关于指纹传感器的调查报告

合集下载

传感器调研报告

传感器调研报告

传感器调研报告传感器调研报告在当下这个社会中,报告的适用范围越来越广泛,报告具有语言陈述性的特点。

那么什么样的报告才是有效的呢?以下是小编帮大家整理的传感器调研报告,欢迎大家分享。

传感器调研报告1纤传感器的分类光纤传感器具有多种分类方式,根据传感原理可分为功能型传感器和非功能型传感器。

功能型光纤传感器也叫传感型光纤传感器,光纤直接作为敏感元件;非功能型光纤传感器也叫传光型光纤传感器,光纤只作为传输光信号的媒介,需要利用其它的光敏元件来感知外界环境的变化。

纤传感技术的发展型光纤传感器当环境介质的折射率发生变化(如振动或温度变化等引起),传感光纤经过此处时的光波相位会发生变化。

对传感光纤中的相干光进行相位调制,检测段处就可以观察到外界环境变化带来的干涉结果的变化,这就是干涉型光纤传感器的工作原理。

目前最常用的干涉型光纤传感器有:迈克尔逊(Michelson)干涉型光纤传感器、马赫-曾德(Mach-Zehnder)干涉型光纤传感器、法布里-珀罗(Fabry-Perot 干涉型光纤传感器、萨格纳克(Sagnac)干涉型光纤传感器。

与传统光纤干涉仪传感器相比,全光纤M-Z干涉x传感器的结构更为简单。

在同一根光纤上制作两个相隔一定距离的光纤结构,使不同模式之间形成干涉,构成光纤内的M-Z干涉仪,因不需要耦合器,具有制作简单,成本低,尺寸小,灵敏度和稳定性高等显著的优点。

Hu Liang等人[一段液体填充的光子晶体光纤熔接到单模光纤上,构成了一种M-Z干涉仪,其温度和力传感的灵敏度分别为m/°C和-nm/N。

Hui Ding等人[过在单模光纤尾端熔接一小段光子晶体光纤,制成一种光纤F-P型温度传感器,在°C范围内温度响应灵敏度达到-/°C。

光纤光栅传感器根据光纤光栅周期的长短,将光栅分为光纤布拉格光栅和长周期光纤光栅。

光纤布拉格光栅的光谱是向前传输的光与反射回来的光,即传输方向相反的模式之间发生耦合。

指纹实验实验报告

指纹实验实验报告

指纹实验实验报告指纹实验实验报告一、引言指纹是人类独有的生物特征之一,具有独特性和稳定性。

本次实验旨在通过实际操作,探究指纹的形成原因、分类以及在犯罪侦查中的应用。

二、实验材料与方法1. 实验材料:- 指纹实验盒- 显微镜- 各种指纹收集工具(指纹笔、指纹粉、指纹卡等)2. 实验方法:- 准备工作:清洁实验台面,确保实验环境干净整洁。

- 收集指纹:使用指纹笔或指纹粉,将手指均匀地涂抹在指纹卡上。

- 观察指纹:将指纹卡放在显微镜下进行观察,记录指纹的形状、纹线等特征。

- 分析指纹:通过比对指纹特征,对指纹进行分类和识别。

三、实验结果与讨论1. 指纹的形成原因指纹的形成主要与胚胎发育过程中的皮肤形成有关。

在胚胎发育的早期,表皮层会形成一系列的褶皱,这些褶皱最终会发展成为指纹。

指纹的形成与个体的遗传因素有关,因此每个人的指纹都是独一无二的。

2. 指纹的分类根据指纹的形状和纹线特征,指纹可以分为三种基本类型:弓形指纹、环形指纹和拱形指纹。

每种类型又可以进一步细分为多个亚型。

指纹的分类有助于犯罪侦查中的指纹比对和识别工作。

3. 指纹在犯罪侦查中的应用指纹作为一种独特的生物特征,广泛应用于犯罪侦查和司法领域。

通过对现场指纹的收集和比对,可以确定嫌疑人的身份,为案件侦破提供重要线索。

指纹还可以用于刑事鉴定、身份验证等方面。

四、实验结论通过本次实验,我们深入了解了指纹的形成原因、分类以及在犯罪侦查中的应用。

指纹作为一种独特的生物特征,具有不可替代的优势,对于犯罪侦查和司法领域具有重要意义。

我们希望通过进一步的研究和实验,能够更好地利用指纹技术,提高犯罪侦查的效率和准确性。

五、实验心得本次实验让我对指纹的形成原因和分类有了更深入的了解。

通过实际操作,我学会了如何正确地收集和观察指纹,并对指纹的特征进行分析和比对。

指纹作为一种独特的生物特征,在犯罪侦查和司法领域具有重要应用价值。

我将继续深入学习指纹技术,为社会安全和司法公正做出贡献。

指纹识别技术现状及发展趋势研究

指纹识别技术现状及发展趋势研究

指纹识别技术现状及发展趋势研究指纹识别技术是一种通过分析人体指纹图案来辨识个体身份的生物识别技术。

近年来,随着生物识别技术的不断发展,指纹识别技术在各个领域得到了广泛应用,如手机解锁、门禁系统、身份认证等。

本文将就指纹识别技术的现状及发展趋势进行详细研究。

一、指纹识别技术的现状指纹识别技术是目前最成熟、最常见的生物识别技术之一,已经广泛应用于政府、企业、金融、军队等领域。

其主要优势包括:1.高安全性:指纹是每个人独一无二的生物特征,不易被伪造、篡改,因此具有很高的安全性。

2.快速便捷:与传统的身份验证方式相比,指纹识别技术具有速度快、操作简单的优势,可以提高工作效率。

3.易集成:指纹识别技术可以很容易地与其他系统集成,如门禁系统、支付系统等,为各种场景提供便利。

目前的指纹识别技术也存在一些问题,如受环境影响大、容易污染、侵犯隐私等。

如何进一步提高指纹识别技术的精准度和安全性,是当前亟待解决的问题。

随着科技的不断进步,指纹识别技术也在不断改善与完善。

以下是未来指纹识别技术的发展趋势:1.多模态生物识别技术的发展:未来的指纹识别系统将不仅仅依靠指纹,还会引入其他生物特征,如面部识别、虹膜识别等,从而提高生物识别系统的精准度和安全性。

2.深度学习技术的应用:随着人工智能技术的不断发展,深度学习技术已经被引入生物识别领域,将有望进一步提高指纹识别系统的准确率和识别速度。

3.生物识别技术的无感知化:未来的指纹识别系统将更加注重用户体验,通过无感知化技术,如声纹识别、人脸识别等,让用户在不知情的情况下完成身份验证,提高用户的使用便捷性。

4.应用领域的拓展:未来的指纹识别技术将向更多领域拓展,如医疗保健、智能家居、智能交通等,为人们的生活带来更多便利。

指纹实验报告

指纹实验报告

中央民族大学生命与环境科学学院遗传学实验报告人类指纹的采集识别与分析2014年11月9日人类指纹的采集识别与分析前言遗传学研究中根据遗传性状的表现特征将其分为两类,即数量性状(quantitativecharacter)和质量性状(qualitative character)。

质量性状通常差异显著,呈不连续变异,由主基因决定,杂交子代的表型呈现出一定的比例,可直接采用孟德尔遗传原理进行分析。

数量性状不同于质量性状,数量性状是可以度量的性状,呈连续变异,由多基因决定,各基因作用微小并且是累加的,呈剂量效应,因此通常要采用统计学方法分析。

指纹性状就是属于数量形状。

1880年henry fauld及william herschel相继提出利用指纹鉴定个人身份的设想。

galton研究了有血缘关系的人群的指纹证明了指纹花样对人来说是一个稳定的性状。

1924 年挪威女科学家bonnevie提出指嵴数计数法。

指纹在胚胎发育第13周开始形成,第19周完成。

因此如有某种遗传或生理因素造成嵴纹发育不良既能在指纹上反映出来。

本实验中,同学采用石墨粉填充沟纹再用透明胶粘手指的方法取自己的指纹,并利用这些指纹进行指嵴数计数、分析,从而对多基因遗传的特点有了更深刻地认识。

1. 材料和方法&设备和方法2b铅笔一只;约20cm×10cm的复印纸一张;透明胶带;直尺一把个人电脑及adobephotoshop软件;拍照设备一台。

2. 实验原理1.人类指纹的形成:指纹是指人手上的条状纹路,它们的形成依赖于胚胎发育时的环境和遗传因素。

指纹属于多基因遗传,在胚胎第12~13周(也有人提出15~16周)即已形成并保持终生不变。

每个人的指纹都是独一无二的,两人之间甚至双胞胎之间,不存在相同的手指指纹。

拥有相同指纹的可能性在10亿分之一以下。

因此指纹被称做是无法伪造的身份证。

对一个个体而言,指纹具有唯一性和稳定性。

指纹实验报告

指纹实验报告

指纹实验报告指纹实验报告指纹是每个人独一无二的身份特征,几乎所有人都具有指纹。

在犯罪学和法医学领域,指纹是一种重要的物证,可以用于破案和辨认身份。

本实验旨在通过收集和分析指纹样本,探讨指纹的特点和应用。

实验材料和方法本实验所需材料包括墨水、指纹纸和显微镜。

首先,将墨水涂抹在一张指纹纸上,然后将手指均匀地按压在墨水上。

接下来,将手指轻轻地按压在另一张指纹纸上,以留下指纹。

最后,使用显微镜观察指纹的细节。

实验结果通过显微镜观察,我们可以清晰地看到指纹的细节。

指纹由一系列的纹线组成,包括纵向的纹线和横向的纹线。

这些纹线形成了一个独特的图案,每个人的指纹图案都是不同的。

指纹的特点指纹具有以下几个特点:独一无二性、不可伪造性和稳定性。

独一无二性意味着每个人的指纹图案都是唯一的,没有两个人的指纹是完全相同的。

不可伪造性指的是指纹无法被伪造或改变,即使通过手术或其他方法,指纹图案也不会改变。

稳定性意味着指纹图案在一个人的一生中保持不变。

指纹的应用指纹在犯罪学和法医学领域有广泛的应用。

在犯罪现场,警方可以收集到嫌疑人的指纹,通过与数据库中的指纹进行比对,可以快速确定嫌疑人的身份。

指纹还可以用于解决无名尸体案件,通过比对尸体指纹与已知指纹的数据库,可以找到尸体的身份。

此外,指纹还可以用于个人身份认证。

现代手机、电脑和其他设备都配备了指纹识别功能,通过扫描指纹进行解锁,可以确保只有合法的用户才能访问设备。

指纹识别技术也被广泛应用于边境安全和出入境管理,可以加强边境的安全性和防止非法入境。

结论通过本实验,我们深入了解了指纹的特点和应用。

指纹作为一种独特的身份特征,在犯罪学和法医学领域发挥着重要的作用。

指纹的独一无二性、不可伪造性和稳定性使其成为一种可靠的身份验证方法。

指纹识别技术的广泛应用为我们的生活带来了便利和安全。

指纹识别报告

指纹识别报告

指纹识别报告
报告编号:FP-20210101
报告日期:2021年1月1日
尊敬的客户:
感谢您对本公司的信任和支持。

根据您的要求,我们进行了指纹识别分析,并提供以下报告:
1. 样本信息
受检人姓名:XXX
性别:男
年龄:32岁
指印样本:左手拇指
2. 检测结果
经过对受检人指印进行识别并比对,我们得出以下结论:
该指印与您所提供的比对指印高度相似,相似度达到99.99%以上,可以确认是同一个人的指印。

3. 检测方法
我们采用的技术为自动指纹识别技术,该技术是目前较为成熟的指纹识别技术之一。

采用该技术可确保识别结果的准确性和可靠性。

4. 注意事项
指纹识别仅能用于个人身份识别和指纹信息比对,不得用于非法用途。

另外,受检人需要保持指印清洁和完整,以确保识别效果。

5. 结论
根据指纹识别分析结果,可以确认受检人提供的指印为同一个人的指印。

如有任何问题,请随时联系我们。

此致
敬礼
报告单位:XXX指纹识别中心
签字:XXX
日期:2021年1月1日。

实验指纹总结报告范文(3篇)

实验指纹总结报告范文(3篇)

第1篇一、实验目的本次实验旨在通过学习指纹识别技术,了解指纹识别的基本原理和方法,掌握指纹采集、特征提取和匹配等关键技术,并利用实验平台对指纹进行识别,验证指纹识别算法的有效性。

二、实验原理指纹识别技术是一种生物识别技术,通过对指纹的采集、特征提取和匹配,实现对人身份的识别。

指纹识别的基本原理如下:1. 指纹采集:利用指纹采集设备(如指纹仪)获取指纹图像。

2. 图像预处理:对采集到的指纹图像进行预处理,包括去噪、二值化、增强等,以提高图像质量。

3. 特征提取:从预处理后的指纹图像中提取指纹特征,如脊线、端点、交叉点等。

4. 特征匹配:将待识别指纹的特征与数据库中已存储的指纹特征进行匹配,找出最相似的特征,从而实现指纹识别。

三、实验步骤1. 实验环境搭建:搭建指纹识别实验平台,包括指纹采集设备、计算机、指纹识别软件等。

2. 指纹采集:使用指纹采集设备采集指纹图像。

3. 图像预处理:对采集到的指纹图像进行预处理,包括去噪、二值化、增强等。

4. 特征提取:从预处理后的指纹图像中提取指纹特征。

5. 特征匹配:将待识别指纹的特征与数据库中已存储的指纹特征进行匹配。

6. 结果分析:分析实验结果,验证指纹识别算法的有效性。

四、实验结果与分析1. 实验结果本次实验共采集了10个指纹图像,分别进行了预处理、特征提取和匹配。

实验结果表明,指纹识别算法在10个指纹图像中均能正确识别出对应的指纹。

2. 结果分析(1)指纹采集:实验中使用的指纹采集设备能够稳定地采集指纹图像,图像质量较高。

(2)图像预处理:通过去噪、二值化、增强等预处理操作,提高了指纹图像的质量,有利于后续特征提取。

(3)特征提取:指纹特征提取算法能够有效地提取指纹图像的特征,包括脊线、端点、交叉点等。

(4)特征匹配:指纹匹配算法能够准确地匹配指纹特征,提高了指纹识别的准确率。

五、实验总结1. 通过本次实验,掌握了指纹识别的基本原理和方法,了解了指纹采集、特征提取和匹配等关键技术。

传感器调研报告

传感器调研报告

传感器调研报告《传感器调研报告》引言传感器是一种能够检测、测量和反馈特定环境条件的设备。

它们被广泛应用于工业领域、汽车制造、医疗保健、环境监测等领域。

为了更好地了解传感器的应用和发展趋势,我们进行了一项传感器调研。

调研目的该调研旨在了解传感器的种类、应用领域以及未来发展趋势,为企业和研究机构提供参考和指导。

调研方法我们通过文献查阅、网络搜索和实地走访的方式进行了调研。

我们关注了传感器的原理、分类、应用领域以及未来发展趋势。

调研结果1. 传感器的种类根据其原理和工作方式,传感器可以分为接触式传感器和无接触式传感器。

接触式传感器需要与被测物体接触,常见的有压力传感器、温度传感器等;无接触式传感器可以不直接接触被测物体,如红外传感器、声波传感器等。

2. 传感器的应用领域传感器在工业领域的应用非常广泛,用于监测生产过程中的各种参数;在汽车制造中,传感器用于监测车辆的各种状态;在医疗保健领域,传感器可用于监测患者的生理参数;在环境监测中,传感器可以用于监测空气质量、水质等。

3. 传感器的未来发展趋势未来,随着智能制造和智能物联网的发展,传感器将会更加智能化和多样化。

智能传感器将具备自学习和自适应能力,可以实现更精确的数据采集和分析。

此外,柔性传感器、微型传感器和纳米传感器等新型传感器技术也将会得到更多应用和发展。

结论传感器作为现代科技领域中的重要组成部分,其应用领域和发展前景广阔。

了解传感器的种类和应用领域,将可以更好地为企业和研究机构提供决策支持和发展方向。

综上所述,《传感器调研报告》对传感器的种类、应用领域和未来发展趋势进行了深入的调研和分析,为相关行业提供了重要的参考和指导。

希望该调研能够为传感器技术的应用和发展提供有益的思路和支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于指纹传感器的调查报告指纹传感器是获取指纹图像的专用器件,用以实现指纹自动采集,在自动指纹识别系统中起着关键作用。

指纹传感器是指纹图像的自动采集和生成部分,是指纹识别产品的数据输入端。

绝大多数指纹传感器通过光学扫描、半导体热敏、半导体电容等三种主要传感技术采集指纹图像。

指纹传感器的发展现状我国生物(指纹)识别技术发展相对于美国、日本要晚10-20年的时间,指纹识别产品在我国最早出现是在90年代初期,当时只是寥寥数十家,而产业化起步应该是2000年以后。

到2000年,随着移动存储设备等数码类产品的大量使用,指纹技术与数码类产品结合应用的局面才铺开,所以指纹识别产业在我国,目前仍处于形成阶段,如果说2004年之前处于从点到线的状态,那么2004年之后指纹产业开始了从线到面的发展。

早期的指纹图像采集主要运用油墨按印等物理方式,如果油墨及纸张质量有问题,或按压压力不均,或按压位置、方向差异,或手指损伤、变形等,都会导致采集的指纹图像质量不理想,进而影响该技术应用。

为克服物理方式的缺点,发展光学传感器、半导体传感器、超声波传感器等对获取高质量指纹图像提供了良好的技术保障,具有很好实用价值。

同时,更先进的指纹图像传感器亦在研发,目的是获得足够的指纹细节,并使指纹图像达到较高分辨力,提高指纹识别准确性、可靠性。

指纹传感器分类、原理及优缺点:指纹传感器按传感原理,即指纹成像原理和技术,分为光学指纹传感器、半导体电容传感器、半导体热敏传感器、半导体压感传感器、超声波传感器和射频RF传感器等。

目前指纹传感器只要分为以下几类,同时也是较为常见的指纹传感器:1 光学指纹传感器始于1971年的光学传感器是研究最早、应用最广泛的指纹图像传感器。

其技术关键是光的全反射,手指置于加膜台板,照射到压有指纹的玻璃表面时,反射光经电荷耦合器件转换为相应电信号,并传输后端进一步处理。

其中,反射光强度取决于两方面因素:压在玻璃表面指纹的脊和谷的深度、皮肤与玻璃间的油脂和水分。

由于光线经玻璃照射到谷的区域后在玻璃与空气的界面发生全反射至CCD,而射向脊的光线被脊与玻璃的接触面吸收或者漫反射到其他地方,这样,即可利用CCD将有深色脊和浅色谷构成的指纹图像转换成数字信号。

当然,为获得较高质量的指纹图像,还需采用自动或手工方式调整图像亮度等。

光学指纹图像传感器优点主要表现为经历长期实用检验、系统稳定性较好、成本亦较低、能提供分辨力为500dpi的图像。

能实现较大区域的指纹图像采集,有效克服大面积半导体指纹传感器价格昂贵缺点。

但指纹图像采集区域较大时所需焦距亦较长,采集设备体积需随之增大,否则会导致采集的图像边缘线形发生扭曲。

该传感器局限性主要体现于潜在指印方面(潜在指印是手指在台板上按完后留下的),不但会降低指纹图像的质量,严重时,还可能导致2个指印重叠,显然,难以满足实际应用需要。

此外,台板涂层及CCD阵列会随时间推移产生损耗,可能导致采集的指纹图像质量下降。

随着光学技术发展,一些新颖的技术手段亦已应用于指纹图像的采集,这样,能显著减小光学指纹传感器的体积。

例如:将纤维光束垂直照射指纹表面,探测其反射光;或将含有微型棱镜矩阵的表面安装于弹性平面,手指压该表面时,脊和谷压力的不同导致微型棱镜表面改变,这种变化通过棱镜的光反射体现出来,进而实现指纹图像采集。

光学指纹传感器特有的高安全系数使得其运用极为广泛,从事该技术开发及应用的企业较多,中科院长春光机所和美国Identix是其中较突出的开发公司。

目前,应用最广泛的是美国Digital Persona公司U.are.U系列,它集成精密光学系统、发光二极管、半导体摄像头等,具有三维活体特点,能接收各个方向输入的指纹,即使指纹旋转180°亦可接收。

需特别指出的是,虽然大多数公司都利用光学技术采集指纹图像,但其发展趋势是新颖的、高质量的半导体指纹传感器。

2 半导体指纹传感器始于1998年的半导体指纹传感器应用多种新颖技术手段实现指纹图像采集,包括半导体电容式传感器、半导体压感式传感器(其表层是富有弹性的压感介质材料,依指纹凹凸转化为相应电信号,并产生具有灰度级指纹图像)、半导体温度感应传感器(通过感应压在设备上的脊和远离设备的谷间温度差异获取指纹图像)等,其中,应用最广泛的是硅电容式指纹传感器。

与光学设备多采用人工调整改善图像质量不同,半导体指纹传感器采用自动控制技术调节指纹图像像素行及指纹局部范围敏感程度,在不同环境下结合反馈信息生成高质量图像。

由于提供了局部调整能力,即使对比度差的图像(如手指压得较轻的区域)也能被有效检测到,并在捕捉瞬间为这些像素提高灵敏度,生成高质量指纹图像。

半导体指纹传感器优点为图像质量较好、一般无畸变、尺寸较小、易集成于各种设备。

硅电容式指纹图像传感器技术基础是电容值检测,包括常用的直流电容法,交流电容法。

与光学传感器扫描指纹不同,硅电容式指纹传感器通过测量传感器与手指接触/非接触所产生电流变化(电子度量)检测有无指纹,并根据指纹峰、谷等纹理信息实现高可靠性图像搜索。

其技术关键:在半导体金属阵列集成约100000个电容式传感器(外层绝缘),传感器阵列每一点是个金属电极,相当于电容器阳极;手指放在上面时,皮肤组成电容另一极,传感面形成两极间介电层。

电容值随脊(近的)和谷(远的)相对于传感器阵列的距离而改变。

由于指纹纹路深浅不同,硅表面电容阵列各电容值亦有异,该电容值被转换成8bit灰度图像,测量并记录各点电容值,即可获得具有灰度级指纹图像。

当然,各厂商可能采用不同形式电容方法开发产品,其中,技术新颖且先进的首推Veridicom公司推出的ImageSeekTM,它通过改变指纹传感器电容阵列参数,能在1s内扫描多帧指纹图像,并自动选择图像质量最好的。

该技术能适应各种复杂指纹,并能在各种环境下获得从干手指到湿手指的高质量指纹图像,从而显著减低指纹识别系统误识率、拒识率。

作为该技术具体应用而推出新颖的、性能优异的自动指纹图像质量提取的传感器FPS200,它由256列,300行电容传感阵列组成,分辨力高达500dpi,内含用于采集指纹图像的采样保持电路,通过检测各传感单元每次充电、放电后的电压差可获得相应传感单元电容值。

每次捕捉各行图像后,该行各传感单元内就相应存放待数字化电容值,这样,通过调整放电电流大小和放电时间即可改善FPS200灵敏度。

其高性能、低成本、微功耗、小尺寸等特性非常适合便携式产品要求,可广泛用于指纹认证、门禁控制、网络登录等。

半导体指纹传感器特有的优点吸引了Sony,Infineon等知名公司,并开发出各具特色的产品。

当然,作为极具潜力、代表未来发展方向的指纹传感器也存在一定局限性,表现为易受静电影响,严重时,传感器可能采集不到图像,甚至本身也会被损坏;手指汗液盐分或其他污物,以及手指磨损等均会造成图像采集困难,其耐磨性亦不及玻璃;大面积制造成本较高,故取像区域较小;传感器稳定性,特别是次最优性能等方面有待进一步验证。

3 超声波指纹传感器超声波指纹传感器是目前精度最高、准确性最好的指纹图像采集器件。

技术关键:超声波扫描指纹表面后,由相应接收设备获取反射信号,由于指纹脊和谷超声波阻抗不同,因而,反射到接收器的超声波能量亦各异,测量该超声波能量大小即可获得相应指纹图像。

与光学指纹传感器类似,超声波传感器亦首先扫描指纹表面,通过接收设备获取反射信号,并转换为指纹图像。

但超声波能有效穿透指纹表面的灰尘、汗渍等(该特点远非光学采集技术可比),采集图像是实际指纹凹凸真实反映,采集的指纹图像质量极高。

由于多种原因,该技术尚未大规模推广应用,其性能亦需进一步提高、完善。

部分实验性应用表明:超声波指纹传感器同时具备光学传感器和半导体传感器的诸多优点,具有较为优越的综合性能。

如,使用方便、耐用性好、成像面积大、图像质量高(分辨力高达1000dpi)等,最优采集性能方面亦较硅电容式传感器要好。

作为该技术开拓者,著名的Ultra-Scan公司首开超声波指纹图像采集传感器先河,为高质量指纹图像采集发挥了重要作用。

当然由于超声波传感器尚未广泛应用,因而很难准确评价其在长期大规模应用中的综合性能。

4. 温差感应式指纹传感器温差感应式识别技术是基于温度感应的原理而制成的,每个像素都相当于一个微型化的电荷传感器,用来感应手指与芯片映像区域之间某点的温度差,产生一个代表图像信息的电信号。

它的优点是可在0.1s内获取指纹图像,而且传感器体积和面积最小,即目前通常所说的滑动式指纹识别仪就是采用该技术。

缺点是:受制于温度局限,时间一长,手指和芯片就处于相同的温度了。

指纹传感器的性能指标衡量一个指纹传感器的性能好坏,主要看以下几个方面。

1. 成像质量指纹传感器成像质量是衡量指纹传感器性能的首要指标。

成像质量主要表现为对指纹图像的还原能力和去噪能力。

性能良好的指纹传感器产生的图像"失真"和"形变"非常小,后续图像处理时可以忽略不计。

分辨率是影响成像质量的第二个关键因素。

分辨率越高,也就是单位面积上传感单越多,其获得的指纹图像就越细致真实。

2. 对不同类型手指的适用能力由于不同手指指纹的纹路深浅不同,干湿度不同,污渍程度不同,老化程度不同。

指纹传感器需要能够对所有这些情况有效兼容,是其适用能力的表现。

当然不是所有指纹传感器都对这些类型手指作到"一网打尽"式的兼容,在选择指纹传感器时,需要针对应用场合的不同来选择。

3. 对气候环境的适应性有的指纹传感器对潮湿和干燥的天气不能同时适应。

尤其在中国,地域宽广,各地气候相差较大。

在这种情况下,选择指纹传感器需要关注环境湿度和抗静电能力,即ESD参数。

ESD一般分为四个等级,第四级要达到15KV以上。

在南方湿度大的环境中使用时,需要关注其相对湿度方面的参数,确保指纹传感器可以工作正常。

4. 图像采集速度第四看采集速度。

采集速度表现为从手指放到传感器接触面后多长时间内完成一次指纹采集的时间,或者单位时间内可以采集的次数。

指纹采集速度的快慢直接影响到用户的使用体验。

5. 电气特性电气特性是从产品化的角度考虑指纹传感器是否真正可用于某种产品。

电气特性主要关注两个参数,工作电压和功耗。

如把指纹传感器应用到手机上,必然要考虑手机的现有供电方式能否满足增加了指纹传感器后的电压和功耗的要求。

大部分指纹SENOSR的电压都在3.6V以下(含)。

6. 硬件接口硬件接口能力也是从产品化的角度来衡量指纹传感器的。

硬件接口能力直接影响指纹图像数据的传送方式,影响着与指纹处理模块之间的通讯方式和通讯速度。

目前USB接口已经成为外设与主机通讯的最主要方式,已具备USB接口能力的指纹传感器,可以直接与USB 端口相连。

相关文档
最新文档