古诺模型
古诺模型_精品文档

此均衡状态即为古诺模型的纳什均衡
#
结论推广:
令寡头厂商的数量为m,可得一般结论如下:
每个寡头厂商的均衡产量=市场总容量·1/(m+1) 行业的均衡总产量=市场总容量· m/(1+m)
#
四、建立反应函数说明古诺模型
• 设市场的需求函数为:
#
三、古诺模型的一般说明
D曲线为两个厂商共 P* 同面临的线性的市场 需求曲线。由于生产 成本为零,故图中没 有成本曲线。
Q
*
图1:古诺模型 #
第一轮: 由于追求利润最大化,
A厂商的产量选择:
OQ1=1/2OQ*,价格为P1,
利润:OP1FQ1
B厂商的产量选择: Q1Q2=1/4OQ3, 价格为P2。 利润:Q1HGQ2
#
一、简介
• 1、古诺模型是一个只有两个寡头厂商的 简单模型,又称双寡头模型(Duopoly model)。它是由法国经济学家古诺于 1838年提出的,是纳什均衡应用的最早 版本,古诺模型通常被作为寡头理论分 析的出发点。
• 2、该模型阐述了相互竞争而没有相互协 调的厂商的产量决策是如何相互作用从 而产生一个位于竞争均衡和垄断均衡之 间的结果。
#
二、前提假设
• 1、市场上只有A、B两个厂商生产和销售 相同的产品,他们的生产成本为零;
• 2、他们共同面临的市场的需求曲线是线 性的,A、B两个厂商都准确地了解市场 的需求曲线;
• 3、两个厂商都是在已知对方产量的情况 下,各自确定能给自己带来最大利润的 产量,即每一个产商都是消极地以自己 的产量去适应对方已确定的产量
#
类似地,对于B寡头厂商来说: Q2=750-Q1/2 ▲(B厂商的反应函数) Q1=750-Q2/2 Q2=750-Q1/2
BertrandandStackelberg古诺模型简介

Bertrand Model(贝特兰德模型)该模型是法国经济学家Joseph Louis François Bertrand (1822-1900)提出的。
与Cournot模型相比,在Cournot模型里参加博弈的双方以产量作为决策的变量,而在Bertrand模型中参加该博弈的双方都以价格作为决策变量。
这一改变使博弈的市场均衡完全不同于Cournot均衡。
它是关于双寡头产商价格竞争的一种模型,会导致每个产商的定价采用完全竞争的情况下的价格,即所谓的边际成本定价法(marginal cost pricing)。
Bertrand模型有以下假定:1、有多个产商生产同类产品(homogeneous products)2、产商间互不合作3、产商有相同的边际成本(marginal cost),且边际成本函数连续(consistant)4、需求是线性的5、产商通过并只通过价格来竞争(compete in price),并同时决定各自的价格,来补给需求量6、产商的行为都是有战略考虑的7、消费者倾向于买更便宜的产品;如果两个产商的同类产品定价一样,则消费者会各买一半通过价格竞争(competing in price)是说产商可以轻松改变补给量。
但一旦产商确定了价格,就很难(如果说不可能太绝对了)改变它。
如果所有产商都遵循这种逻辑,均衡(equilibrium)就建立起来了,并且没有一个产商能通过改变价格来获取好处,这就使得产品价格等于边际成本。
Bertrand悖论Bertrand均衡的含义在于,如果同业中的两家企业经营同样的产品,且成本一样,则价格战必定使每家企业按P= MC的价格经营,即只获取正常利润。
Bertrand均衡的结论告诉人们,只要市场上有两个或两个以上生产同样产品的企业,则没有一个企业可以控制市场价格获取垄断利润。
但是这个结论是很难令人信服的。
我们看到市场间的价格竞争事实上往往并没有使均衡价格降到等于边际成本这一水平上,而是高于边际成本,企业仍然获得超额利润。
古诺模型

古诺模型也称为古诺双寡头模型或双寡头模型。
古诺模型是早期的寡头模型。
它是由法国经济学家库诺(Cournot)在1838年提出的。
库诺模型是纳什均衡应用的最早版本,而库诺模型通常用作寡头理论分析的起点。
古诺模型的结论可以很容易地扩展到三个或更多寡头企业的情况。
古诺模型是法国经济学家安托万·奥古斯丁·库尔诺(Antoine Augustin Cournot)于1838年提出的。
古诺模型通常用作寡头理论分析的起点。
古诺模型是只有两个寡头的简单模型,也称为“双寡头模型”或双寡头理论。
该模型解释了相互竞争但彼此不协调的制造商的生产决策如何相互影响,从而在完美竞争和完美垄断之间产生了平衡结果。
古诺模型的结论可以很容易地扩展到三个或更多寡头企业的情况。
价格竞争的古诺模型假设两个寡头生产的产品可以互换并且具有固定成本40元的差异,并且假设没有可变成本且边际成本为0。
两个寡头面临的市场需求是如下:D1:Q1 = 24–4p1 + 2p2,D2:Q2 = 24–4p2 + 2p1。
因此,寡头1的利润为π1 = p1q1–40 = 24p1–4p12 + 2p2p2–40,因此,利润最大化,dπ1 / dp1 = 24–8p1 + 2p2 = 0,并且反应函数P1 = 3解决了寡头垄断1的+ P2 / 4。
同样,寡头2的反应函数为P2 = 3 + P1 /4。
因此,求解均衡价格P1 = P2 = 4,均衡输出Q1 = Q2 =16,求解均衡利润π1=π2= 24。
寡头不串通而达到的这种平衡称为古诺平衡。
如果寡头之间存在共谋以最大化联合利润,则获得的均衡就是共谋均衡。
可以计算出共谋均衡点P1 = P2 = 6,Q1 = Q2 = 12,π1=π2= 32,利润高于古诺均衡。
试述古诺模型的主要内容和结论。

试述古诺模型的主要内容和结论。
古诺模型是一种经典经济增长模型,其主要内容为:
1. 经济体内有投资、储蓄、消费三个决策者,投资者是实体经济的主导者。
2. 投资者将一部分收入投入生产资本,形成新的生产力。
3. 一定比例的生产资本损耗,必须通过固定投资来进行补充。
4. 生产资本的增加带动了劳动生产率的提升,促进了经济增长。
5. 经济增长将导致劳动生产力和实际工资的提高,进而刺激消费者更多地消费。
古诺模型的结论为:
1. 长期稳态下,经济增长率取决于劳动力人口增长率和资本边际生产力递减率。
2. 经济增长不是永久增长,存在一个长期平均增长率,该增长率取决于经济上的各种决定性因素。
3. 投资对经济增长的作用非常关键,只有保持适度的投资水平才能推动经济持续增长。
古诺模型资料

古诺模型在科学研究领域中,古诺模型是一个备受关注的理论框架。
该模型被广泛用于研究复杂系统的动力学行为,并在多个领域都有着重要的应用。
下面将介绍古诺模型的基本概念、发展历程以及在不同领域的应用。
古诺模型的基本概念古诺模型最初由法国数学家古诺提出,是一种描述非线性系统演化的数学模型。
该模型基于微分方程或差分方程,描述了系统中各个变量之间的相互作用关系和随时间的演化规律。
通过研究这些方程的解,可以揭示系统的稳定性、周期性和混沌性等特征。
古诺模型的核心思想是将系统建模为一组微分方程或差分方程,通过数值模拟或解析求解得到系统的行为。
这种模型可以描述复杂系统中多变量之间的复杂关系,并揭示系统内部的动力学机制和演化规律。
古诺模型的发展历程古诺模型最早应用于天体力学领域,用于描述行星轨道的运动规律。
随着科学技术的发展,古诺模型逐渐被应用于气候系统、生物系统、经济系统等各个领域。
在这些领域中,古诺模型为研究人员提供了一个重要的工具,用于理解系统的复杂性和预测系统的未来行为。
近年来,随着计算机技术的飞速发展,古诺模型的应用范围越来越广泛。
许多研究者通过大规模数值模拟和实验数据验证,不断改进和完善古诺模型,使其更好地适应现实世界中各种复杂系统的研究需求。
古诺模型在不同领域的应用气候系统在气候系统研究中,古诺模型被广泛运用于模拟全球气候变化、预测极端天气事件等。
通过建立包含大气、海洋、陆地和冰雪等子系统的古诺模型,科学家们可以模拟不同温室气体排放情景下的气候变化趋势,为气候政策的制定提供科学依据。
生物系统在生物系统研究中,古诺模型被用于描述生物群落的演化和竞争过程。
通过将生物个体的种群动态建模为古诺方程,研究者可以探究不同环境条件下物种多样性的维持机制,揭示物种灭绝和新种群形成的规律。
经济系统在经济系统研究中,古诺模型被广泛用于描述市场供需关系、金融波动等经济现象。
通过建立包含消费者、生产者和政府等主体的古诺模型,经济学家可以模拟不同政策干预下经济系统的发展趋势,为政府决策提供科学参考。
浅析古诺模型的纳什均衡及应用

浅析古诺模型的纳什均衡及应用古诺模型(Cournot Model)是由法国经济学家安东尼·奥古斯特·古诺(Antoine Augustin Cournot)在1838年首次提出的,是一种用于研究垄断市场的经典模型。
该模型考虑了一个由两家厂商组成的市场,每家厂商都生产同一种商品,并根据自己的生产决策来确定市场供给的数量,进而影响市场价格。
本文将从古诺模型的基本假设、求解方法以及应用领域等方面进行浅析。
1. 古诺模型的基本假设(1)市场上只有两个厂商,它们竞争生产同一种商品;(2)每个厂商根据自己的成本函数来决定自己生产的数量;(3)两个厂商之间没有协定或垄断价格的行为;(4)市场的需求曲线为一个函数,且不会因这两家制造商的生产而发生变化。
在这些假设的基础上,古诺模型可以让我们更好地理解垄断市场中厂商的行为以及供给和需求在最终价格中起到的作用。
2. 古诺模型的求解方法在古诺模型中,每个厂商都试图制造足够的产品以满足市场的需求,并尽可能地赚取利润。
这种厂商行为的结果是,当两家厂商采用相同策略时,它们将达到一种称为“纳什均衡”的状态。
纳什均衡是指在一个非合作游戏中,每个参与者选择的策略使得其他参与者的策略都不会对其再做更好的选择。
在古诺模型中,我们可以通过计算每个厂商的最优量来确定纳什均衡状态。
假设两个厂商的成本函数分别为 C1 和 C2,市场需求函数为 P(Q)。
厂商 i 的利润函数为Ri(Q1, Q2) = P(Q)Qi - Ci(Qi)其中,Q = Q1 + Q2 是市场总供给量,Qi 是厂商 i 的供给量。
厂商 i 的最优量 Q i* 是使得 Ri(Q i*, Q j* )(j≠i)达到最大化的量,即Ri(Q i*, Q j* )/Q i* = P(Q)* + Q i* dP(Q)/dQ - Ci'(Q i* ) = 0其中,P(Q)* 是市场售价,dP(Q)/dQ 是市场需求函数的斜率,Ci'(Q i* )是厂商 i 的成本函数在 Q i* 处的一阶导数。
五个寡头竞争模型

一.古诺(Cournot )模型Augustin Connot 是19世纪著名的法国经济学家。
法国经济学家在学术风格上属于欧洲大陆的唯理论传统,重视思辩,重视演绎,强调以数理方法对经济事实进行抽象,这与传统的英国学派重视经验事实,主张从事实中进行归纳的经验论风格是迥然不同的。
他在1838年发表的《对财富理论的数学原理的研究》中,给出了两个企业博弈均衡的经典式证明,直到今天仍具有生命力。
1. 市场结构古诺均衡设市场上只有两家企业,且生产完全相同的产品。
企业的决策变量是产量,且两家企业同时决定产量多少。
市场上的价格是两个企业产量之和的函数。
即需求函数是:)(21q q P P +=每个企业的利润为)()(21i i i q C q q q P -+=π2. 反应函数及反应线对于任一给定的关于企业2的产量,都会有相应的企业1的产量选择。
于是企业1的最佳产量说穿了是其对企业2产量的函数。
反之亦然。
即有:)(21q f q =)(12q f q =1q2q3.古诺均衡根据上述假设及利润最大化要求,满足)(21q f q = 且)(12q f q =的),(21q q 即为古诺均衡解。
古诺均衡已不仅仅是供求相等的均衡了。
这里的均衡除满足供求相等外,参与各方都达到了利润最大化。
该均衡也为纳什均衡。
4.举例例1:如市场需求为22211215.0,5),(5.0100q C q C q q P ==+-=,求古诺均衡解,并相应地求出21ππ与。
解:112115)](5.0100[q q q q -+-=π2222125.0)](5.0100[q q q q -+-=π利润最大化下,有: 055.01002111=---=∂∂q q q π 05.010021222=---=∂∂q q q q π 求之,得:900,32004530,802121=====ππP q q 二.Bertrand 模型大约在古诺给出古诺模型50年后,另一位法国经济学家Joseph Bertrand (1883年)在其一篇论文中讨论了两个寡头企业以定价作为决策变量的同时博弈。
古诺模型

厂商预期它的选择,令
y1
y1e
,y2
y
e 2
可得
二元一次方程组:
y1
a
by2 2b
y2
a
by1 2b
将 y1 y2代入方程得:
y1*
a 3b
y
* 2
a 3b
整个行业的总产量:
y1*
y
* 2
2a 3b
趋向均衡的调整
y2 =厂商2
的产量
y
* 2
反应曲线 f1y2
yt4 1
,
y t4 2
yt2 1
量)
厂商1决定生产 y1(利润最大化产量)
于是总产量: y y1 y2e
价格则为: py p y1 y2e
利润最大化:
p y y c y max y1
1
e 2
1
关于厂商2的产量的任何既定预测
ye 2
而言,厂商1
都有某个最优的产量选择 y1 .
于是可得:
y1
f1
ye 2
同理可导出厂商2的反应曲线:
y 2
f 2 y1e
一般来说,厂商1的最优产量水平
y1和厂商2预期的
产量水平 y1e并不相同。
古诺均衡:
假定厂商1的产量是 y1* ,厂商2的最优产量水
平就是
y
* 2
,假定厂商2的产量是
y
* 2
,厂商1
的最优产量水平就是 y1* 。
换而言之,产量选择满足:
y1*
f1
y
* 2
y
* 2
f2
y1*
,
yt2 2
y1t3
,
y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
古诺模型
所属分类:经济学术语通信技术
添加摘要
(Cournot duopoly model),或双
寡头模型(Duopoly model),古诺
模型是早期的寡头模型。
它是由法
国经济学家古诺于1838年提出的。
是纳什均衡应用的最早版本,古诺
模型通常被作为寡头理论分析的出
发点,它是一个只有两个寡头厂商
的简单模型,该模型也被称为“双
头模型”。
古诺模型假定一种产品
市场只有两个卖者,并且相互间没
有任何勾结行为,但相互间都知道
对方将怎样行动,从而各自怎样确定最优的产量来实现利润最大化,因此,古诺模型又称为
双头垄断理论。
∙ 1 简介
∙ 2 描述
∙ 3 双寡头厂
∙ 4 伯特兰德模型
∙ 5 相关词条
∙ 6 参考链接
古诺模型-简介
奇默罗在1913年提出的关于象棋博弈的定理是博弈论的第一个定理,
一、古诺模型的假设
古诺模型分析的是两个出售矿泉水的生产成本为零的寡头厂商的情况。
古诺模型的假定是:市场上只有A 、B 两个厂商生产和销售相同的产品,他们的生产成本为零;他们共同面临的市场的需求曲线是线性的,A 、B 两个厂商都准确地了解市场的需求曲线;A 、B 两个厂商都是在已知对方产量的情况下,各自确定能够给自己带来最大利润的产量,即每一个产商都是消极地以自己的产量去适应对方已确定的产量。
二、古诺模型中厂商的产量选择 A 厂商的均衡产量为:
OQ (1/2―1/8―1/32―……)=1/3OQ
B 厂商的均衡产量为:OQ (1/4+1/16+1/64+……)=1/3OQ 行业的均衡总产量为:1/3OQ+1/3OQ=2/3OQ 三、价格竞争的古诺模型 假定两个寡头分别用40元的固定成本生产可以相互替代并且有差别的产品,并假定不存在可变成本,边际成本为0,两个寡头面临的市场需求数如下:
D1:Q1=24-4P1+2P2 D2:Q2=24-4P2+2P1
π1=P1Q1-40=24P1-4P12+2P1P2-40
d π1/dP1=24-8P1+2P2=0 P1=3+1/4P2(寡头1的反应函数)
同理:P2=3+1/4P1(寡头2的反应函数) 因此,P1=4,P2=4
得:Q1=16,Q2=16;π1=24,π2=24。
寡头间的这种无勾结行为而达到的这种均衡称为古诺均衡。
寡头间若存在着勾结,以求得联合的利润最大化,所得到的均衡为共谋均衡。
四、古诺模型结论的推广 以上双头古诺模型的结论可以推广。
令寡头厂商的数量为m ,则可以得到一般的结论如下: 每个寡头厂商的均衡产量=市场总容量/(m+1)
行业的均衡总产量=市场总容量·m/(m+1)
古诺模型的缺陷是假定了厂商以竞争对手不改变产量为条件。
古诺模型-描述
古诺模型可以在一个简单的情形中得到说明。
假定两个面临同一市场的竞争厂商,它们生产无差异的产品,成本为0。
起初,A 厂商选择市场总量的1/2,以便利润最大化。
随后,B 厂商将余下的1/2作为其面临的市场需求,并与A 一样选择其中的1/2即1/4的产量。
结果,A 厂商的利润因B 厂商的加入而未能达到最大,于是它变动产量,将B 厂商生产1/4余下的3/4作为
决策的依据,选择其中的1/2即3/8。
同样,B 厂商将会选择5/16。
如此等等。
最终,两个厂商各选择1/3的产量,而且它们没有进一步变动产量的动力,从而市场处于均衡。
古诺模型的缺陷是假定了厂商以竞争对手不改变产量为条件。
古诺模型-双寡头厂
古诺模型中的双寡头厂商均衡就是纳什均衡。
情况下,乙的最优策略是坦白;给定乙坦
白的情况下,甲的最优策略也是坦白。
而
且这里双方都坦白不仅是纳什均衡,而且
是一个上策(dominantstrategy)均衡,即
不论对方如何选择,个人的最优选择是坦
白。
因为如果乙不坦白,甲坦白的话就被
轻判1年,不坦白的话就判2年,坦白比
不坦白要好;如果乙坦白,甲坦白的话判
5年,不坦白的话判10年,所以,坦白
仍然比不坦白要好。
这样,坦白就是甲的
上策,当然也是乙的上策。
其结果是双方
都坦白。
囚徒困境反映了个人理性与集体
理性的矛盾。
其实,如果两个囚徒都不坦
白,他们各判2年,比都坦白各判5年的
情况要好。
但这不符合个人理性,甚至即
使这两个囚徒在被抓之前协议,被抓后拒不坦白,但是又有谁有遵守这个协议的积极性呢。
寡头垄断厂商经常发现它们自己处于一种囚徒的困境。
当寡头厂商选择产量时,如果寡头厂商们联合起来形成卡特尔,选择垄断利润最大化产量,每个厂商都可以得到更多的利润。
但卡特尔协定不是一个纳什均衡,因为给定双方遵守协议的情况下,每个厂商都想增加生产,结果是每个厂商都只得到纳什均衡产量的利润,它远小于卡特尔产量下的利润.
古诺模型-伯特兰德模型
一、什么是伯特兰德模型? 伯特兰德模型是由法国经济学家约瑟夫·伯特兰德(JosephBertrand)于1883年建立的。
古诺模型和斯塔克尔伯格模型都是把厂商的产量作为竞争手段,是一种产量竞争模型,而伯特兰德模型是价格竞争模型, 伯特兰德模型的假设为: (1)各寡头厂商通过选择价格进行竞争;
(2)各寡头厂商生产的产品是同质的;
(3)寡头厂商之间也没有正式或非正式的串谋行为。
二、伯特兰德模型的前提假定
伯特兰德模型假定,当企业制定其价格时,认为其他企业的价格不会因它的决策而改变,并且n 个(为简化,取n=2)寡头企业的产品是完全替代品。
A 、B 两个企业的价格分别为P1、P2,边际成本都等于C 。
三、伯特兰德模型的推导和分析 根据模型的假定,由于A 、B 两个企业的产品是完全替代品,所以消费者的选择就是价格较低的企业的产品;如果A 、B 的价格相等,则两个企业平分需求。
于是,每一个企业的需求函数为:
因此,两个企业会竞相削价以争取更多的顾客。
当价格降到P1=P2=C 时,达到均衡,即伯特兰德均衡。
结论:只要有一个竞争对手存在,企业的行为就同在完全竞争的市场结构中一样,价格等于边际成本。
四、伯川德均衡及伯川德悖论
根据伯川德模型,谁的价格低谁就将赢得整个市场,而谁的价格高谁就将失去整个市场,因此寡头之间会相互削价,直至价格等于各自的边际成本为止,即均衡解为:
根据伯川德均衡可以得到两个结论:寡头市场的均衡价格为:P=MC ;2寡头的长期经济利润为0。
这个结论表明只要市场中企业数目不小于2个,无论实际数目多大都会出现完全竞争的结
果,这显然与实际经验不符,因此被称为伯川德悖论
五、伯特兰德模型存在的问题
结论,与它的前提假定有关。
从模
型的假定看至少存在以下两方面的
问题:
①假定企业没有生产能力的限制。
如果企业的生产能力是有限的,它
就无法供应整个市场,价格也不会
降到边际成本的水平上。
②假定企业生产的产品是完全替代
品。
如果企业生产的产品不完全相
同,就可以避免直接的价格竞争。
六、对伯川德模型的评价
伯川德模型假设价格为策略性变量
而更为现实,但是它所推导出的结果却过于极端;但由于与现实不甚相符而遭到了很多学者
的批评。
这是为什么将其称之为伯川德悖论的主要原因。
因此,学者们在研究市场中企业的
竞争行为时,更多的是采用古诺模型,即用产量作为企业竞争的决策变量。