2019年人教版高中数学必修三2.2.2 频率分布直方图与折线图优质课教案

合集下载

《2.2.2频率分布直方图与折线图》课件1-优质公开课-苏教必修3精品

《2.2.2频率分布直方图与折线图》课件1-优质公开课-苏教必修3精品

作总体的分布.
(2)频率分布直方图的特点:从频率分布直方图可以清楚 地看出数据分布的总体态势,但是从直方图本身得不出
要 点 导 航
所以,把数据表示成直方图后,原有的具体数据信息就 被抹掉了. 注意 ( 1 ) 为方便起见,组距的选择应力求“取
整”,如果极差不利于分组 ( 如不能被组数整除 ) ,要适
布规律,这样的直方图称为频率分布直方图,简称频率 直方图. (1)频率分布直方图的绘制方法与步骤. S1 先制作频率分布表,然后作直角坐标系.
S2 把横轴分成若干段,每一段对应一个组的组距.
S3 在上面标出的各点中,分别以相邻两点为端点的
线段为底作
要 点 导 航
频率 长方形,它的高等于该组的 .每个长方形的面积恰好是该 组距 组的频率.这些长方形就构成了频率分布直方图. 频率 因为小长方形的面积=组距× =频率,所以各小长方形 组距 的面积表示相应各组的频率.这样,频率分布直方图就以面积的 形式反映了数据落在各个小组内的频率大小.在频率分布直方图 中,各小长方形的面积之和等于 1.
组数 也在增加,相 容量的增加,作图时所分的 ________ 应的频率分布折线图会越来越这条光滑曲线就叫做______________ 在各个区域内取值 个总体____ ________ ____的规律.
要 点 导 航
一、频率分布直方图
频率分布直方图:利用直方图反映样本的频率分
典 例 剖 析
题型一
频率分布直方图
例1下表给出了某校120名12岁男孩的身高资料(单
位:cm):
身高 [122,126) [126,130) [130,134) [134,138) 人数 5 8 10 22 [138, 142) 33

《2.2.2频率分布直方图与折线图》教案新部编本1

《2.2.2频率分布直方图与折线图》教案新部编本1

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校1.列频率分布表的一般步骤是什么?能否根据频率分布表来绘制频率直方图?2.作频率分布直方图的方法为:3.如果将频率分布直方图中各相邻矩形的上底边中点并顺次连结起来,就得到_________,简称___________.4.频率折线图的优点是:__________________________.如果样本容量取得足够大,分组的组距取得足够小,那么相应的频率折线图将趋于一条光滑的曲线,我们称这条光滑的曲线为总体分布的___________.例题剖析例1 下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失物数用条形图表示.例2 作出例1中数据的频率分布直方图.例3 为了了解一大片经济林生长情况,随机测量其中的100株的底部周长,得到如下数据表(单位:cm)(2)绘制频率分布直方图;(3)估计该片经济林中底部周长小于100cm 的树木约占多少,周长不小于120cm 的 树木约占多少.巩固练习1.在频率分布直方图中,所有矩形的面积和为_________.2.200辆汽车通过某一段公路时的时速如下图所示,则时速在的汽车大约有______辆.km ).0.0.0.0课堂小结什么是频数条形图、频率直方图、折线图、密度曲线.课后训练一基础题1.在100人中,有40个学生,21个干部,29个工人,10个农民,则29.0是工人( )A.频数B.频率C.累计频率D.累计频数2.对于样本频率分布折线图与总体密度曲线的关系,下列说法中正确的是( ) A.频率分布折线图与总体密度曲线无关;B.频率分布折线图就是总体密度曲线;C.样本容量很大的频率分布折线图就是总体密度曲线;D.如果样本容量无限增大,分组的组距无限减小,那么频率分布折线图就会无限接近于总体密度曲折线.3.在频率分布直方图中,各个小长方形的面积表示( ) A.落在相应各组的数据的频数B.相应各组的频率.C.该样本所分成的组数D.该样本的样本容量4.容量为100的某个样本数据拆分为10组,并填写频率分布表,若前七组频率之和为79.0,则剩下的三组中频率最大的一组的.0,而剩下的三组的频率依次差为05频率为_________.5.在一个小时内统计一传呼台接收到用户的呼唤次数,按每分钟统计如下:00121223410125312224 24311323461202313141 12023425021103213120写出一分钟内传呼呼唤次数的频率分布表,并画出频率分布图.二提高题6.在一个容量为的样本,数据的分组及各组的频数如下:[)5.15,5.123[)5.18,5.158[)5.21,5.189[)5.24,5.2111[)5.27,5.2410[)5.30,5.275[)5.33,5.304(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)根据频率分布直方图估计,数据落在[)5.24,5.15的可能性约是多少?7.姚明在2004NBA赛季常规赛82场比赛的前80场中,带领休斯顿火箭队取2003-得了较好的战绩,提前锁定了季后赛资格.以下是姚明在这80场比赛中的得分表现:20,,2112,1218,,21,,,,1219,19201016,16,,2312,,10,21,,18,,141112,2019,8,14,,,152216,22,,21,2117,2913,,15,,12,211615,4,10,,6,22,1416,29,41371720,,,12,,25,9,12,7,16,16,,1717,1929,10,,3314,13.11,,29,27,23,15,2112,15,12,,,6,25,2814,,,1627(1)如果将这个数据分为组,作出这组数据的频率分布表;(2)画出频率分布直方图并作出频率折线图;(3)在频率分布直方图中作出密度曲线.。

《频率分布直方图》示范公开课教案【高中数学必修第一册北师大】

《频率分布直方图》示范公开课教案【高中数学必修第一册北师大】

《频率分布直方图》教学设计1.通过实例进一步体会分布的意义与作用,在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图,体会它们的特点.2.学习整理、分析数据,提取信息,将实际问题数据化,培养学生的分析、解决问题的能力.3.在解决统计问题的过程中,体会用样本估计总体的思想,会用祥本的频率分布估计总体分布,会用样本估计总体的思想解决一些简单的实际问题,体会统计思维与确定性思维的差异.重点:会识画频率分布表、频率分布直方图、频率折线图,能够从频率分布直方图中提取需要的数据信息.难点:体会、理解用样本估计总体的思想,识画统计图.一、新课导入情境:为了解本市居民的生活成本,同学甲利用假期对所在社区进行“家庭数”和“家庭每月日常消费额”的调查.他把调查得到的消费额按大小进行分组,并计算出每组数据在整个数据中占的百分比——频率,结果如表.思考:为什么调查结果给出的是频率表,而不是频数表?相对于频数表,频率表有什么好处?答:频率与总体关系密切,反映了相对总数而言的相对强度,其所携带的总体信息远超过频数.二、新知探究问题1:整理数据得工作通常是需要图示的,常见的统计图有哪些?它们的功能适合表◆教学目标◆教学重难点◆◆教学过程示什么?答:直方图、折线图、扇形图.直方图适合表示大小,折线图适合表示趋势,扇形图适合表示比例.追问:直观地表示频率,想到直方图,而扇形图是圆内面积占比来表示比例的.但我们想在平面直角坐标系中直观的表示这个比例该怎么办呢?答:那就需要在平面直角坐标系中用面积表示频率.选用矩形面积去表示,将矩形横向宽度就是每组数据所在区间宽度,那么自然纵向就是频率与组距的比值.问题2:将情境中的数据,按照上面方法制图,并总结这种图有哪些优点呢?答:图中每个小矩形的底边长是该组的组距,每个小矩形的高是该组的频率与组距的比,从.我们把这样的图叫而每个小矩形的面积等于该组的频率,即每个小矩形的面积=组距×频率组距作频率分布直方图.频率分布直方图以面积的形式反映了数据落在各个小组的频率的大小.频率分布直方图的好处在于:能清楚直观地显示各组频率分布情况及各组频率之间的差别;当考虑数据落在若干个组内的频率之和时,可以用相应矩形面积之和来表示.问题2:前面,我们根据频率表,画出了频率分布直方图,那么如何根据样本数据画出频率分布直方图呢?答:实际上,我们如果能得到频率分布表,频率分布直方图按照上面的方法即可.一般来讲我们分为五步:(1)求极差;(2)决定组距和组数;(3)将数据分组;(4)列频率分布表;(5)绘制频率分布直方图.实例分析.1895年,在英国伦敦有106块男性头盖骨被挖掘出土.经考证,这些头盖骨的主人死于1665年─1666年的大瘟疫.人类学家分别测量了这些头盖骨的宽度,数据如下(单位:mm):146 141 139 140 145 141 142 131 142 140 144 140138 139 147 139 141 137 141 132 140 140 141 143134 146 134 142 133 149 140 140 143 143 149 136141 143 143 141 138 136 138 144 136 145 143 137142 146 140 148 140 140 139 139 144 138 146 153148 152 143 140 141 145 148 139 136 141 140 139158 135 132 148 142 145 145 121 129 143 148 138149 146 141 142 144 137 153 148 144 138 150 148138 145 145 142 143 143 148 141 145 141请你估计在1665年─1666年,英国男性头盖骨宽度的分布情况.总体是1665年─1666年的英国男性头盖骨的宽度,我们要通过上面挖掘出土得到的样本信息,来估计总体的分布情况.因为总体分布是指总体中每类(组)个体所占的比例(百分比),所以我们需要将样本中每类(组)个体所占的比例整理、表达出来.首先将数据排序,得到宽度的最大值是158mm,最小值是121mm.为了更深入地挖掘数据蕴含的信息,得到总体分布信息,我们按照如下步骤处理数据.(1)计算极差:158-121=37mm.这说明样本观测数据的变化范围是37mm.]=8,即可以将数据分为(2)确定组距与组数:若取所有的组距为5mm,则组距[3758组,这说明这个组距是比较合适的.合适的组距和组数对发现数据分布规律有重要意义.组数过少会将很多分布的信息丢失;组数过多则可能会出现很多空档,无法反映实际的分布.当数据在120个以内时,通常按照数据的多少分成5组~12组.在实际操作中,一般要求各组的组距相等.分组时,可以先确定组距,也可以先确定组数.(3)分组:所以本例中的106个数据可按如下方式分为8组:[120,125),[125,130),[130,135),[135,140),[140,145),[145,150),[150,155),[155,160).由于组距为5mm,8个组距的总长度超过极差,因此可以使第一组的左端点略小于数据中的最小值,最后一组的右端点略大于数据中的最大值.(4)列表:统计各组的信息(5)画频率分布直方图:思考:前面我们学习过平均数、众数、中位数,在频率分布直方图中,这些数据如何体现?答:在频率分布直方图中,平均数的估计值等于频率分布直方图中每个小矩形的面积乘小矩形底边中点的横坐标之和;中位数的估计值,应使其左右两边的直方图面积相等;最高小矩形的中点所对应的数据值即为这组数据的众数.探究:对于某一个总体来说,频率分布表中的数字及频率分布直方图的形状是否唯一确定?当样本确定以后,频率分布表中的数字及频率分布直方图的形状是否就确定了?如果是变化的,这个变化与什么有关?当样本容量逐渐增大时,直方图的分布有无规律可循?答:由于样本的随机性,频率分布表中的数字及频率分布直方图的形状都会随着样本的改变而改变;样本确定后频率分布表中的数字和频率分布直方图的形状都与分组数有关,频率分布直方图的形状还与平面直角坐标系的单位长度选取有关.频率分布是有规律的,若固定分组数,随着样本容量的增加,频率分布表中的各个频率会稳定在相应分组的某个数值上.频率折线图在频率分布直方图中,按照分组原则,再在左边和右边各加上一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到频率折线图.想一想:频率折线图能否大致反映总体的情况?如果不断增大样本容量,分组数也随之增多,频率折线图会有怎样的变化?答:一般地,样本容量越大,用样本的频率分布去估计总体的分布就越精确.随着样本容量的增大,所划分的区间数也可以随之增多,而每个区间的长度则会相应随之减小,相应的频率折线图就会越来越接近于一条光滑曲线.三、应用举例例1:某中学为了了解九年级学生中女生的身高(单位:cm)情况,对部分九年级女生的身高进行了一次测量,所得数据整理后列出的频率分布表如下:例2:如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布解:样本中平均气温低于22.5 ℃的城市的频率为0.10×1+0.12×1=0.22,样本中的城市由频率分布直方图进行相关计算时,需掌握下列关系式: (1)小长方形的面积=组距×频率组距=频率;(2)各小长方形的面积之和等于1;(3)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数.四、课堂练习1.如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率是( )A .75%B .25%C .15%D .40%2.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图所示),由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层随机抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.参考答案:1.75%.解析:大于或等于60分的共四组,它们是[59.5,69.5),[69.5,79.5),[79.5,89.5),[89.5,99.5],故样本中60分及以上的频率为(0.015+0.03+0.025+0.005)×10=0.75.由此可估计这次数学竞赛的及格率为75%.2.0.030;3.五、课堂小结1.本节我们学习了频率分布直方图,对于给定的样本,画频率分布直方图的步骤是:(1)求极差;(2)决定组距和组数;(3)将数据分组;(4)列频率分布表;(5)绘制频率分布直方图.2.在频率分布直方图中,横轴表示样本数据和分组情况;纵轴表示频率与组距的比;数据落在各小组内的频率用小矩形的面积表示,所有小矩形面积的总和等于 1.平均数的估计值等于每个小矩形的面积乘小矩形底边中点的横坐标之和;中位数的估计值,应使其左右两边的直方图面积相等;最高小矩形的中点所对应的数据值即为这组数据的众数.3.在频率分布直方图中,按照分组原则,再在左边和右边各加上一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到频率折线图.如果样本容量不断增大,分组的组距不断缩小,频率折线图就越来越接近于一条光滑曲线.4.通过提取频率分布直方图、频率折线图中的数据,我们可以对总体相应的数据进行估计.由于提取样本的随机性,这种估计可能会有偏差.频率分布一般随着样本容量的增大而更加接近于总体分布.六、布置作业教材第164页,练习第1题.教材第165页,习题6—3A组第1题.。

高一必修3 2.2.2用样本的频示范课率分布估计总体的分布

高一必修3  2.2.2用样本的频示范课率分布估计总体的分布

不足:
当样本数据较多或数据位数较多时,茎叶图就 显得不太方便。
P71练习3、下面一组数据是某生产车间30名工人 某日加工零件的个数,请设计适当的茎叶图表示 这组数据,并由这图出发说明一下这个车间此日 的生产情况。 134 112 117 126 128 124 122 116 113 107 116 132 127 128 126 121 120 118 108 110 133 130 124 116 117 123 122 120 112 112
甲:13, 51, 23, 8, 26, 38, 16, 33, 14, 28, 39 乙:49, 24, 12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39 用茎叶图表示两人成绩,并比较甲、乙成绩并得出统计 结论 甲 乙 8 4, 6, 3 3, 6, 8 3, 8, 9 1 0 1 2 3 4 5 2, 5, 1, 4, 0 5 4 6, 1, 6, 7, 9 9



统计结论:
1、乙运动员的得分基本是对称的,叶的分布 是“单峰”的,有10/13集中在茎2,3,4上, 中位数是36;甲运动员的得分除一个特殊得 分(51分)外,中位数是2பைடு நூலகம்.
2、乙运动员的平均得分大于甲运动员的平均 得分(乙运动员得分普遍大于甲运动员的得 分)。
3、乙运动员的得分比甲运动员的得分更集 中。乙运动员更稳定。
频率分布直方图如下:
频率
组距
0.50 0.40 0.30 0.20 0.10 月均用水量 /t 4.5
0.5
1 1.5 2 2.5 3
3.5 4
作用:
能反映数据的变化趋势
二、总体密度曲线 利用样本频率分布对总体分布进行相应估计

2019-2020学年度最新高中数学苏教版必修3教学案:第2章 2-2 2-2-1 2-2-2 频率分布表 频率分布直方图与折线

2019-2020学年度最新高中数学苏教版必修3教学案:第2章 2-2 2-2-1 2-2-2 频率分布表 频率分布直方图与折线

2019-2020学年度最新高中数学苏教版必修3教学案:第2章 2-2 2-2-1 2-2-2 频率分布表 频率分布直方图与折线图-含解析.2.1 &2.2.2 频率分布表 频率分布直方图与折线图[新知初探]1.频率分布表(1)定义:当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布.我们把反映总体频率分布的表格称为频率分布表.(2)我们将整个取值区间的长度称为全距,一般的全距等于数据中最大值与最小值之差;分成的区间的长度称为组距.(3)绘制频率分布表的步骤:①求全距,决定组数和组距,组距=全距组数.②分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间. ③登记频数,计算频率,列出频率分布表. [点睛](1)在频率分布表中,除最后一个区间是闭区间,其他区间均为左闭右开区间,这样做的目的是为了不重不漏,避免丢失样本数据.(2)频率分布表中各组频数之和等于样本容量,各组频率之和等于1. 2.频率分布直方图(1)定义:我们用直方图反映样本的频率分布规律,这样的直方图称为频率分布直方图. (2)绘制步骤: ①制作频率分布表.②建立直角坐标系:把横轴分成若干段,每一段对应一个组的组距,并标上一些关键点. ③画矩形:在横轴上,以连结相邻两点的线段为底,以纵轴上频率组距为高作矩形,这样得一系列矩形,就构成了频率分布直方图.3.频率分布折线图(1)定义:把频率分布直方图中各相邻的矩形的上底边的中点顺次连结起来,就得到频率分布折线图.(2)总体分布密度曲线:频率折线图的优点是它反映了数据的变化趋势,如果将样本容量取得足够大,分组的组距取得足够小,则相应的频率折线图将趋于一条光滑曲线,称这条光滑曲线为总体分布的密度曲线.[点睛]频率分布折线图反映了数据的变化趋势,可用来对数据进行估计和预测.[小试身手]1.已知一个容量是40的样本,把它分成六组,第一组到第四组的频数分别是5,6,7,10,第五组的频率是0.2,那么第六组的频数是________,频率是________.答案:4 0.12.如图是容量为100的样本的频率分布直方图,试根据图形中的数据填空.(1)样本数据落在范围[6,10)内的频率为________; (2)样本数据落在范围[10,14)内的频数为________. 答案:(1)0.32 (2)363.对于样本频率分布折线图与总体分布的密度曲线的关系,有下列说法: ①频率分布折线图与总体分布的密度曲线无关; ②频率分布折线图就是总体分布的密度曲线;③样本容量很大的频率分布折线图就是总体分布的密度曲线;④如果样本容量无限增大,分组的组距无限减小,那么频率分布折线图就会无限趋于总体分布的密度曲线.其中正确的是________.(填序号) 答案:④[典例] 某中学40名男生的体重数据如下(单位:kg):61 60 59 59 59 58 58 57 57 57 57 56 56 56 56 56 56 56 55 55 55 55 54 54 54 54 53 53 52 52 52 52 52 51 51 51 50 50 49 48请根据上述数据列相应的频率分布表. [解] ①计算全距,61-48=13;②决定组距和组数,取组距为2,全距组距=132=6.5,所以共分7组;③决定分点,使分点比数据多一位小数,并把第一小组分点减小0.5,即分成七组:[47.5,49.5),[49.5,51.5),[51.5,53.5),[53.5,55.5),[55.5,57.5),[57.5,59.5),[59.5,61.5];④列出频率分布表,如下:频率分布表的制作[活学活用]下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位:cm).(1)列出样本频率分布表;(2)估计身高小于134 cm的人数占总人数的百分比.解:(1)样本频率分布表如下:(2)由样本频率分布表可知身高小于134 cm的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm的人数占总人数的19%.频率分布直方图与频率分布折线图的绘制[典例]为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组如下:[10.75,10.85),3;[10.85,10.95),9;[10.95,11.05),13;[11.05,11.15),16;[11.15,11.25),26;[11.25,11.35),20;[11.35,11.45),7;[11.45,11.55),4;[11.55,11.65],2.(1)列出频率分布表;(2)画出频率分布直方图以及频率分布折线图.[解](1)频率分布表如下:(2)频率分布直方图及频率分布折线图如图.有一个容量为50的样本,数据的分组及各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.(1)列出样本的频率分布表; (2)画出频率分布直方图;(3)根据频率分布直方图估计数据落在[15.5,24.5)的频率约是多少. 解:(1)频率分布表如下:(2)频率分布直方图如图所示:(3)数据落在[15.5,24.5)的频率约为0.16+0.18+0.22=0.56.[典例] 在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月频率分布直方图的识、读、用1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第3组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数最多?有多少件?(3)经过评比,第4组和第6组分别有10件和2件作品获奖,这两组哪组获奖率较高?[解] (1)依题意得第3小组的频率为 42+3+4+6+4+1=15,又第3小组频数为12, 故本次活动的参评作品数为1215=60(件). (2)根据频率分布直方图可看出第4组上交的作品数量最多, 共有60×62+3+4+6+4+1=18(件).(3)第4组获奖率是1018=59.第6组上交作品数量为60×12+3+4+6+4+1=3(件).第6组的获奖率为23>59,显然第6组的获奖率较高.[活学活用]从某校参加2016年全国高中数学联赛预赛的600名同学中,等可能抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据.(1)根据表中已知数据,依次写出在①、②、③处的数值;(2)补全在区间[70,140]上的频率分布直方图;(3)若成绩不低于110分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?解:(1)样本容量=160.32=50, ∴①处为50;∴250=0.04,②处为0.04;③处为1-0.08-0.36-0.32-0.08-0.04-0.02=0.10. (2)频率分布直方图如图:(3)成绩不低于110分的同学能参加决赛的频率为0.08+0.04+0.02=0.14,所以估计该校能参加决赛的人数大约为600×0.14=84.层级一 学业水平达标1.已知样本:12,7,11,12,11,12,10,10,9,8,13,12,10,9,6,11,8,9,8,10,那么样本在[11.5,13.5)上的频率为________.答案:0.252.一个容量为n 的样本分成若干组,已知某组的频数和频率分别是30和0.25,则n =________.解析:由题意n =300.25=120.答案:1203.观察新生婴儿的体重(单位:g),其频率分布直方图如图所示,则新生婴儿体重在[2 700,3 000)内的频率为________.解析:由图可知当新生婴儿体重在[2 700,3 000)内时,频率组距=0.001,而组距为300,所以频率为0.001×300=0.3.答案:0.34.为了了解初中生的身体素质,某地区随机抽取了n 名学生进行跳绳测试,根据所得数据画样本的频率分布直方图如图所示,且从左到右第1小组的频数是100,则n =________.解析:由图可知,第1小组的频率为25×0.004=0.1, ∴n =1000.1=1 000.答案:1 0005.鲁老师为了分析一次数学考试的情况,将全班60名学生的数学成绩分为5组,第一组到第三组的频数分别是8,24,22,第四组的频率是0.05,那么落在第五组的频数是多少?频率是多少?全校300人中分数在第五组中的约有多少人?解:因为第四组的频数为0.05×60=3,所以第五组的频数为60-8-24-22-3=3,频率为360=0.05,全校300人中分数在第五组的约有0.05×300=15(人).层级二 应试能力达标1.将容量为100的样本数据,按从小到大的顺序分成8个组,如下表:则第六组的频率为________.解析:由9+14+14+13+12+x +13+10=100,得x =15.故第六组的频率为15100=0.15.答案:0.152.为了解电视对生活的影响,一个社会调查机构就平均每天看电视的时间对某地居民调查了10 000人,并根据所得数据画出样本的频率分布直方图(如图),为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人做进一步调查,则在[2.5,3)(小时)时间段内应抽出的人数是________.解析:抽出的100人中平均每天看电视的时间在[2.5,3)(小时)时间内的频率是0.5×0.5=0.25,所以这10 000人中用分层抽样方法抽出100人,在[2.5,3)(小时)时间段内应抽出的人数是100×0.25=25.答案:253.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积的和的14,且样本容量为160,则中间一组的频数是________.解析:频率分布直方图中所有小长方形的面积和等于1,则中间小长方形的面积为15,也就是中间一组的频率是15,中间一组的频数为160×15=32.答案:324.为提高公众对健康的自我管理能力和科学认识,某调查机构共调查了200人在一天中的睡眠时间.现将数据整理分组,如下表所示.由于操作不慎,表中A ,B ,C ,D 四处数据污损,统计员只记得A 处的数据比C 处的数据大4,由此可知B 处的数据为________.解析:设A 处的数据为x ,则C 处的数据为x -4, 则x +x -4+8+52+20+4=200,x =60,则B处数据为60=0.30.200答案:0.305.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)[25,30)年龄组对应小矩形的高度为________;(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________.解析:(1)设[25,30)年龄组对应小矩形的高度为h,则5×(0.01+h+0.07+0.06+0.02)=1,h=0.04.(2)志愿者年龄在[25,35)的频率为5×(0.04+0.07)=0.55,故志愿者年龄在[25,35)的人数约为0.55×800=440.答案:(1)0.04(2)4406.某工厂对一批产品进行了抽样检测,下图是根据抽样检测后的产品净重(单位:g)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].已知样本中产品净重小于100 g的个数是36,则样本中净重大于或等于98 g并且小于104 g的产品的个数是________.解析:由频率分布直方图可知,产品净重小于100 g的频率是0.05×2+0.1×2=0.3,所以样本中产品的个数为36=120,产品净重大于或等于104 g的频率为0.075×2=0.15,∴产0.3品净重大于或等于98 g而小于104 g的频率为1-0.15-0.1=0.75,则净重在此范围内的产品个数为120×0.75=90.答案:907.为了解某商场某日旅游鞋的销售情况,抽取了部分顾客购鞋的尺寸,将所得的数据整理后,画出频率分布直方图(如图所示),已知图中从左到右前三个小组的频率之比为1∶2∶3,第4小组与第5小组的频率分别为0.175和0.075,第二小组的频数为10,则抽取的顾客人数是________.解析:由条件可得,第二小组的频率为2×1-0.175-0.0751+2+3=0.25,因为第二小组的频数为10,所以抽取的顾客人数是100.25=40. 答案:408.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.解析:∵小矩形的面积等于频率,∴除[120,130)外的频率和为0.700,∴a =1-0.70010=0.030.由题意知,身高在[120,130),[130,140),[140,150]的学生分别为30人,20人,10人,∴由分层抽样可知抽样比为1860=310,∴在[140,150]中选取的学生应为3人. 答案:0.030 39.对某电子元件进行寿命追踪统计,情况如下:(1)列出频率分布表;(2)画出频率分布直方图;(3)估计电子元件寿命在100 h~400 h以内的比例;(4)估计电子元件寿命在400 h以上的比例.解:(1)频率分布表如下:(2)频率分布直方图如图:(3)频率为0.1+0.15+0.4=0.65.所以我们估计电子元件寿命在100 h~400 h以内的比例为65%.(4)寿命在400 h以上的电子元件的频率为1-0.65=0.35.所以我们估计电子元件寿命在400 h以上的比例为35%.10.为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:kg),并将所得数据分组,画出频率分布直方图(如图所示).(1)求出各组相应的频率;(2)数据落在[1.15,1.30]中的频率为多少;(3)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中还有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数.解:(1)由频率分布直方图和频率=组距×频率组距可得下表(2)因为0.30+0.15+0.02=0.47,所以数据落在[1.15,1.30]中的频率约为0.47.(3)由分层抽样中每个个体被抽到的概率相同知:设水库中鱼的总条数为N ,则120N =6100,即N =2 000,故水库中鱼的总条数约为2 000条.。

《2.2.2频率分布直方图与折线图》教案2

《2.2.2频率分布直方图与折线图》教案2

《频率分布直方图与折线图》教案教学目标:1.根据频率分布表,能画出频率分布的条形图、直方图、折线图;2.会用样本频率分布去估计总体分布.教学重难点:重点:绘制频率直方图、条形图、折线图;难点:会根据样本频率分布或频率直方图去估计总体分布.教学过程:一、问题情境1.列频率分布表的一般步骤是什么?2.能否根据频率分布表来绘制频率直方图?3.能否根据频数情况来绘制频数条形图?二、学生活动讨论如何作图.三、建构数学1.频数条形图.例1 下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失物数用条形图表示.象这样表示每一天频数的柱形图叫频数条形图.2.频率分布直方图:例2 下表是1002名学生身高的频率分布表,根据数据画出频率分布直方图.(2)在横轴上标上表示的点;(3)在上面各点中,分别以连接相邻两点的线段为底作矩形,高等于该组的频率/组距.频率分布直方图如图:一般地,作频率分布直方图的方法为:把横轴分成若干段,每一段对应一个组的组距,以此线段为底作矩形,高等于该组的频率/组距,这样得到一系列矩形,每一个矩形的面积恰好是该组上的频率.这些矩形构成了频率分布直方图.2.频率分布折线图.在频率分布直方图中,取相邻矩形上底边的中点顺次连结起来,就得到频率分布折线图(简称频率折线图)例2的频率折线图如图:3.密度曲线.如果样本容量取得足够大,分组的组距取得足够小,则相应的频率折线图将趋于一条光滑的曲线,称这条光滑的曲线为总体的密度曲线.四、数学运用例3 为了了解一大片经济林生长情况,随机测量其中的100株的底部周长,得到如下数据表(单位:cm)10 0cm的树木约占多少,周长不小于120cm的树木约占多少.解:(1)这组数据的最大值为135,最小值为80,全距为55,可将其分为11组,组距为5.频率分布表如下:(2)(3)从频率分布表得,样本中小于100的频率为0.010.020.040.140.21+++=,样本中不小于120的频率为0.110.060.020.19++=,估计该片经济林中底部周长小于100cm的树木约占21%,周长不小于120cm的树木约占19%.五、要点归纳与方法小结本节课学习了以下内容1.什么是频数条形图、频率直方图、折线图、密度曲线?2.绘制频率分布直方图的一般方法是什么?3.频率分布直方图的特征:(1)从频率分布直方图可以清楚的看出数据分布的总体趋势.(2)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.。

高中数学人教B版必修3教学案:第二章 2.2 2.2.1 用样本的频率分布估计总体的分布 含解析

高中数学人教B版必修3教学案:第二章 2.2 2.2.1 用样本的频率分布估计总体的分布 含解析

2.2.1 用样本的频率分布估计总体的分布预习课本P58~63,思考并完成以下问题 (1)如何作频率分布表?(2)绘制频率分布直方图时,应如何确定组距与组数?(3)频率分布直方图及总体密度曲线各有什么特点?(4)茎叶图有什么特点?[新知初探]1.频率分布表当总体容量很大或不便获得时,可以用样本的频率分布估计总体的分布,我们把反映总体的分布的表格称为频率分布表.2.频率分布直方图以横轴表示数据,以纵轴表示频率与组距的比值,以组距为底边长,以各频率除以组距的商为高,分别画成小长方形,这样得到的直方图就是频率分布直方图,图中各个小长方形的面积就等于相应各组的频率,即小长方形面积=频率组距×组距=频率.3.总体密度曲线连接频率分布直方图中各小长方形上边的中点,就得到频率分布折线图.设想样本容量不断增大,分组的组距不断缩小,相应的频率分布折线图就会越来越接近于一条光滑的曲线,统计中称之为总体密度曲线,它能够更加精细地反映出一个总体在各个区域内取值的规律.4.茎叶图当样本数据较少时,用茎叶图表示数据的效果较好,它有两个突出的优点: 一是从统计图上没有原始信息的损失,所有的数据信息都可以从茎叶图中得到; 二是茎叶图可以在比赛中随时记录,方便记录与表示.[小试身手]1.下列说法不正确的是( )A .频率分布直方图中每个小矩形的高就是该组的频率B .频率分布直方图中各个小矩形的面积之和等于1C .频率分布直方图中各个小矩形的宽一样大D .频率分布折线图是依次连接频率分布直方图的每个小矩形上边的中点得到的 解析:选A 频率分布直方图中每个小矩形的高=频率组距.2.某班学生在一次数学考试中各分数段以及人数的成绩分布为:[0,80),2人;[80,90),6人;[90,100),4人;[100,110),10人;[110,120),12人;[120,130),5人;[130,140),4人;[140,150],2人.那么分数在[100,130)中的频数以及频率分别为( )A .27,0.56B .20,0.56C .27,0.60D .13,0.29解析:选C 由[100,130)中的人数为10+12+5=27,得频数为27,频率为2745=0.60. 3.如图是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知( )A .甲运动员的成绩好于乙运动员B .乙运动员的成绩好于甲运动员C .甲、乙两名运动员的成绩没有明显的差异D .甲运动员的最低得分为0分解析:选A 由茎叶图可以看出甲的成绩都集中在30~50分,且高分较多.而乙的成绩只有一个高分52分,其他成绩比较低,故甲运动员的成绩好于乙运动员的成绩.4.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.解析:60×(0.015+0.025)×10=24.答案:24列频率分布表、画频率分布直方图[典例]结果如下(单位:cm):175 168 170 176 167 181 162 173 171 177171 171 174 173 174 175 177 166 163 160166 166 163 169 174 165 175 165 170 158174 172 166 172 167 172 175 161 173 167170 172 165 157 172 173 166 177 169 181(1)列出频率分布表;(2)绘制频率分布直方图.[解]极差为181-157=24,将样本数据分成7组,则组距为4.(1)列频率分布表为:分组频数频率[156.5,160.5)30.06[160.5,164.5)40.08[164.5,168.5)120.24[168.5,172.5)130.26[172.5,176.5)130.26[176.5,180.5)30.06[180.5,184.5]20.02合计501(2)绘制频率分布直方图如图:绘制频率分布直方图的注意事项(1)计算极差,需要找出这组数的最大值和最小值,当数据很多时,可选一个数当参照.(2)将一批数据分组,目的是要描述数据分布规律,要根据数据多少来确定分组数目,一般来说,数据越多,分组越多.(3)将数据分组,决定分点时,一般使分点比数据多一位小数,并且把第一组的起点稍微减小一点.(4)列频率分布表时,可通过逐一判断各个数据落在哪个小组内,以“正”字确定各个小组内数据的个数.(5)画频率分布直方图时,纵坐标表示频率与组距的比值,一定不能标成频率.[活学活用]从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图.解:(1)频率分布表如下表所示.分组频数频率[40,50)20.04[50,60)30.06[60,70)100.20[70,80)150.30[80,90)120.24[90,100]80.16合计50 1.00(2)频率分布直方图的应用[典例]将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? [解] (1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由题意估计该学校高一学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%.解决与频率分布直方图有关问题的关系式(1)频率组距×组距=频率. (2)频数样本容量=频率,此关系式的变形为频数频率=样本容量,样本容量×频率=频数. [活学活用](湖北高考)某电子商务公司对10 000名网络购物者2019年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.解析:(1)由0.1×1.5+0.1×2.5+0.1a +0.1×2.0+0.1×0.8+0.1×0.2=1,解得a =3. (2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6. 因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000. 答案:(1)3 (2)6 000茎叶图[典例]甲、(单位:分),则甲班、乙班的最高成绩分别是________,从图中看,________班的平均成绩较高.[解析]由茎叶图知甲班的最高成绩为96分,乙班的最高成绩为92分,再根据茎叶图的分布特点知,乙班的成绩分布集中在下面,故乙班的平均成绩较高.[答案]96,92乙(1)绘制茎叶图关键是分清茎和叶.一般地说,当数据是两位数时,十位上的数字为“茎”,个位上的数字为“叶”;如果是小数,通常把整数部分作为“茎”,小数部分作为“叶”.解题时要根据数据的特点合理地选择茎和叶.(2)应用茎叶图对两组数据进行比较时,要从数据分布的对称性、中位数、稳定性等几方面来比较.(3)茎叶图只适用于样本数据较少的情况.[活学活用]如图是2019年青年歌手大奖赛中七位评委为甲、乙两名选手打出的分数的茎叶图(图中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1,a2,则一定有()A.a1>a2B.a2>a1C.a1=a2D.a1,a2的大小与m的值有关解析:选B根据茎叶图可知,去掉一个最高分和一个最低分后,甲的平均分为a1=80+5+4+5+5+15=84,乙的平均分为a2=80+4+4+6+4+75=85,故a2>a1.[层级一学业水平达标]1.已知样本10,8,10,8,6,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10,那么频率为0.2的范围是()A.5.5~7.5B.7.5~9.5C.9.5~11.5 D.11.5~13.5解析:选D共20个数据,频率为0.2,在此范围内的数据有4个,只有在11.5~13.5范围内有4个数据:13,12,12,12,故选D.2.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校400名授课教师中抽取20名,调查了他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如图.据此可估计该校上学期400名教师中,使用多媒体进行教学次数在[16,30)内的人数为()A.100 B.160C.200 D.280解析:选B由茎叶图可知在20名教师中,上学期使用多媒体进行教学的次数在[16,30)内的人数为8,据此可以估计400名教师中,使用多媒体进行教学次数在[16,30)内的人数为40020×8=160.3.某校100名学生的数学测试成绩频率分布直方图如图所示,分数不低于a(a为整数)即为优秀,如果优秀的人数为20人,则a的估计值是____________.解析:由已知可以判断a∈(130,140),所以[(140-a)×0.015+0.01×10]×100=20.解得a≈133.答案:1334.如图茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,若乙的平均分是89,则污损的数字是________.解析:设污损的叶对应的成绩是x,由茎叶图可得89×5=83+83+87+x+99,所以x =93,故污损的数字是3.答案:3[层级二应试能力达标]1.为了解某地区高一学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg),得到频率分布直方图(如图所示).可得这100名学生中体重在[56.5,64.5)的学生人数是()A.20B.30C.40 D.50解析:选C由频率分布直方图易得到体重在[56.5,64.5)的学生的频率为(0.03+0.05+0.05+0.07)×2=0.4,那么学生的人数为100×0.4=40,故选C.2.下列关于茎叶图的叙述正确的是()A.茎叶图可以展示未分组的原始数据,它与频率分布表以及频率分布直方图的处理方式不同B.对于重复的数据,只算一个C.茎叶图中的叶是“茎”十进制的上一级单位D.制作茎叶图的程序是:第一步:画出茎;第二步:画出叶;第三步:将“叶子”任意排列解析:选A由茎叶图的概念知A正确,故选A.3.为了解电视对生活的影响,一个社会调查机构就平均每天看电视的时间调查了某地10 000位居民,并根据所得数据画出样本的频率分布直方图(如图),为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从这10 000位居民中再用分层抽样抽出100位居民做进一步调查,则在[2.5,3)(小时)时间段内应抽出的人数是()A.25 B.30C.50 D.75解析:选A抽出的100位居民中平均每天看电视的时间在[2.5,3)(小时)时间内的频率为0.5×0.5=0.25,所以这10 000位居民中平均每天看电视的时间在[2.5,3)(小时)时间内的人数是10 000×0.25=2 500.依题意知抽样比是10010 000=1100,则在[2.5,3)(小时)时间段内应抽出的人数是2 500×1100=25.4.某工厂对一批元件进行抽样检测.经检测,抽出的元件的长度(单位:mm)全部介于93至105之间.将抽出的元件的长度以2为组距分成6组:[93,95),[95,97),[97,99),[99,101),[101,103),[103,105],得到如图所示的频率分布直方图.若长度在[97,103)内的元件为合格品,根据频率分布直方图,估计这批元件的合格率是()A.80% B.90%C.20% D.85.5%解析:选A由频率分布直方图可知元件长度在[97,103)内的频率为1-(0.027 5+0.027 5+0.045 0)×2=0.8,故这批元件的合格率为80%.5.某地为了了解该地区10 000户家庭的用电情况,采用分层抽样的方法抽取了500户家庭的月平均用电量,并根据这500户家庭的月平均用电量画出频率分布直方图如图所示,则该地区10 000户家庭中月平均用电度数在[70,80)的家庭有________户.解析:根据频率分布直方图得该地区10 000户家庭中月平均用电度数在[70,80)的家庭有10 000×0.012×10=1 200(户).答案:1 2006.在样本的频率分布直方图中,共有8个小长方形,若最后一个小长方形的面积等于其他7个小长方形的面积和的14,且样本容量为200,则第8组的频数为________.解析:设最后一个小长方形的面积为x ,则其他7个小长方形的面积为4x ,从而x +4x =1,所以x =0.2.故第8组的频数为200×0.2=40.答案:407.某中学甲、乙两名同学最近几次的数学考试成绩情况如下: 甲得分:95,81,75,89,71,65,76,88,94,110,107; 乙得分:83,86,93,99,88,103,98,114,98,79,101.画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较.解:甲、乙两人数学成绩的茎叶图如图所示.从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,大多集中在80~100之间,中位数是98分.甲同学的得分情况除一个特殊得分外,也大致对称,多集中在70~90之间,中位数是88分,但分数分布相对于乙来说,趋向于低分阶段.因此,乙同学发挥比较稳定,总体得分情况比甲同学好.8.在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示).已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率较高?解:(1)依题意知第三组的频率为42+3+4+6+4+1=15,又因为第三组的频数为12,∴本次活动的参评作品数为1215=60(件).(2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有60×62+3+4+6+4+1=18(件).(3)第四组的获奖率是1018=59,第11页 共11页 第六组上交的作品数量为60×12+3+4+6+4+1=3(件). ∴第六组的获奖率为23=69,显然第六组的获奖率较高.。

高中数学第2章统计2.2总体分布的估计2.2.2频率分布直方图与折线图教案苏教版必修3

高中数学第2章统计2.2总体分布的估计2.2.2频率分布直方图与折线图教案苏教版必修3

2.2.2 频率分布直方图与折线图整体设计教材分析这一节主要通过频率分布表来探究频率分布直方图直观意义、作图方法与作图步骤,并在此根底上使学生能画出频率分布折线图,总体密度曲线.由于作统计图表操作性很强,所以在教学中要使学生在明确图表含义前提下,让学生自己动手作图.关于总体密度曲线,需要使学生了解:总体在区间〔a,b〕内取值百分比就是教科书图2.23中阴影局部面积,通过思考栏目两个问题要使学生了解到,有总体没有密度曲线,例如总体是掷骰子试验所有可能出现结果;总体密度曲线与总体分布相互唯一确定.三维目标1.认识频率分布直方图、频率分布折线图与总体密度曲线特点.2.能正确画出频率分布直方图、频率分布折线图、总体密度曲线.3.通过组织学生观察频率分布直方图、频率分布折线图、总体密度曲线特点,用图形直观方法引出它们概念,有利于学生对概念了解.4.教学中引导学生自己动手作图,在作图过程中去体会概念、形成概念,培养学生用运动变化观点认识它们辩证关系,感受自然界辩证法,使学生体会知识之间有机联系,感受数学整体性,激发学生学习兴趣.重点难点教学重点:1.频率分布直方图、频率分布折线图、总体密度曲线概念以及它们之间辩证关系;2.画频率分布直方图、频率分布折线图、总体密度曲线.教学难点:1.体会分布意义与作用.2.对总体分布概念理解,统计思想初步形成.课时安排1课时教学过程导入新课分析数据一种根本方法是用图形将它们画出来,或者用紧凑表格改变数据排列方式.作图可以到达两个目,一是从数据中提取信息,二是利用图形传递信息.表格那么是改变数据构成形式,为我们提供解释数据新方式.这就是我们初中学过频数分布图与频数分布表,在此根底上我们从各个小组数据在样本容量中所占比例大小角度进一步研究频率分布直方图.推进新课新知探究频数分布表虽然能表达出数据分布规律,但它并不直观,为了直观地表达出数据分布规律,我们需要画频率分布直方图.在初中,已学过如何绘制频数直方图,它能直观地表达数据分布规律.同样我们可以用直方图来反映样本频率分布规律.可以利用直方图反映样本频率分布规律,这样直方图称为频率分布直方图,简称频率直方图.一般地,作频率分布直方图方法为:把横轴分成假设干段,每一线段对应一个组组距,然后以此线段为底作一矩形,它高等于该组,这样得出一系列矩形,每个矩形面积恰好是该组上频率.这些矩形就构成了频率分布直方图.频率分布直方图两种类型:用样本频率分布估计总体分布通常分为两种情况:〔1〕当总体中个体取不同数值很少时,其频率分布表由所取样本不同值及其相应频率表示,其几何表示就是相应条形图.条形图中纵轴表示是频率,条形图高为该组数据频率.但应注意“总体中个体取不同数值很少〞并不是指“总体中个数很少〞.〔2〕当总体中个体取不同值较多,甚至无限时,对其频率分布研究用到初中学过整理样本数据知识,用频率分布直方图来表示相应样本频率分布.频率分布直方图优点与缺点:频率分布直方图比频率分布表更直观、形象地反映了样本分布规律;但绘制频率分布直方图过程比拟复杂,且它不能直接表达数据频数分布.将频率分布直方图中各相邻矩形上底边中点顺次连结起来,就得到频率分布折线图,简称频率折线图.如果将样本容量取得足够大,分组组距取得足够小,那么相应频率折线图将趋于一条光滑曲线,我们称这条光滑曲线为总体分布密度曲线.如以下图所示.总体密度曲线反映了总体在各个范围内取值百分比.根据这条曲线,可求出总体在区间(a,b)内取值概率等于总体密度曲线,直线x=a,x=b及x轴所围图形面积.说明:〔1〕有总体没有总体密度曲线.例如总体是抛掷硬币〔骰子〕大量重复试验所有可能出现结果.〔2〕总体密度曲线与总体分布是相互唯一确定.如果总体分布,就可以得到密度曲线函数表达式,从而用函数理论去研究它.〔3〕我们所面临情况是总体分布未知,因此可以通过样本频率折线近似,但不能够通过样本数据准确地画出总体密度曲线.应用例如例1 下表是某学校一个星期中收交来失物件数,请将5天中收交来失物数用条形图表示.分析:当总体中个体取不同数值很少时,可用频数条形图或频率条形图来表示.解:用Excel作条形图:〔1〕在Excel工作表中输入数据,光标停留在数据区中;〔2〕选择“插入/图表〞,在弹出对话框中点击“柱形图〞;〔3〕点击“完成〞.如以下图:点评:利用Excel画图很方便.例2 作出上面例1中数据频率分布直方图、频率折线图与密度曲线.分析:根据绘制频率分布直方图、频率折线图与密度曲线过程解题.解:频率分布直方图:〔1〕先制作频率分布表〔上面已完成〕,然后作直角坐标系,以横轴表示身高,纵轴表示;〔2〕在横轴上标上表示150.5,153.5,156.5,…,180.5点〔为方便起见,起始点可适当前移〕;〔3〕在上面标出各点中,分别以连接相邻两点线段为底作矩形,高等于该组.至此,就得到了这组数据频率分布直方图,如下图:频率分布折线图:取直方图中各相邻矩形上底边中点顺次连结,再将矩形边去除,得频率折线图如图.总体分布密度曲线:可近似地表示为:点评:〔1〕频率分布直方图比频率分布表更直观、形象地反映了样本分布规律,如在164附近到达“峰值〞,并具有一定对称性,这说明这批学生身高在164 cm附近较为集中.另外还可看出,特别高与特别矮学生较少.〔2〕在频率分布直方图根底上,取直方图中各小矩形上底边中点顺次连结起来时需注意:取值区间两端点需分别向外延伸半个组距,以使折线首尾分别与横轴相连.〔3〕频率分布折线图优点是它能反映数据变化趋势,但它不能直接表达数据分布规律.例3 以下图是某单位50名职工年龄〔取正整数〕频率分布直方图,各小长方形高AE∶BF∶CG∶DH=2∶4∶3∶1,由图中提供信息,答复以下问题〔直接写出答案〕:〔1〕第二小组频率与频数分别是多少?〔2〕不小于38岁但小于46岁职工频率是多少?〔3〕假设46岁职工有一人,那么46岁以上职工有几人? 分析:此题主要考察小矩形长、宽、面积含义.解:〔1〕设DH=x ,那么CG=3x,BF=4x,AE=2x.所以, (x+3x+4x+2x)×4=1.所以,x=401.所以第二小组频率:4×401×4=52,频数:25×50=20.〔2〕4×401×4+3×401×4=107=0.7. 〔3〕4×401×50-1=4. 点评:注意每个小矩形长与宽含义及小矩形面积=组距×=频率,各小矩形面积表示相应各组频率,频率分布直方图以面积形式反映了数据落在各小组频率大小.在频率分布直方图中,各小长方形面积总与等于1.例4 为了了解一大片经济林生长情况,随机测量其中100株树木底部周长,得到如下数据表〔单位:cm 〕:〔1〕编制频率分布表;〔3〕估计该片经济林中底部周长小于100 cm树木约占多少,底部周长不小于120 cm树木约占多少.解:〔1〕从表中可以看出,这组数据最大值为135,最小值为80,故全距为55,可将其分为11组,组距为5.从第一组[80,85〕开场,将各组频数、频率与填入下表中.(2)这组数据频率直方图如以下图所示.(3)从频率分布表可以看出,该样本中小于100频率为0.01+0.02+0.04+0.14=0.21,不小于120频率为0.11+0.06+0.02=0.19,故可估计该片经济树林中底部周长小于100 cm树木约占21%,底部周长不小于120 cm树木约占19%.知能训练1.在样本频率分布直方图中,共有11个小矩形,假设中间一个小矩形面积等于其它10个小矩形面积与1/4,且样本容量为160,那么中间一组频数为〔〕2.从一条生产线上每隔30分钟取一件产品,共取了n件,测得其尺寸后,画得其频率分布直方图如图,尺寸在[15,45]内频数为46,那么尺寸在[20,25]内产品个数为〔〕3.为了解各年龄段观众对某电视剧收视情况,某校一个研究性学习小组,调查了局部观众收视情况,并分成A、B、C、D、E、F六组进展整理,其频率分布直方图如下图,那么:〔1〕E组频率为_________________;〔3〕假设该村观众人数为1 200,估计该村50岁以上观众有_______________人.解答:1.A 2.B 3.〔1〕0.24 〔2〕略〔3〕432课堂小结〔1〕正确利用频率分布直方图、频率折线图与密度曲线三种分布描述方法,都能得到一些有关分布主要特点,如分布是否具有单峰性、是否具有对称性、样本点落在各分组中频率等,这些主要特点受样本随机性影响比拟小,更接近于总体分布相应特点.〔2〕频率分布表与频率分布直方图之间密切关系是显然,它们只不过是一样数据两种不同表达方式.〔3〕当总体中个体取不同数值很少〔并不是总体中个数很少〕时,其频率分布表由所取样本不同数值及其相应频率来表示,其几何表示就是相应条形图.作业1.课本习题2.2 2、3、4、5.2.请班上每个同学估计一下自己每天课外学习时间〔单位:分钟〕,然后作出课外学习时间频率分布表、频率分布直方图、频率分布折线图、总体密度曲线.你认为能否由这些估计出你们学校学生课外学习时间分布情况?可以用它来估计该地区学生课外学习时间分布情况吗?为什么?设计感想由于初中学过频数条形图,所以学生在刚接触画频率分布直方图时,学生很自然想法是以纵轴表示频率.教师应肯定学生想法,并按此想法操作,然后向学生说明这样做虽然直观与容易理解,但为了与后续学习内容中密度曲线、正态分布曲线〔理科〕等衔接,而频率分布直方图另一种画法,在以后学习中可充分表达其优点.这样做,既保护了学生学习积极性,也激发了学生对数学好奇心.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标:
1.根据频率分布表,能画出频率分布的条形图、直方图、折线图;
2.会用样本频率分布去估计总体分布.
教学重点:
绘制频率直方图、条形图、折线图.
教学难点:
会根据样本频率分布或频率直方图去估计总体分布.
教学过程:
一、问题情境
1.列频率分布表的一般步骤是什么?
2.能否根据频率分布表来绘制频率直方图?
3.能否根据频数情况来绘制频数条形图?
二、学生活动
讨论如何作图.
三、建构数学
1.频数条形图.
例1 下表是某学校一个星期中收交来的失物件数,请将5天中收交来的失
物数用条形图表示.
解:
象这样表示每一天频数的柱形图叫频数条形图.
2.频率分布直方图:
例2 下表是1002名学生身高的频率分布表,根据数据画出频率分布直方图.
解:(1)根据频率分布表,作直角坐标系,以横轴表示身高,纵轴表示频率/组距;
(2)在横轴上标上表示的点;
(3)在上面各点中,分别以连接相邻两点的线段为底作矩形,高等于该组的频率/组距.
频率分布直方图如图:
一般地,作频率分布直方图的方法为:
把横轴分成若干段,每一段对应一个组的组距,以此线段为底作矩形,高等于该组的频率/组距,这样得到一系列矩形,每一个矩形的面积恰好是该组上的频率.这些矩形构成了频率分布直方图.
2.频率分布折线图.
在频率分布直方图中,取相邻矩形上底边的中点顺次连结起来,就得到频率分布折线图(简称频率折线图)例2的频率折线图如图:
3.密度曲线.
如果样本容量取得足够大,分组的组距取得足够小,则相应的频率折线图将趋于一条光滑的曲线,称这条光滑的曲线为总体的密度曲线.
四、数学运用
例 3 为了了解一大片经济林生长情况,随机测量其中的100株的底部周长,得到如下数据表(单位:cm)
(1)编制频率分布表;(2)绘制频率分布直方图;(3)估计该片经济林中底部周长小于100cm的树木约占多少,周长不小于120cm 的树木约占多少.
解:(1)这组数据的最大值为135,最小值为80,全距为55,可将其分为11组,组距为5.
频率分布表如下:
(2)直方图如图:
(3)从频率分布表得,样本中小于100的频率为+++=,
0.010.020.040.140.21
样本中不小于120的频率为0.110.060.020.19
++=,估计该片经济林中底部周长小于100cm的树木约占21%,周长不小于120cm的树木约占19%.
五、要点归纳与方法小结
本节课学习了以下内容
1.什么是频数条形图、频率直方图、折线图、密度曲线?
2.绘制频率分布直方图的一般方法是什么?
3.频率分布直方图的特征:
(1)从频率分布直方图可以清楚的看出数据分布的总体趋势.
(2)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.。

相关文档
最新文档