3 离网系统原理示意图下图为离网系统原理示意图:离网系统示意图四、离网发电系统方案设计过程4.1 方案简介本太阳能离网发电系统因考虑全年平均用电量,将系统设计成全年发电量均衡,以此设计组件阵列倾角等参数。

本太阳能离网发电系统将采用分布式离网的设计方案,该5kWp 的离网发电系统,通过控制器将电能储存到蓄电池,再连接到离网逆变器,并通过逆变器将直流电转化成交流电供应交流负载使用。

另外,系统可选择`配置1 套监控装置,可采用RS232/RS485 或Ethernet(以太网)的通讯方式,实时监测离网发电系统的运行参数和工作状态。

4.2 使用具体要求信息(1)要求连续使用阴雨天数:2 天;(2)负载类型:220Vac 负载;(3)日用电量:根据用户电器设备功耗表统计,假设用户电器全额总功率为8210W,日均用电量为18420Wh,按照60%的同时使用率计算,得出电器总功率为4926W,日均用电量为11052Wh。

日均负荷平均耗电量时,增加5%的预期负荷留量,所以日均耗电总量为:11052Wh×1.05≈11.6kWh。

4.3 蓄电池设计选型蓄电池容量计算是根据系统日用电量、自给天数、逆变器效率以及蓄电池放电深度决定。

蓄电池的容量选择是家用太阳能光伏系统的关键问题之一,是本系统中维护成本最高的,所以合理选择蓄电池容量是非常重要的。

平均放电率计算公式一:加权平均负载工作时间 =Σ(负载功率×工作时间)/Σ负载功率=11052Wh/4926W=2.24h平均放电率(小时)=(自给天数×负载工作时间)/最大放电深度=(2×2.24h)/0.8=5.6h蓄电池容量计算公式一:CAP=(DL)/(DOD×ηout×V) =(2×11.6kWh)/(0.85×0.9×220V)≈137.85Ah ——CAP:电池容量,Ah;D:存电可用天数;L:最大平均日用电量,kWh;DOD:蓄电池放电深度;ηout:从许能系统到负载见的总效率;V:系统电压,V;计算中,逆变器日均效率取0.92,蓄电池充电控制器效率取0.96。

所以,ηout=逆变器日均效率×蓄电池充电控制器效率=0.92×0.96=0.9。

蓄电池容量计算公式二:蓄电池容量=(日均耗电量×自给天数)/(蓄电池放电深度×逆变器效率×系统电压)=(11.6kWh×2)/(0.85×0.85×220V)≈146Ah——蓄电池放电深度:取0.85;逆变器效率:取0.85;系统电压:220V;自给天数:2天;蓄电池容量计算公式三:CAP=(QL×D)/(V×η1×η2×η3×η4)=(11.6kWh×2)/(220V×0.85×0.85×0.98×0.92)≈162Ah——QL:日均耗电量,Ah;D:连续阴雨天数,2 天;V:系统电压,V;η1:蓄电池放电深度,0.85;η2:逆变效率,0.85;η3:输出线损,0.98;η4:蓄电池放电效率,0.92;蓄电池容量计算公式四:蓄电池容量C=(P×t×D) /(V×K×η2)=(11.6kWh×2)/(220V×0.7×0.85)≈177Ah——C:蓄电池组的容量,Ah;P:负载的功率,W;t:负载每天的用电小时数,h;D:连续阴雨天数(一般为2~3 天),取值2 天。

V:蓄电池组的额定电压,V;K:蓄电池的放电系数,考虑蓄电池效率、放电深度、环境温度、影响因素而定,一般取值为0.4~0.7。

该值的大小也应该根据系统成本和用户的具体情况综合考虑;η2:逆变器的效率,取值0.85;蓄电池容量计算公式五:蓄电池容量Bc=(A×QL×NL×To)/(Cc×V)=(1.4×11.6kWh×2×1)/(220V×0.85)≈174Ah——A:为安全系数,根据情况在1.2-1.4 之间选取,取1.4;QL:为负载的日平均耗电量,kWh;V:系统电压,V;NL:为该地区最长连续阴雨天数,取2 天;To:为温度修正系数,一般在0℃以上取1,-10℃以上取1.1,-10℃以下取1.2;Cc:蓄电池放电深度,取0.85;本系统中可以选用天津蓝天公司的铅酸电池或深圳欧赛公司的锂电池。

相关文档
最新文档