中考数学分式应用题解析PPT课件

合集下载

中考数学真题分类专题,初三数学第一轮复习资料分式方程的解法及应用PPT课件与练习题及答案

中考数学真题分类专题,初三数学第一轮复习资料分式方程的解法及应用PPT课件与练习题及答案

2 所以,原分式方程的解为x=
1
.
2
类型3 分母先因式分解,再乘最简公分母
5.(2019·黔东南)解方程:1 x 3 3x . 2x 2 x 1
解:原方程可化为1 x 3 3x , 2(x 1) x 1
方程两边乘2(x+1),得 2(x+1)-(x-3)=2×3x
解得x=1. 检验:当x=1时,2(x+1)≠0. 所以,原分式方程的解为x=1.
相向而行,甲船从A地顺流航行180 km时与从B地逆流航行的乙
船相遇,水流的速度为6 km/h,若甲、乙两船在静水中的速度
均为x km/h,则求两船在静水中的速度可列方程为( A )
A. 180 120 x6 x6
B. 180 120 x6 x6
C. 180 120 x6 x
D. 180 120 x x6
解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为 (x-9)元/条,根据题意得:3120 4200 ,解得:x=35,
x9 x
经检验,x=35是原方程的解,且符合题意,∴x-9=26 答:A型芯片的单价为26元/条,B型芯片的单价为35元/条. (2)设购买a条A型芯片,则购买(200-a)条B型芯片,根据题 意得:26a+35(200-a)=6 280, 解得:a=80. 答:购买了80条A型芯片
.
2.(2019·广州)甲、乙二人做某种机械零件,已知每小时
甲比乙少做8个,甲做120个所用的时间与乙做150个
所用的时间相等,设甲每小时做x个零件,下列方程
正确的是( D ) A. 120 150
x x8
B. 120 150
x8 x
C.
120 x8
150 x

中考数学复习《分式》教学课件

中考数学复习《分式》教学课件
00
2.分式的混合运算.
【例题 2】 (2013·衢州)化简:x2+x24-x+4 4-x-x 2. 分析:首先确定最简公分母为(x+2)(x-2);然后通分,
第二个分式的分子与分母同乘以(x+2);最后按同分母分
式的加减法法则进行加减,并化简.




x2+4x+4-2)
如果A、B表示_两__个__整__式_,并且B中含有_字__母_,那么式

A B
(B≠0)叫分式,(1)当_当__分__母__为__零_时,分式无意义;
(2)_____分__子__为__零__且__分__母__不__为时零,分式的值为零.
2.分式的基本性质 A×M A÷M
AB=_B_×__M__,AB=_B_÷__M__ (其中 A、B、M 为整式,且 M≠0)
解 原式=[(x+x(2)x-(2x)-2)-
x(x-1) x(x-2)

(x-2)2 x-4

x2-4-x2+x x(x-2)
×
(x-2)2 x-4

x(xx--42)×(xx--24)2
=x-x 2,3x+7>1,3x>-6,x>-2, ∵x 是不等式 3x+7>1 的负整数解,∴x=-1,
第五讲 分 式
考纲要求
1.了解分式的概念; 2.知道什么时候分式的值为零,什么时候分式有
a b
意义;
3.会利用分式的基本性质进行约分和通分; 4.会进行简单的分式的加、减、乘、除及乘方运
c c
算;
5.掌握分式的混合运算; 6.会对分式先化简,再求值.
c c
网络构建
分式的概念和基本性质
1.分式的概念
【即时应用 2】 计算:x-x 2+2-2 x=________. 答案 1

中考数学复习课件:第1轮第2章第7讲 分式方程及应用

中考数学复习课件:第1轮第2章第7讲 分式方程及应用

1.分式方程的解法: 用去分母法解分式方程的一般步骤: (1)在方程的两边都乘最简公分母,约去分母,化 成整式方程; (2)解这个整式方程;
(3)把整式方程的根代入最简公分母,看结果是不 是 0,使最简公分母不为 0 的根是原方程的根,使 最简公分母为 0 的根是增根,必须舍去. 在上述步骤中,去分母是关键,验根只需代入最 简公分母.
解:设B型机器人每小时搬运x千克原料,则A 型机器人每小时搬运(x+20)千克,
原料,依题意得x1+20200=1 0x00,解得x=100, 经检验,x=100是原方程的解,且符合题意, 则x+20=100+20=120. 答:A型机器人每小时搬运120千克原料,B型
机器人每小时搬运100千克原料.
3.(2020·吉林)甲、乙二人做某种机械零件.已 知甲每小时比乙多做 6 个,甲做 90 个所用的时间与 乙做 60 个所用的时间相等.求乙每小时做零件的个 数.解:设乙每小时做x个零件,甲每小时做(x+6) 个零件,
根据题意得x9+06=6x0,解得x=12, 经检验,x=12是原方程的解,且符合题意, 答:乙每小时做12个零件.
第一轮 考点突破
第二章 方程与不等式(组)
第7讲 分式方程及应用
1.(2020·盐

)分



x-1 x

0
的解为
x=
___1_____.
2.(2020·湘潭)解分式方程:x-3 1+2=x-x 1.
解:去分母得,3+2(x-1)=x,解得x=-1, 经检验,x=-1是原方程的解,所以原方程的 解为x=-1.
解:设该地4G的下载速度是每秒x兆,则该地5G 的下载速度是每秒15x兆,
由题意得6x00-61050x=140,解得x=4, 经检验:x=4是原分式方程的解,且符合题意, 则5G的下载速度是15×4=60(兆).

人教版中考数学专题课件:分式方程

人教版中考数学专题课件:分式方程

皖考解读
考点聚焦
皖考探究
当堂检测
分式方程
考点2 分式方程的解法
最简公分母 ,约 1.方程两边都乘以各个分母的____________ 去分母,化成整式方程; 2.解这个整式方程; 解分式方 3.检验:把求得的未知数的取值代入最简公分 程的一般 母,看是否等于0,使最简公分母为0的根是原 步骤 方程的增根,增根必须舍去. 注意:解分式方程可能产生增根,所以解分式 方程一定要验根.
皖考解读 考点聚焦 皖考探究 当堂检测
分式方程
解 析
(1)相等关系:甲工程队铺设 350 米所用的天数
=乙工程队铺设 250 米所用的天数. (2)不等关系:完成该项工程的工期不超过 10 天.
皖考解读 考点聚焦 皖考探究 当堂检测
分式方程
1. 解答分式方程应用题的关键是找到问题中的相等 关系,并根据相等关系列出方程,并解这个方程; 2.解分式方程应用题检验时,方程的根既要适合方 程,也要适合实际问题.
皖考解读
考点聚焦
皖考探究
当堂检测
分式方程
变式题 [2011· 济宁 ] 某市在道路改造过程中需要铺设 一条长为 1000 米的管道,决定由甲、乙两个工程队来完成这 一工程.已知甲工程队比乙工程队每天能多铺设 20 米,且甲 工程队铺设 350 米所用的天数与乙工程队铺设 250 米所用的 天数相同. (1)甲、乙工程队每天各能铺设多少米? (2)如果要求完成该项工程的工期不超过 10 天,那么为 两工程队分配工程量(以百米为单位)的方案有几种?请你帮 助设计出来.
皖考解读
考点聚焦
皖考探究
当堂检测
分式方程
考点3 分式方程的应用
列分式方程解应用题的一般步骤 审清题意,分清题中的已知量、未知量. 设未知数,设其中某个未知量为x,并注意单位. 根据题意寻找等量关系列方程. 解方程. 既要检验方程的解是否适合方程,又要检验是否符 合实际问题. 写出答案(包括单位).

广东省中考数学复习:分式课件

广东省中考数学复习:分式课件
PPT课程第3课 分式
主讲老师:
第3课 分式
一、知识要点
1. 分式的概念
形如AB (A ,B 是整式,且 B 中含有字母,且 B ≠0)的式子.
对应练习
1. 下列式子是分式的是( D )
A
.
x
2
B . 2x+y
C. 1 π
D
.
1
x+1
2. 分式有意义的条件 分母≠0.
2. 当 x___≠__2___时,分式xx+ -12有意义.
25. (2018·安顺)先化简,再求值:x2-48x+4÷x-x22-x-2, 其中x=2.
解:原式=x-2 2, ∵分母不为零,∴x=-2. 将 x=-2 代入得原式=-22-2=-21.
C组
26.(2017·河北)若3x--21x=( )+x-1 1,则( )中的数是
14.(2017·广东)先化简,再求值: x-1 2+x+1 2·(x2-4),其中 x= 5.三、中考实战
解:原式=2x,将 x= 5代入得原式=2 5.
பைடு நூலகம்
A组 15. (2018·常州)化简:a-a b-a-b b=___1_____. 16. (2017·咸宁)化简:x2-x 1÷x+x 1=__x_-__1___.
17. (2018·武汉)若分式x+1 2在实数范围内有意义,则实数 x 的取值范围是( D ) A. x>-2 B. x<-2 C. x=-2 D. x≠-2
18.(2018·滨州)若分式xx2--39的值为 0,则 x 的值为__-__3____. 19. 计算:6ca2b÷a32bc=___2_ca_3___.
5. 分式的运算 (1)分式乘法:ab·dc=badc; (2)分式除法:ab÷dc=ab·dc=abdc;

专题09 分式方程(课件)2023年中考数学一轮复习(全国通用)

专题09 分式方程(课件)2023年中考数学一轮复习(全国通用)

C. x 2 5 3
1
D.
x
0
知识点1:分式方程及其解法
典型例题
【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断. A、 x 1 不是方程,故本选项错误;
x
B、方程 1 1 的分母中含未知数x,所以它是分式方程.故本选项正确;
x 1 2x 3
C、方程 x 2 5 的分母中不含未知数,所以它不是分式方程.故本选项错误;
(2)设购买篮球y个,则购买排球(20-y)个, 依题意得:110y+80(20-y)≤1800, 解得 y 6 2 ,
3
即y的最大值为6, ∴最多购买6个篮球. 【点评】此题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是: (1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一 次不等式.
实际应用 的实际意义,检验结果是 分式方程的基本思想和列方程解应用题的
否合理.
意识.
思维导图
知识点梳理
知识点1:分式方程及其解法
1.分式方程:分母里含有未知数的方程叫做分式方程. 分式方程的重要特征:①含有分母;②分母中含有未知数;③是方程.
2.解分式方程的一般方法: (1)解分式方程的基本思想: 把分式方程转化为整式方程,解这个整式方程,然后验根,从而确定分式方 程的解.
3
D、方程 1 x 0 的分母中不含未知数,所以它不是分式方程.故本选项错误.
故选B.
【答案】B.
知识点1:分式方程及其解法
典型例题
【例2】(2022•牡丹江)若关于x的方程 mx 1 3无解,则m的值为( ) x 1
A.1
B.1或3
边同乘以(x-1)得:mx-1=3x-3,∴(m-3) x=-2. 当m-3=0时,即m=3时,原方程无解,符合题意. 当m-3≠0时,x 2 ,

分式化简求值复习ppt课件

分式化简求值复习ppt课件

x 1
xx 1
x
1x 1 x 12
xx 1
x 1
当x=2013时,原式=2013
x
直击中考
11.(2013本溪市)先化简,在求值:
(
m
m2 1 2 2m
1
m
m 2
m
)
(1
2 m
),其中m=-3
解:( m
m2 1 2 2m
1
m m2
m
)
(1
2 m
)
m 1m 1 m 12
m
mm 1
m m
2
4 2
] a
4
3
2
当a
3 2时,原式
1 32-2
1 3
3 3
6.(2013铁岭市)先化简,在求值:(1
7.(2013鞍山市)先化简,在求值:
a
1
) 1
a
2
4a a2 1
4
其中a=-2
(x 3 7 ) 4 x x3 x3
,其中 x
2 4
8.(2013抚顺市)先化简,在求值:(a 1
用符号语言表达: a c ac b d bd
两个分式相除,把除式的分子和分母颠倒位置
后再与被除式相乘。
a 用符号语言表达: c a d ad b d b c bc
分式的加减
同分母相加
B C BC AA A
异分母相加
B C BD CA BD AC
A D AD AD
AD
通分
在分式有关的运算中,一般总是先把分子、 分母分解因式;
足__x___3__
x3
1.分式的基本性质:
分式的分子与分母同乘以(或除以) 一个不为0的整式 分式的值 不变

第3节分式-中考数学一轮知识复习PPT课件

第3节分式-中考数学一轮知识复习PPT课件

3.通分:
(1)定义:把几个异分母的分式化为同___分__母__分式的过程叫做 分式的通分.通分的关键是确定各分母的_最__简__公___分__母__.
(2)确定最简公分母的方法: ①取各分母系数的最小公倍数,作为最简公分母的系数;取 各分母所有因式的最高次幂的积,作为最简公分母的因式. ②若分母是多项式,则应先把各个分母分解因式,再确定最 简公分母. 温馨提示
2.分式有、无意义和值为 0 的条件: 条件
分式AB 有意义
__B__≠_0__
分式AB 无意义
__B_=__0__
分式AB 的值为 0
__A_=__0__且 B≠0
3.最简分式:分子与分母没有_公__因__式__的分式.
分式的基本性质
1.基本性质:分式的分子与分母都_乘__或___除__以___同一个不等
B.缩小 10 倍
C.是原来的23
D.不变
☞命题点3 分式的运算 A
1 x+1
8.(2020·随州)x2-2 4
1 ÷x2-2x
的计
算结果为( B )
A.x+x 2
B.x+2x2
C.x-2x2
2 Dx(x+2)
☞命题点4 分式的化简及求值(8年7考)
9.(2018·广东 18 题 6 分)先化简,再求值:
6.(2020·花都区一模)计算:x+x 1 +x+1 1 =___1__.
7.(12020·黄冈)计算:x2-y y2 ÷1-x+x y 的结果 是_____x_-__y____.
8.(2020·东莞一模)先化简:1+a2-1 1
a ÷a-1

请在-1,0,1,2,3 当中选一个合适的数代入求值.
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

技术指导,并负担每天5元的误餐补助费。
请你帮助公司选择一种既省时又省钱的加工方
案20,20年1并0月2说日 明理由。
2
解:(1)设甲工厂每天能加工x件产品,则乙工厂每天能加 工(x+8)件产品。根据题意,得:
960 960
=
+20
x
X+8
整理得:x2+8x-384=0, x1=16,x2=-24. 经检验:x1=16,x2=-24都是原方程的根。但是每天 能加工的产品数不能为负数,
2020年10月2日
5
解:设甲种每辆客车有 x个座位,则乙种客车每 辆有(x+20)个座位,根据题意,可列方程:
3 60 3 60 +4 0

=1
x
x +2 0
解得:x1=60,x2=-120.
经检验x1=60,x2=-120都是原方程的根. 但x2=-120不合题意舍去,只取x=60,这时x+20=80. 答:甲乙两种客车的作为分别有个个座位。
x
解得:x1=-12,x2=10
经检验:x1=-12,x2=10都是原方程的根,
解:设他第一次买的小商品为x件.根据题意,可列方程:
5
2 0.8

=
x x+10 12
去分母,整理得x2-35x-750=0. 解得xl=50,x2=-15. 经检验,xl=50,x2=-15都是原方程的根.
但x=-15不合题意,舍去,所以只取x=50. 答:他第一次买小商品50件.
2020年10月2日
2020年10月2日
4
2.某校组织学生360名师生去参观某公园,如果租用甲 种客车客车刚好坐满;如果租用乙种客车可少用一 辆,且余40个空座位. (1)已知甲种客车比乙种客车少20个座位,求甲、乙两 种客车各有多少个座位。 (2)已知甲种客车的租金每辆400元,乙种客车的租 金每辆480元。这次参观同时租用这两种客车,其中甲 种客车比乙种客车少祖一辆,所用租金比单独租用任 何一种客车要节省, 按这种方案需用租金多少元?
答:装运乙种蔬菜2辆,装运丙种蔬菜6辆.
(2)设公司安排装运甲、乙、丙各为x、y、z辆,最 大利润为A百元.依题意知:
X+y+z=20 2x+y+1.5z=36
∴ X=16-0.5z y=4-0.5z
∴A=10x+7y+6z=188-2.5z
2020年10月2日
8
X=16-2.5z≥1 又∵ y=4-2.5z≥1
2020年10月2日 120×40+5×40=5000(元)
3
设他们合作完成这批新产品所用的时间 为y天,于是 y( 1 + 1 )=1
60
解得:y=24(天)所需费用为:
(80+120) ×24 +5 × 24=4920(元)
因为甲乙两家工厂合作所用时间和钱数都最少,所以 选择甲乙两家工厂合作加工完这批新残品比较合适。
2020年10月2日
6
3.下表所示为装运甲乙丙三种蔬菜的重量及利润, 某汽运公司计划装运甲乙丙三种蔬菜到外地销售(每 辆汽车按规定满载,并且每辆汽车只能装一种蔬菜)
甲 每辆汽车满载重量的吨数(吨) 2
每吨蔬菜可获利润(百元) 5
乙丙 1 1.5 74
⑴若用8辆汽车装运乙、丙种蔬菜11吨到A地销售,
所以x=-24舍去,只取X=16.当x=16时,x+8=24. 答:甲、乙两个工厂每天各能加工16件和24件新产品。
(2)甲工厂单独加工完这批新产品所需的时间为: 960÷16=60(天)
所需要费用为:
80×60+5×60=5100(元) 乙工厂单独加工完这批新产品所需的时间为:
960÷24=40(天) 所需要费用为:
问装运乙、丙两种蔬菜的汽车各多少辆?
⑵公司计划用20辆汽车装运甲、乙、丙三种蔬菜36
吨到B地销售(每种蔬菜不少于1车)如何安排装运,可
使公司获得最大利润?最大利润是多少?
2020年10月2日
7
解:(1)设用x辆汽车装运乙种蔬菜,则用(8-x)辆汽 车装运丙种蔬菜,则: x+1.5(8-x)=11
解得x=2,这时8-x=6
z≥1
∴z的范围是:1≤z≤6的整数.
又∵z必被2整除 ∴z=2、4、6 经检验:当z=2时, A最大=183, 这时x=15,y=3 答:安排装运甲种蔬菜辆15,乙种蔬菜辆3,丙种蔬菜2辆, 可使公司获得最大利润,最大利润是1.83万元.
2020年10月2日
9
4.(2000年辽宁省)某顾客第一次在商店买若干件小商品花去5元, 第二次再去买该小商品时,发现每一打(12件)降价0.8元,他比 第一次多买了10件,这样,第二次共花去2元,且第二次买的小 商品恰好成打,问他第一次买的小商品是多少件?
2020年10月2日
11
6.(01年济南市)小王在超市用24元钱买了某种品牌的 牛奶若干盒。过一段时间再去该超市,发现这种牛奶进行让 利销售,每盒让利0.4元,他同样用24元钱比上次多买2盒, 求他第一次买了多少盒这种牛奶?
解:设他第一次买了x 盒这种牛奶,根据题意,得
24 ( - 0.4)(x+2)=2 4
10
5.(01年吉林省)某文化用品商店出售一批规格相同的钢笔,如 果每支钢笔的价格增加1元,那么120元钱可以买到的钢笔数 量将会减少6支,求现在每支钢笔的价格是多少元?
解:设现在每支钢笔的价格是x元,依题意可得:
120 120

=6
x
x-1
整理得:x2+x-20=0,解得x1=4, x2=-5. 经检验:x1=4, x2=-5都是原方程的根, 但x2 =-5不合题意,舍去.∴x=4. 答:现在每支钢笔的价格是4元.
工完这批产品比乙工厂单独加工完这批产品多用20
天,而乙工厂每天比甲工厂多加工8件产品,公司
需付甲工厂加工费用每天80元,乙工厂加工费用每
天120元。
(1)求甲、乙两个工厂每天各能加工多少件新
产品。
(2)公司制定产品加工方案如下:可以由每个
厂家单独完成;也可以由两个厂家同时合作完成。
在加工过程中,公司需派一名工程师每天到厂进行
中考中的分式应用题解析
复习:
列方程解应用题的一般步骤: 分析----找出等量关系 设元----用含字母的代数式表示相关的量 列方程(组) 解方程(组) 检验并作答
2020年10月2日
1
1.(01年哈尔滨市)“丽园”开发公司生产的960件
新产品,需要精加工后,才能投放市场。现有甲、
乙两个工厂都想加工这批产品,已知甲工厂单独加
相关文档
最新文档