2020年新课标高考数学三大层级(45+75+30)之30分压轴拉分专题1(层级三)
2020年高考全国1卷数学,多种方法解析压轴题(全)

2020年高考全国1卷数学,多种方法解析压轴题(全)2020年高考全国1卷理科数学全方位解析第10题
2020年高考全国1卷理科数学从两个不同视角解析第11题
2020年高考全国1卷文科数学从两个不同视角解析第11题
2020年高考全国1卷理科数学全方位解析第12题
2020年高考全国1卷文科数学全方位解析第12题
2020年高考全国1卷理科数学从三个不同视角解析第15题
2020年高考全国1卷文科数学全方位解析第15题
2020年高考全国1卷文科数学从两个不同方向解析第16题
2020年高考全国1卷理科数学从两个不同方向解析第16题
2020年高考全国1卷理科数学多种方法解析第19题
2020年高考全国1卷理科数学从五个不同方向解析第20题第(2)问
2020年高考全国1卷文科数学多种方法解析第20题第(2)问
2020年高考全国1卷理科数学多种方法解析第21题第(2)问
2020年高考全国1卷文科数学从五个不同方向解析第21题第(2)问。
押新课标全国卷第13题-备战2020年高考数学(理)临考题号押题(解析版)(1)

构造函数 g x x3 ax b ,则 f x g x ,
由于 g x g x x3 ax b x3 ax b 2b ,
所以,函数 y g x 的图象关于点 0, b 对称,且 g x 3x2 a .
公众号:逆流资源库 免费分享
①当 a 0 时, g x 0 ,函数 y g x 在区间 1,1 上单调递增,
导数及其应 用
考查为主,主要涉及利用导数
5 研究函数的单调性、极值、最
的运算、导数的几何意义等,比
值等,也可能考查不等式的恒
较综合.
成立、参数的求解等.
1.(2019 年新课标全国卷Ⅰ)(2020·江苏高三专题练习)曲线 y 3(x2 x)e x 在点 (0, 0) 处的切线方程为
___________.
M f 1 1 a b 则 M f 1 1 a b ,
所以 M 1 a b 1 a b 1 a b 1 a b 1 a a 1 2 ,
2
2
此时,当 a 3, 2 ≤b ≤ 2 时, M 取最小值 2 ;
③当 0 < a < 3 时,令 g x 0 ,得 x a ,令 t a 0,1 ,列表如下:
【点睛】本题关键得到含有 a,b 的等式,利用导数几何意义和点在曲线上得到方程关系。
(2020·江苏高三期末)设函数 f x x3 ax b , x 1,1 ,其中 a 、 b R .若 f x M 恒成立,则
当 M 取得最小值时, a b的值为______.
3
【答案】
4
【解析】 【分析】
公众号:逆流资源库 免费分享
准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计 算要准,是解答此类问题的基本要求.
2020年高考数学试卷(理科)(全国新课标Ⅲ卷)及答案

绝密★启用前2020年高考数学(理科)(全国新课标Ⅲ)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答案卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A=(){}*,,,x y x y N y x ∈≥,B=(){},8x y x y +=,则A B 中元素个数为()A.2B.3C.4D.62.复数113i -的虚部是()A.310- B.110-C.110D.3103.在一组样本数据中,1,2,3,4出现的频率分别为1p ,2p ,3p ,4p ,且411ii p==∑,则下面四种情形中,对应样本的标准差最大的一组是()A.14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====4.Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()()0.23531t K I t e--=+,其中K 为的最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(ln19≈3)()A.60B.63C.66D.695.设O 为坐标原点,直线2x =与抛物线2:2(0)C y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为()A.(41,0) B.(12,0) C.(1,0) D.(2,0)6.已知向量,a b 满足5||=a ,6||=b ,6-=⋅b a ,则>+<b a a ,cos =()A.3135-B.1935-C.1735D.19357.在△ABC 中,2cos =3C ,4AC =,3BC =,则cos B =()A.91 B.31 C.21 D.328.右图为某几何体的三视图,则该几何体的表面积是()A.6+42B.442+C.623+D.423+9.已知7)4tan(tan 2=--πθθ,则tan θ=()A.﹣2B.﹣1C.1D.210.若直线l 与曲线y x =和圆2215x y +=都相切,则l 的方程为()A.12+=x yB.212+=x y C.121+=x y D.2121+=x y11.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,P 是C 上的一点,且12F P F P ⊥.若△12PF F 的面积为4,则a =()A .1B .2C .4D .812.已知5458<,45138<,设,,,8log 5log 3log 1385===c b a 则()A.cb a << B.ca b << C.ac b << D.ba c <<二、填空题:本题共4小题,每小题5分,共20分。
2020届全国卷1理科数学高考“压轴题题型解法”大纲(李老师编)

3.线性回归和类线性回归(大数据整体计算型)
难
4.极坐标与参数方程的几何意义法(求长度、长度之积/和)
难
5.新定义、新材料阅读理解题
难
6.类比推理和演绎推理
难
难
3.不规则锥体的外接球(万能公式,见于杂志)
难
4.1向量的四心问题(性质秒杀)
难
4.2角平分线定理
难
5.向量的奔驰定理(公式秒杀)
难
6.解三角形(共边型、共角型、整体法型)
难
7.解三角形求动态参数(数形结合法、基本不等式法、三角函数法)
难
8.三角函数高难度化简与变换(函数求参数题(构建法+分类讨论法)
难
3.2构建函数的恒成立、存在性问题(单边构建、双边构建)
难
4.极值点偏移题(左偏移、右偏移、拉格朗日中值定理)
难
5.零点、交点、根的存在性问题(判断、个数、分布)
难
6.恒成立、存在性问题(特殊点型、隐零点型、虚假点型)
难
7.函数模型与缩放题(指数、对数:直接,裂项,并项,加强)
难
模块
2020全国卷1卷压轴考点和题型明细
难度
数列
1.数学归纳法
难
2.数列放缩类型和数列不等式的证明
难
3.数列递推
难
4.探索数列中的存在性(最大最小整数型、数列函数交汇型)
难
模块
2020全国卷1卷压轴考点和题型明细
难度
其他
1.可行域问题(生活应用综合型、动态型)
难
2.排列组合题(综合型、至少至多型)
2020全国卷1卷压轴考点和题型明细
难度
圆锥曲线
1.对称性问题
2020届浙江省高三下学期高考压轴卷数学试题及解析

2020届浙江省高三下学期高考压轴卷数学试题★祝考试顺利★(解析版)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =A. {0,1}B. {0,1,2}C. {1,0,1}-D. {1,0,1,2}-【答案】C 试题分析:由,得,选C .【名师点睛】1.首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合,,三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽略互异性而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图;对连续的数集间的运算,常利用数轴;对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽略空集是任何集合的子集.2.复数21i+(i 为虚数单位)的共轭复数是( ) A. 1i -+B. 1i -C. 1i +D. 1i --【答案】C【解析】先化简复数为代数形式,再根据共轭复数概念求解.【详解】因为211i i=-+,所以其共轭复数是1i +,选C. 3.(2017新课标全国I 理科)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A. 1B. 2C. 4D. 8【答案】C【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C. 点睛:求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.4.底面是正方形且侧棱长都相等的四棱锥的三视图如图所示,则该四棱锥的体积是( )A. 3B. 8C. 33D. 83【答案】C【解析】 根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2,求出四棱锥的底面积和高,计算它的体积.【详解】根据三视图知该四棱锥的底面是边长为2的正方形,且各侧面的斜高是2, 画出图形,如图所示;。
2020全国卷Ⅲ高考理科数学压轴卷(理科数学)

绝密★启封前2020全国卷Ⅲ高考压轴卷理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.设集合M={2|230,x x x x Z --<∈},则集合M 的真子集个数为 A .8 B .7 C . 4 D .32.若复数z 满足i iz 21+=,其中i 为虚数单位,则在复平面上复数z 对应的点的坐标为() A.)1,2(- B.)1,2(- C.)1,2( D )1,2(--3.若错误!未找到引用源。
,则错误!未找到引用源。
DA 错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
4.在长为3m 的线段AB 上任取一点P ,则点P 与线段AB 两端点的距离都大于1m 的概率等() A .13 B.23 C .12 D .145.已知点A (1,2),B (3,4),C (—2,0),D (—3,3),则向量AB 在向量CD 上的投影为()A .5102 B .5102- C .510- D .5106.函数2()(1)cos 1xf x x e=-+图象的大致形状是( )7.设12,F F 是双曲线22:19x y C m-=的两个焦点,点P 在C 上,且120PF PF ⋅=u u u r u u u u r ,若抛物线216y x =的准线经过双曲线C 的一个焦点,则12||||PF PF ⋅u u u r u u u u r的值等于()A .2B .6C .14D .168.若[]x 表示不超过x 的最大整数,则下面的程序框图运行之后输出的结果为() A .48920 B .49660C .49800D .518679. 定义在R 上的函数()f x 满足()2log (4),0(1)(2),0x x f x f x f x x -≤⎧=⎨--->⎩,则()3f 的值为( )A.-1B. -2C.1D. 2(10)榫卯(sŭn măo )是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部位相结合的一种连接方式.我国的北京紫禁城、山西悬空寺、福建宁德的廊桥等建筑都用到了榫卯结构.如图所示是一种榫卯构件中卯的三视图,其体积为 (A )21 (B )22.5 (C )23.5 (D )2511.已知抛物线22y x =上有两点1122(,),(,)A x y B x y 关于直线x y m +=对称,且1212y y =-,则m 的值等于() A .34 B .54 C. 74 D .9412.设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为()()A 1ln2-()B ln 2)-()C 1ln2+()D ln 2)+第Ⅱ卷注意事项:须用黑色墨水签字笔在答题卡上作答。
2020年新课标高考数学三大层级(45+75+30)75分重点保分专题10(层级二)
2020年新课标高考数学三大层级(45+75+30)75分重点保分专题(层级二)层级二 75分重点保分题(选填/解答题重点题)保分专题十 概率与统计【全国卷3年考情命题分析】1.对概率的考查是高考命题的热点之一,命题形式为“一小一大”,即一道选择或填空题和一道解答 题.2.选择或填空题常出现在第3~8题或第13题的位置,主要考查古典概型、几何概型,难度一般. 3.概率、统计的解答题多在第18或19题的位置,多以交汇性的形式考查,交汇点主要有两种:一 是两图(频率分布直方图与茎叶图)择一与随机变量的分布列、数学期望、方差相交汇来考查;二是两图(频率分布直方图与茎叶图)择一与线性回归或独立性检验相交汇来考查,难度中等.考点1 几何概型1.几何概型的概率公式:P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.2.几何概型应满足两个条件:(1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等.[典例] (1)(2017·全国卷Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14 B.π8 C.12D.π4[解析] 选B 不妨设正方形ABCD 的边长为2,则正方形的面积为4,正方形的内切圆的半径为1,面积为π.由题意,得S 黑=12S 圆=π2,故此点取自黑色部分的概率P =π24=π8.(2)(2017·江苏高考)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.[解析] 由6+x -x 2≥0,解得-2≤x ≤3, 则D =[-2,3],则所求概率P =3--25--4=59.[答案]59[类题通法]几何概型的适用条件及解题关键(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解;(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.[即学即用·练通]1.(2017·沈阳质检)在区间(0,4)上任取一实数x ,则2x <2的概率是( ) A.34 B.12 C.13D.14解析:选D 由2x <2且0<x <4,得0<x <1, ∴所求概率P =14.2.(2017·云南11校跨区调研)在正方形ABCD 内随机生成n 个点,其中在正方形ABCD 内切圆内的点共有m 个,利用随机模拟的方法,估计圆周率π的近似值为( )A.m nB.2m nC.4m nD.6m n解析:选C 依题意,设正方形的边长为2a ,则该正方形的内切圆半径为a ,于是有πa 24a 2≈m n ,即π≈4mn ,即可估计圆周率π的近似值为4mn .3.(2017·新疆第二次适应性检测)在△ABC 中,AB =2,AC =5,cos A =45,在△ABC 内任意取一点P ,则△PAB 的面积大于1且小于等于2的概率为________.解析:如图,过点C 作CD ⊥AB 交AB 的延长线于点D ,则CD =AC ·sin A =3,在线段CD 上取点E ,F ,使得DE =EF =FC =1,分别过点E ,F 作AB 的平行线M 1N 1,M 2N 2,其中M 1,M 2位于边BC 上,N 1,N 2位于边AC 上,此时当点P 位于直线M 1N 1上时,S △PAB =1,当点P 位于直线M 2N 2上时,S △PAB =2.因此,要使△PAB 的面积大于1且小于等于2,此时点P 位于梯形M 1M 2N 2N 1内,所求的概率P =S 梯形M 1M 2N 2N 1S △ABC=13. 答案:13考点2 古典概型1.古典概型的概率:P (A )=m n =A 中所含的基本事件数基本事件总数.2.古典概型的两个特点:(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件出现的可能性相等.[典例] (1)(2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A.110 B.15 C.310D.25[解析] 选D 画出树状图如图:可知所有的基本事件共有25个,满足题意的基本事件有10个,故所求概率P =1025=25.(2)(2018届高三·湘中名校联考)从集合A ={-2,-1,2}中随机选取一个数记为a ,从集合B ={-1,1,3}中随机选取一个数记为b ,则直线ax -y +b =0不经过第四象限的概率为( )A.29B.13C.49D.14[解析] 选A 从集合A ,B 中随机选取后组合成的数对有(-2,-1),(-2,1),(-2,3),(-1,-1),(-1,1),(-1,3),(2,-1),(2,1),(2,3),共9种,要使直线ax -y +b =0不经过第四象限,则需a >0,b >0,共有2种满足,所以所求概率P =29.[即学即用·练通]1.四个人围坐在一张圆桌旁,每个人面前放着一枚完全相同的硬币,所有人同时抛出自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么没有相邻的两个人站起来的概率为( )A.14 B.716 C.12D.916解析:选B 四个人按顺序围成一桌,同时抛出自己的硬币,抛出的硬币正面记为0,反面记为1,则总的基本事件为(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),(0,1,0,0),(0,1,0,1),(0,1,1,0),(0,1,1,1),(1,0,0,0),(1,0,0,1),(1,0,1,0),(1,0,1,1),(1,1,0,0),(1,1,0,1),(1,1,1,0),(1,1,1,1),共有16种情况.若四个人同时坐着,有1种情况;若三个人坐着,一个人站着,有4种情况;若两个人坐着,两个人站着,此时没有相邻的两个人站起来有2种情况.所以没有相邻的两个人站起来的情况共有1+4+2=7种,故所求概率P =716.2.从2,3,4,5,6这5个数字中任取3个,则所取3个数之和为偶数的概率为________.解析:依题意,从2,3,4,5,6这5个数字中任取3个,共有10种不同的取法,其中所取3个数之和为偶数的取法共有1+3=4种(包含两种情形:一种情形是所取的3个数均为偶数,有1种取法;另一种情形是所取的3个数中2个是奇数,另一个是偶数,有3种取法),因此所求的概率P =410=25.答案:25考点3 概率与统计的综合问题[典例](2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6❶元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25,需求量为300瓶;如果最❷高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574❸以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时❹,写出Y的所有可能值,并估计Y大于零的概率.[解答示范](一)搭桥——找突破口第(1)问:欲求需求量不超过300瓶的概率,应知对应最高气温区间,由频率估计概率;第(2)问:欲求Y的值,应明确Y的含义,再根据气温的范围及频数求解,欲估计Y大于零的概率,只要知道Y的可能取值再求频率.(二)建桥——寻关键点有什么想到什么注意什么信息①:进货量相同、每瓶酸奶的进价、售价及处理价每瓶酸奶的进价及售价和未售出的处理价,确定每瓶酸奶的盈亏情况(1)对题目所给信息的准确理解(2)从统计表中准确获取相关的信息用于计算(3)对于某变量所有可能值的提取及所对应频率的求解信息②:气温的情况与酸奶的销量最高气温对需求量的影响信息③:频数分布表由频数确定频率,从而估计概率信息④:六月份一天的进货量由进货量和六月份气温情况知销售情况有可能售完也可能售不完[解](1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900; 若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300; 若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100. 所以Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8,因此Y 大于零的概率的估计值为0.8.[类题通法]概率与统计综合问题的两个注意点(1)明确频率与概率的关系,频率可近似替代概率.(2)此类问题中的概率模型多是古典概型,在求解时,要明确基本事件的构成. [即学即用·练通](2017·新疆第二次适应性检测)从2009年淘宝创立“双十一”以来,到2016年,“双十一”已经走过了八个年头,随着消费者消费水平越来越高,低价已经不再是最核心的要素,消费者对于品质的追求也越来越高.据美国《福布斯》双周刊网站2016年11月15日报道,“双十一”当天中国的线上交易额比巴西2016年全年的预估电子商务交易额都要多.某公司对“双十一”当天在淘宝购物的男、女各1 000名消费者的消费金额(单位:千元)进行统计,得到了消费金额的频率分布直方图如下:(1)根据频率分布直方图,从在淘宝购物的这2 000名消费者中任选一人,估计消费金额在2 000元以上(包括2 000元)的概率;(2)若“双十一”当天在淘宝上至少购买3 000元商品,就称此消费者为“酷爱淘宝者”.列出“酷爱淘宝者”人数与消费者性别的2×2列联表,并确定能否在犯错误的概率不超过0.001的前提下认为“酷爱淘宝者”与性别有关?参考公式和数据K 2=n ad -bc 2a +bc +d a +cb +dP (K 2≥k 0) 0.050 0.010 0.001 k 03.8416.63510.828解:(1)消费金额/千元 [0,1) [1,2) [2,3) [3,4) [4,5] 男性频数 50200350300100消费金额/千元 [0,1) [1,2) [2,3) [3,4) [4,5] 女性频数 2503001501002002 000名消费者中消费金额在2 000元以上(包括2 000元)的人数共1 200,估计消费金额在2 000元以上(包括2 000元)的概率为1 2002 000=0.6,故所求概率为0.6.(2)列出2×2列联表如下所示:非酷爱淘宝者酷爱淘宝者总计 男 600 400 1 000 女 700 300 1 000 总计1 3007002 000随机变量K 2的观测值k =2 000×600×300-400×70021 300×700×1 000×1 000≈21.978>10.828.所以能在犯错误的概率不超过0.001的前提下认为“酷爱淘宝者”与性别有关.【数学文化】 数学文化常考点——几何概型[典例] (2017·昆明质检)圆的任何一对平行切线间的距离总是相等的,即圆在任意方向都有相同的宽度,具有这种性质的曲线可称为“等宽曲线”.事实上存在着大量的非圆等宽曲线,以工艺学家鲁列斯(Reuleaux)命名的鲁列斯曲边三角形,就是著名的非圆等宽曲线.它的画法(如图1):画一个等边三角形ABC ,分别以A ,B ,C 为圆心,边长为半径,作圆弧»BC ,»CA ,»AB ,这三段圆弧围成的图形就是鲁列斯曲边三角形.它的宽度等于原来等边三角形的边长.等宽曲线都可以放在边长等于曲线宽度的正方形内(如图2).在图2中的正方形内随机取一点,则这一点落在鲁列斯曲边三角形内的概率为( )A.π8 B.2π-334C.π-22D.π-32[解析] 选D 设鲁列斯曲边三角形的宽度为a ,则该鲁列斯曲边三角形的面积为3×16πa 2-2×34a 2=π-3a 22,所以所求概率P =π-3a 22a 2=π-32.[点评] (1)本例解题的关键是准确理解题目背景,求出鲁列斯曲边三角形的面积;(2)求解数学文化试题主要分三步完成:①理解数学文化背景,挖掘出题目包含的数学意义;②联想相关的数学模型,将数学文化背景中的数学问题转化为纯数学问题;③利用数学知识求解.[针对训练]1.欧阳修《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”.卖油翁的技艺让人叹为观止.设铜钱是直径为4 cm 的圆,它中间有边长为1 cm 的正方形孔.若随机向铜钱上滴一滴油,则油滴(不计油滴的大小)正好落入孔中的概率为( )A.14πB.14C.116πD.116解析:选A 依题意得,所求的概率P =12π×22=14π. 2.如图,“赵爽弦图”是由四个全等的直角三角形(阴影部分)围成一个大正方形,中间空出一个小正方形组成的图形,若在大正方形内随机取一点,该点落在小正方形内的概率为15,则图中直角三角形中较大锐角的正弦值为( )A.55B.255C.15D.33解析:选B 法一:设大正方形的边长为1,直角三角形较大的锐角为α,则小正方形的边长为sin α-cos α,所以(sin α-cos α)2=15,所以sin α-cos α=55,2sin αcos α=45,所以sin α+cos α=355,所以sin α=255.法二:由赵爽弦图可知,直角三角形较大的锐角一定大于π4,所以其正弦值一定大于22,故排除选项A 、C 、D ,选B.3.《九章算术》是我国古代数学名著,也是古代东方数学的代表作.书中有如下问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“已知直角三角形两直角边长分别为5步和12步,问其内接正方形边长为多少步?”现若向此三角形内投豆子,则落在其内接正方形内的概率是( )A.60289 B.90289 C.120289D.240289解析:选C 如图,设Rt △ABC 的两直角边长分别为a ,b ,其内接正方形CEDF 的边长为x , 则由△ADF ∽△ABC ,得AF AC =DFBC , 即a -x a =x b ,解得x =ab a +b.从而正方形CEDF 的面积为S 正方形CEDF =⎝⎛⎭⎫ab a +b 2, 又Rt △ABC 的面积为S △ABC =ab2,所以所求概率为P =⎝⎛⎭⎫ab a +b 2ab 2=2ab a +b2=2×5×125+122=120289,故选C.【高考大题通法点拨】 概率与统计问题重在“辨”——辨析、辨型、辨图[思维流程][策略指导]概率与统计问题辨析、辨型与辨图的基本策略(1)准确弄清问题所涉及的事件有什么特点,事件之间有什么关系,如互斥、对立等. (2)理清事件以什么形式发生,如同时发生、至少有几个发生等. (3)明确抽取方式,如放回还是不放回、抽取有无顺序等. (4)分清是古典概型还是几何概型后再求概率.(5)会套用求b ^、K 2的公式求值,再作进一步求值与分析.(6)理解各图表所给信息,利用信息找出所要数据. [典例] 微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户称为“微信控”,否则称为“非微信控”,调查结果如下:微信控 非微信控 总计 男性 26 24 50 女性 30 20 50 总计5644100(1)根据以上数据,能否在犯错误的概率不超过0.4的前提下认为“微信控”与“性别”有关?(2)现从参与调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取5人中“微信控”和“非微信控”的人数;(3)从(2)中抽取的5人中再随机抽取2人赠送200元的护肤品套装,求这2人中至少有1人为“非微信控”的概率.参考公式:K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .参考数据:P (K 2≥k 0)0.50 0.40 0.25 0.05 0.025 0.010 k 00.4550.7081.3233.8415.0246.635[解] (1)由列联表中的数据可得K 2的观测值 k =100×26×20-30×24256×44×50×50≈0.649<0.708,所以不能在犯错误的概率不超过0.4的前提下认为“微信控”与“性别”有关.(2)依题意可知,所抽取的5位女性中,“微信控”有5×3050=3(人),“非微信控”有5×2050=2(人).(3)记5人中的“微信控”为a ,b ,c ,“非微信控”为D ,E ,则所有可能的基本事件为(a ,b ),(a ,c ),(a ,D ),(a ,E ),(b ,c ),(b ,D ),(b ,E ),(c ,D ),(c ,E ),(D ,E ),共10种,其中至少有1人为“非微信控”的基本事件有(a ,D ),(a ,E ),(b ,D ),(b ,E ),(c ,D ),(c ,E ),(D ,E ),共7种,所以这2人中至少有1人为“非微信控”的概率为710.[题后悟通](1)独立性检验是用来考察两个分类变量是否有关系,计算随机变量的观测值K 2,K 2越大,说明两个分类变量有关系的可能性越大.(2)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助表格,树状图列举;同时注意判断是古典概型还是几何概型,基本事件前者是有限的,后者是无限的,两者都有等可能性.某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图计算图中各小长方形的宽度;(2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入x (单位:万元)12345表中的数据显示,x 与y 之间存在线性相关关系,请将(2)的结果填入空白栏,并求y 关于x 的回归方程.附:回归直线的斜率和截距的最小二乘估计分别为b ^=∑i =1nx i y i -nx y∑i =1nx 2i -n x2,a ^=y -b ^x .解:(1)设各小长方形的宽度为m ,由频率分布直方图各小长方形的面积总和为1,可知(0.08+0.10+0.14+0.12+0.04+0.02)×m =1,解得m =2,所以图中各小长方形的宽度为2.(2)由(1)可知各小组依次是[0,2),[2,4),[4,6),[6,8),[8,10),[10,12], 其中点分别为1,3,5,7,9,11,对应的频率分别为0.16,0.20,0.28,0.24,0.08,0.04, 故可估计平均值为1×0.16+3×0.20+5×0.28+7×0.24+9×0.08+11×0.04=5(万元). (3)空白栏中填5.由题意可知x =1+2+3+4+55=3, y =2+3+2+5+75=3.8,∑i =15x i y i =1×2+2×3+3×2+4×5+5×7=69, ∑i =15x 2i =12+22+32+42+52=55, 所以b ^=69-5×3×3.855-5×32=1.2,a ^=3.8-1.2×3=0.2, 所以回归方程为y ^=1.2x +0.2. [总结升华]概率与统计问题的求解关键是辨别它的模型,只要找到模型,问题便迎刃而解.而概率模型的提取往往需要经过观察、分析、归纳、判断等复杂的辨析思维过程,常常因题设条件理解不准,某个概念认识不清而误入歧途.另外,还需弄清楚概率模型中等可能事件、互斥事件、对立事件等事件间的关系,注意放回和不放回试验的区别,合理划分复合事件.【专题过关检测十】 A 卷——夯基保分专练一、选择题1.已知数列{a n }满足a 1=2,a n +1=-2a n (n ∈N *).若从数列{a n }的前10项中随机抽取一项,则该项不小于8的概率是( )A.310 B.25 C.35D.710解析:选B 由题意可知a n =2·(-2)n -1,故前10项中,不小于8的只有8,32,128,512,共4项,故所求概率是410=25.2.(2017·湖南五市十校联考)在矩形ABCD 中,AB =2AD ,在CD 上任取一点P ,△ABP 的最大边是AB 的概率是( )A.22B.32C.2-1D.3-1解析:选D 分别以A ,B 为圆心,AB 的长为半径画弧,交CD 于P 1,P 2,则当P 在线段P 1P 2间运动时,能使得△ABP 的最大边是AB ,易得P 1P 2CD=3-1,即△ABP 的最大边是AB 的概率是3-1.3.(2017·天津高考)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A.45B.35C.25D.15解析:选C 从5支彩笔中任取2支不同颜色的彩笔,有10种不同取法:(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫).而取出的2支彩笔中含有红色彩笔的取法有(红,黄),(红,蓝),(红,绿),(红,紫),共4种,故所求概率P =410=25.4.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中各随机选一匹进行一场比赛,则田忌获胜的概率为( )A.13 B.14 C.15D.16解析:选A 设田忌的上、中、下三个等次的马分别为A ,B ,C ,齐王的上、中、下三个等次的马分别为a ,b ,c ,从双方的马匹中各随机选一匹进行一场比赛的所有可能结果有Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,共9种,田忌获胜有Ab ,Ac ,Bc ,共3种,田忌获胜的概率为13.5.已知集合A ={-2,3,5,7},从A 中随机抽取两个不同的元素a ,b ,作为复数z =a +b i(i 为虚数单位)的实部和虚部.则复数z 在复平面内的对应点位于第一象限的概率为( )A.12B.23C.34D.45解析:选A 从集合A ={-2,3,5,7}中随机抽取两个不同的元素a ,b ,组成复平面内的对应点有(-2,3),(-2,5),(-2,7),(3,-2),(3,5),(3,7),(5,-2),(5,3),(5,7),(7,-2),(7,3),(7,5),共12种;其中位于第一象限的点有(3,5),(3,7),(5,3),(5,7),(7,3),(7,5),共6种. 所以复数z 在复平面内的对应点位于第一象限的概率为P =612=12.6.在平面区域⎩⎪⎨⎪⎧x +y -4≤0,x >0,y >0内随机取一点(a ,b ),则函数f (x )=ax 2-4bx +1在区间[1,+∞)上是增函数的概率为( )A.14B.13 C.12 D.23解析:选B 不等式组表示的平面区域为如图所示的△AOB 的内部及边界AB (不包括边界OA ,OB ),则S △AOB =12×4×4=8.函数f (x )=ax 2-4bx +1在区间[1,+∞)上是增函数,则应满足a >0且x =4b 2a≤1,即⎩⎨⎧ a >0,a ≥2b ,可得对应的平面区域如图中阴影部分(包括边界OC ,BC ,不包括边界OB ),由⎩⎨⎧a =2b ,a +b -4=0,解得a =83,b =43,所以S △C OB =12×4×43=83,根据几何概型的概率计算公式,可知所求的概率P =838=13.二、填空题7.同时掷两颗骰子,则向上的点数之和是7的概率是________.解析:依题意,记抛掷两颗骰子向上的点数分别为a ,b ,则可得到数组(a ,b )共有6×6=36组,其中满足a +b =7的组数共有6组,分别为(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),因此所求的概率等于636=16.答案:168.在长度为10的线段AB 上任取一点C (异于A ,B ),则以AC ,BC 为半径的两圆面积之和小于58π的概率是________.解析:设AC =x ,则BC =10-x,0<x <10.由题意知,πx 2+π(10-x )2<58π,即x 2-10x +21<0,解得3<x <7.故所求的概率为7-310=25.答案:259.从集合M ={(x ,y )|(|x |-1)2+(|y |-1)2<4,x ,y ∈Z}中随机取一个点P (x ,y ),若xy ≥k (k >0)的概率为625,则k 的最大值是________. 解析:因为M ={(x ,y )|(|x |-1)2+(|y |-1)2<4,x ,y ∈Z},所以M ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z},所以集合M 中元素的个数为5×5=25.因为xy =1的情况有2种,xy =2的情况有4种,xy =4的情况有2种,所以要使xy ≥k (k >0)的概率为625,需1<k ≤2,所以k 的最大值为2.答案:2 三、解答题10.《聪明花开——莆仙话挑战赛》栏目共有五个项目,分别为“和一斗”“斗麻利”“文儒生”“放独步”“正功夫”.《聪明花开》栏目组为了解观众对项目的看法,设计了“你最喜欢的项目是哪一个”的调查问卷(每人只能选一个项目),对现场观众进行随机抽样调查,得到如下数据(单位:人):(1)在所有参与该问卷调查的人中,用分层抽样的方法抽取n 人座谈,其中恰有4人最喜欢“斗麻利”,求n 的值及所抽取的人中最喜欢“和一斗”的人数;(2)在(1)中抽取的最喜欢“和一斗”和“斗麻利”的人中,任选2人参加栏目组互动,求恰有1人最喜欢“和一斗”的概率.解:(1)由已知得n 115+230+115+345+460=4230,解得n =22.抽取的人中最喜欢“和一斗”的有115×4230=2(人).(2)从(1)中抽取的最喜欢“和一斗”和“斗麻利”的人中,最喜欢“和一斗”的有2人,分别记为A 1,A 2,最喜欢“斗麻利”的有4人,分别记为B 1,B 2,B 3,B 4.从中随机抽取2人,所有的可能结果有:{A 1,A 2},{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4}, {A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4}, {B 1,B 2},{B 1,B 3},{B 1,B 4}, {B 2,B 3},{B 2,B 4}, {B 3,B 4},共15种.其中,恰有1人最喜欢“和一斗”的可能结果有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},共8种.故恰有1人最喜欢“和一斗”的概率P =815.11.某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,依此类推,统计结果如下表:停靠时间 2.5 3 3.5 4 4.5 5 5.5 6 轮船数量12121720151383(1)设该月100艘轮船在该泊位的平均停靠时间为a 小时,求a 的值;(2)假定某天只有甲、乙两艘轮船需要在该泊位停靠a 小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.解:(1)a =1100×(2.5×12+3×12+3.5×17+4×20+4.5×15+5×13+5.5×8+6×3)=4.(2)设甲船到达的时间为x ,乙船到达的时间为y ,则⎩⎨⎧0≤x <24,0≤y <24,若这两艘轮船在停靠该泊位时至少有一艘船需要等待,则|y -x |<4,作出示意图如图. 所以必须等待的概率 P =1-202242=1136,故这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率为1136.12.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1∶3,且成绩分布在[40,100],分数在80以上(含80)的同学获奖.按文、理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图如图所示.(1)求a 的值,并计算所抽取样本的平均值x (同一组中的数据用该组区间的中点值作代表);(2)填写下面的2×2列联表,并判断在犯错误的概率不超过0.05的前提下能否认为“获奖与学生的文、理科有关”.文科生理科生 总计获奖 5 不获奖 总计200附表及公式:P (K 2≥k 0) 0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.828K 2=n ad -bc 2a +bc +d a +cb +d .解:(1)a =110×[1-(0.01+0.015+0.03+0.015+0.005)×10]=0.025,x =45×0.1+55×0.15+65×0.25+75×0.3+85×0.15+95×0.05=69. (2)2×2列联表如下:文科生理科生总计获奖 5 35 40 不获奖 45 115 160 总计50150200因为K 2=200×5×115-35×45240×160×50×150≈4.167>3.841,所以在犯错误的概率不超过0.05的前提下能认为“获奖与学生的文、理科有关”.B 卷——大题增分专练1.某地电影院为了了解当地影迷对快要上映的一部电影的票价的看法,进行了一次调研,得到了票价x (单位:元)与渴望观影人数y (单位:万人)的结果如下表:x (单位:元) 30 40 50 60 y (单位:万人)4.5432.5(1)若y 与x (2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程;(3)根据(2)中求出的线性回归方程,预测票价定为多少元时,能获得最大票房收入.参考公式:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x .解:(1)由表中数据易知,y 随x 的增大而减小,故y 与x 之间是负相关. (2)由表中数据可得x =45,y =3.5,∑i =14x i y i -4x y =-35,∑i =14x 2i -4x 2=500,则b ^=∑i =14x i y i -4x y∑i =14x 2i -4x2=-0.07,a ^=3.5+0.07×45=6.65,所以,所求线性回归方程为y ^=-0.07x +6.65.(3)根据(2)中的线性回归方程,若票价为x 元,则渴望观影人数约为(-0.07x +6.65)万人, 可预测票房收入为z =x (-0.07x +6.65)=-0.07x 2+6.65x =-0.07(x -47.5)2+157.937 5, 易得,当x =47.5时,z 取得最大值,即票价定为47.5元时,能获得最大票房收入.2.某高中学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在[50,100]内,发布成绩使用等级制.各等级划分标准见图表.规定:A ,B ,C 三级为合格等级,D 为不合格等级.分数 85分及以上 70分到84分 60分到69分 60分以下 等级ABCD[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图①所示,样本中原始成绩在80分及以上的所有数据的茎叶图如图②所示.(1)求n 和频率分布直方图中的x ,y 的值,并估计该校高一年级学生成绩是合格等级的概率;。
精品解析:2020年全国统一高考数学试卷(文科)(新课标Ⅲ)(解析版)
2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 5【答案】B 【解析】 【分析】采用列举法列举出AB 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2.若()11+=-z i i ,则z =( ) A. 1–i B. 1+iC. –iD. i【答案】D 【解析】 【分析】先利用除法运算求得z ,再利用共轭复数的概念得到z 即可.【详解】因为21(1)21(1)(1)2i i iz i i i i ---====-++-,所以z i . 故选:D【点晴】本题主要考查复数的除法运算,涉及到共轭复数的概念,是一道基础题.3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( ) A. 0.01 B. 0.1C. 1D. 10【答案】C 【解析】 【分析】根据新数据与原数据关系确定方差关系,即得结果.【详解】因为数据(1,2,,)i ax b i n +=,的方差是数据(1,2,,)i x i n =,的方差的2a 倍,所以所求数据方差为2100.01=1⨯ 故选:C【点睛】本题考查方差,考查基本分析求解能力,属基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63C. 66D. 69【答案】C 【解析】 【分析】将t t *=代入函数()()0.23531t KI t e--=+结合()0.95I t K *=求得t*即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t K I t K e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( )A.12B.3C.23D.2【答案】B【解析】 【分析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 【详解】由题意可得:13sin sin cos 122θθθ++=, 则:33sin cos 12θθ+=,313sin cos 2θθ+=, 从而有:3sin coscos sin66ππθθ+=, 即3sin 6πθ⎛⎫+= ⎪⎝⎭. 故选:B.【点睛】本题主要考查两角和与差的正余弦公式及其应用,属于中等题.6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为( ) A. 圆 B. 椭圆C. 抛物线D. 直线【答案】A 【解析】 【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.【详解】设()20AB a a =>,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则:()(),0,,0A a B a -,设(),C x y ,可得:()(),,,AC x a y BC x a y →→=+=-, 从而:()()2AC BC x a x a y →→⋅=+-+, 结合题意可得:()()21x a x a y +-+=,整理可得:2221x y a +=+,即点C 的轨迹是以AB 为半径的圆. 故选:A.【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.7.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A. (14,0) B. (12,0) C. (1,0) D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4COx COx π∠=∠=,从而可以确定出点D的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,C D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx COx π∠=∠=,所以(2,2)C ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 8.点(0,﹣1)到直线()1y k x =+距离的最大值为( )A. 1B.C.D. 2【答案】B 【解析】 【分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果.【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大, 即为||2AP =.故选:B.【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.9.下图为某几何体的三视图,则该几何体的表面积是( )A. 6+42B. 4+42C. 6+23D. 4+23【答案】C 【解析】 【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△ 根据勾股定理可得:22AB AD DB ===∴ADB △是边长为22根据三角形面积公式可得:211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题. 10.设a =log 32,b =log 53,c =23,则( ) A. a <c <b B. a <b <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】分别将a ,b 改写为331log 23a =,351log 33b =,再利用单调性比较即可. 【详解】因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==,所以a c b <<. 故选:A【点晴】本题考查对数式大小的比较,考查学生转化与回归的思想,是一道中档题. 11.在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A.【答案】C 【解析】 【分析】先根据余弦定理求c ,再根据余弦定理求cos B ,最后根据同角三角函数关系求tan .B 【详解】设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=2221cos sin tan 299a cb B B B ac +-==∴===故选:C【点睛】本题考查余弦定理以及同角三角函数关系,考查基本分析求解能力,属基础题.12.已知函数f (x )=sin x +1sin x,则( ) A. f (x )的最小值为2B. f (x )的图像关于y 轴对称C. f (x )的图像关于直线x π=对称D. f (x )的图像关于直线2x π=对称【答案】D 【解析】 【分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D. 【详解】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x xππ-=--≠-=+=故B 错;()f x ∴关于直线2x π=对称,故C 错,D 对故选:D【点睛】本题考查函数定义域与最值、奇偶性、对称性,考查基本分析判断能力,属中档题.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.【答案】7 【解析】 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大, 平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A ,所以max 31227z =⨯+⨯=. 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为y 2x ,则C 的离心率为_________.3 【解析】 【分析】 根据已知可得2ba=,,a b c 的关系,即可求解. 【详解】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为2y x =,所以2b a =2213c b e a a==+=3【点睛】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.15.设函数e ()xf x x a =+.若(1)4e f '=,则a =_________.【答案】1 【解析】【分析】由题意首先求得导函数的解析式,然后得到关于实数a 的方程,解方程即可确定实数a 的值 【详解】由函数的解析式可得:()()()()()221x xx e x a e e x a f x x a x a +-+-'==++,则:()()()()12211111e a aef a a ⨯+-'==++,据此可得:()241aee a =+, 整理可得:2210a a -+=,解得:1a =. 故答案为:1.【点睛】本题主要考查导数的运算法则,导数的计算,方程的数学思想等知识,属于中等题. 16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 【答案】2π 【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于223122AM =-=1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯=解得:22r,其体积:3433V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设等比数列{a n }满足124a a +=,318a a -=. (1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m . 【答案】(1)13-=n n a ;(2)6m =. 【解析】 【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式; (2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13-=n n a ;(2)令313log log 31n n n b a n -===-,所以(01)(1)22n n n n n S +--==,根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =,【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析. 【解析】 【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率; (2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证AC ⊥平面11BB D D ,即得结果; (2)只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可.【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC =所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴ 因此1C 在平面AEF 内【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题. 20.已知函数32()f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围. 【答案】(1)详见解析;(2)4(0,)27. 【解析】 【分析】(1)'2()3f x x k =-,对k 分0k ≤和0k >两种情况讨论即可;(2)()f x 有三个零点,由(1)知0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩,解不等式组得到k 的范围,再利用零点存在性定理加以说明即可.【详解】(1)由题,'2()3f x x k =-,当0k ≤时,'()0f x ≥恒成立,所以()f x 在(,)-∞+∞上单调递增;当0k >时,令'()0f x =,得x ='()0f x <,得x << 令'()0f x >,得x <x >()f x在(上单调递减,在(,-∞,)+∞上单调递增. (2)由(1)知,()f x 有三个零点,则0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩即22203203k k ⎧+>⎪⎪⎨⎪-<⎪⎩,解得4027k <<, 当4027k <<>20f k =>, 所以()f x在上有唯一一个零点,同理1k --<32(1)(1)0f k k k --=--+<, 所以()f x在(1,k --上有唯一一个零点, 又()f x在(上有唯一一个零点,所以()f x 有三个零点, 综上可知k 的取值范围为4(0,)27. 【点晴】本题主要考查利用导数研究函数的单调性以及已知零点个数求参数的范围问题,考查学生逻辑推理能力、数学运算能力,是一道中档题.21.已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案; (2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1)222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率22154115c b m e a a ⎛⎫⎛⎫==-=-= ⎪ ⎪⎝⎭⎝⎭,解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=; (2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”, 可得:PMB BNQ ≅△△,221612525x y +=, ∴(5,0)B ,∴651PM BN ==-=,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:22231111055125211d ⨯-⨯+===+ 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:155522⨯=;故5+38MB ==,PMB BNQ ≅△△, ∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:()2283111405185185811d ⨯--⨯+===+, 根据两点间距离公式可得:()()226580185AQ =++-=,∴APQ 面积为:1518522185=, 综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2222x t t y t t⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点. (1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 【答案】(1)2)3cos sin 120ρθρθ-+= 【解析】 【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A . 令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4-5:不等式选讲]23.设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c . 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. ,,a b c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.。
2020年湖南省高考压轴试卷数学(文)Word版含答案解析(四)
由全国各地一线教师精心编制,对近十年全国各地高考试题的全方位精确分析,把握命题规律,找出命题趋势。
全网首发!百位名师呕血专研,只为高考最后一搏!注意事项:1.答题前,考生务必将自己的姓名、准考证号写在答题卡上。
2.考生作答时,选择题、填空题、解答题均须做在答题卡上,在本试卷上答题无效。
考生在答题卡上按答题卡中注意事项的要求答题。
3.考试结束后,将本试题卷和答题卡一并收回。
4.本试题卷共4页,如有缺页,考生须声明,否则后果自负。
湖南省高考压轴试卷数学(文)Word 版含答案解析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分. 时量:120分钟.第Ⅰ卷(选择题 共45分)一、选择题:本大题共9小题,每小题5分,共计45分,在每小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在答题卡上. 1.复数(1)z i i =-+(i 为虚数单位)的共轭复数是 A .1i + B .1i -C . 1i -+D .1i --2.下列命题中的假命题是 A. 1,20x x R -∀∈>B. ()2*,10x N x ∀∈->C. ,ln 1x R x ∃∈<D. ,tan 2x R x ∃∈=3.已知随机变量,x y 的值如右表所示,如果x 与y 线性相关 且回归直线方程为=+9ˆ2y bx ,则实数b 的值为 A.12- B. 12 C. 16- D. 164.已知命题:44p x a -<-<,命题:(1)(3)0q x x --<,且q 是p 的充分而不必要条件,则a 的取值范围是A. []1,5-B. [)1,5-C. (]1,5-D.()1,5-5.圆柱形容器内盛有高度为6cm 的水,若放入三个相同的球 (球的半径与圆柱的底面半径相同)后,水恰好淹没最上面 的球(如右图所示),则球的半径是A.67cm B. 2cm C. 3cmD. 4cm6.已知O 是坐标原点,点()2,1A -,若点(),M x y 为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅u u u r u u u u r第15题图的取值范围是A.[]1,0-B.[]1,2-C. []0,1D. []0,2 7.按照如图的程序运行,已知输入x 的值为22log 3+, 则输出y 的值为 A. 7 B. 11C. 12D. 248.如图,1F 、2F 是椭圆1C 与双曲线2C :2212x y -=的公 共焦点,A 、B 分别是1C 与2C 在第二、四象限的公共点. 若四边形12AF BF 为矩形,则1C 的离心率是A.12 B. 22 C. 32 D. 139.若()f x 是定义在R 上的函数,且对任意实数x ,都有(2)f x +≤()2f x +,(3)f x +≥()3f x +,且(1)2f =,(2)3f =,则(2015)f 的值是 A. 2014 B.C. 2016D. 2017第Ⅱ卷(非选择题 共105分)二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在答题卡上的相应横线上.10.以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知圆的极坐标方程为4sin ρθ=,直线的参数方程为3x ty t⎧=⎪⎨=⎪⎩(t 为参数),则圆心到直线的距离是 .11.若(cos )cos 2f x x =,则(sin 75)f =o. 12.某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19. 现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为 .13.已知向量(,8)a x =r ,(4,)b y =r ,(,)c x y =r (0,0)x y >>,若//a b r r ,则c r的最小值为 .14.已知某几何体的三视图(如下图),其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,则此几何体的体积V 的大小为 .15.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对第8题图第14题图数进行分类,如下图中的实心点个数1,5,12,22,…, 被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,(1) 5a =_________;(2) 若117n a =,则n .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)在ABC ∆中,已知3c =,1b =,30B =o(Ⅰ)求角C 和角A ; (Ⅱ)求ABC ∆的面积S .17.(本小题满分12分)甲、乙、丙三人中要选一人去参加唱歌比赛,于是他们制定了一个规则,规则为:(如图)以O 为起点,再从12345,,,,,A A A A A 这5个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X ,若0X >就让甲去;若0X =就让乙去;若0X <就是丙去. (Ⅰ)写出数量积X 的所有可能取值; (Ⅱ)求甲、乙、丙三人去参加比赛的概率, 并由求出的概率来说明这个规则公平吗?18.(本小题满分12分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,//PD QA ,12QA AB PD ==. (Ⅰ)证明:平面PQC ⊥平面DCQ ; (Ⅱ)求二面角D PQ C --的余弦值.19.(本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,且3550S S +=,1413,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设{}nnb a 是首项为1公比为2 的等比数列,求数列{}n b 前n 项和n T .20.(本小题满分13分)已知椭圆C : 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60o的菱形的四个顶点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线y kx =交椭圆C 于,A B 两点,在直线:30l x y +-=上存在点P ,使得PAB ∆为等边三角形,求k 的值.21.(本小题满分13分)已知函数c x b ax x f ++=ln )((c b a ,,是常数)在e x =处的切线方程为0)1(=-+-e ey x e ,且(1)0f =. (Ⅰ)求常数c b a ,,的值;(Ⅱ)若函数)()(2x mf x x g +=(R m ∈)在区间)3,1(内不是单调函数,求实数m 的取值范围.参考答案与评分标准一、选择题(//4595=⨯)题号 1 2 3 4 5 6 7 8 9 答案ABDACBDCC二、填空题(//3065=⨯) 10.3; 11.32; 12.16; 13.8; 14.403; 15.(1)35;(2)9. 三、解答题: 16解: (Ⅰ)∵bcB C =sin sin ⇒33sin sin 3012C ==o , ∵b c >,∴C B >, ∴60C =o ,90A =o 或120C =o ,30A =o ……………………6分 注:只得一组解给5分. (Ⅱ)当90A =o 时,23sin 21==A bc S ; 当30A =o 时, 43sin 21==A bc S , 所以S=23或43……………………………12分注:第2问只算一种情况得第2问的一半分3分.17解: (Ⅰ)12(1,0)(1,1)1OA OA =-=u u u r u u u u r g g 13(1,0)(0,1)0OA OA =-=u u u r u u u u rg g 14(1,0)(0,1)0OA OA ==u u u r u u u u r g g 15(1,0)(1,1)1OA OA =-=-u u u r u u u u r g g 23(1,1)(0,1)1OA OA =--=u u u u r u u u u r g g 24(1,1)(0,1)1OA OA =-=-u u u u r u u u u r g g25(1,1)(1,1)2OA OA =--=-u u u u r u u u u r g g 34(0,1)(0,1)1OA OA =-=-u u u u r u u u u rg g 35(0,1)(1,1)1OA OA =--=-u u u u r u u u u r g g 45(0,1)(1,1)1OA OA =-=u u u u r u u u u r g g…………………………3分X 的所有可能取值为2,1,0,1--…………………………5分(Ⅱ)P (甲去)=310 …………………………7分 P (乙去)= 210 …………………………9分P (丙去)= 510…………………………11分甲乙丙去的概率不相同,所以这个规则不公平…………………………12分18证明: (Ⅰ)∵⊥PD 面ABCD , ∴CD PD ⊥,又D DP AD AD CD =⊥I ,, 所以⊥CD 面ADPQ ,∴PQ CD ⊥, 在直角梯形ADPQ 中,设a AQ =,则a DP a PQ a DQ 2,2,2===,所以PQ DQ ⊥,又D DQ CD =I ,所以⊥PQ 面DCQ ,又⊂PQ 面PQC , ∴平面PQC ⊥平面DCQ ………………6分 (Ⅱ)由(1)知⊥PQ 面DCQ∴DQC ∠就是二面角C PQ D --的平面角………………9分 在Rt DQC ∆中a CQ a DQ 3,2==,所以=∠DQC cos 36……………12分 19解: (Ⅰ)依题得1121113254355022(3)(12)a d a d a d a a d ⨯⨯⎧+++=⎪⎨⎪+=+⎩………………2分解得132a d =⎧⎨=⎩………………4分 1(1)32(1)21n a a n d n n ∴=+-=+-=+,即21n a n ∴=+……………6分(Ⅱ)1112,2(21)2n n n nn n nb b a n a ---==⋅=+⋅………………7分 0121325272(21)2n n T n -∴=⨯+⨯+⨯+⋅⋅⋅++g ①12312325272(21)2(21)2n n n T n n -=⨯+⨯+⨯+⋅⋅⋅+-++g g ②…………9分两式相减得:12(12)32(21)212n n n T n --=--⨯++-g 1(21)2nn =+-g………………13分 20解:(Ⅰ)因为椭圆C :22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60o的菱形的四个顶点, 所以3,1a b ==,椭圆C 的方程为2213x y +=……………… 4分 (Ⅱ)设()11,A x y ,则()11,B x y --(i )当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线:30l x y +-=的交点为(0,3)P ,又3,3AO PO ==||||||23AB PA PB ⇒===,所以PAB ∆是等边三角形,所以0k =满足条件;………………6 分 (ii)当直线AB 的斜率存在且不为0时,设AB 的方程为y kx =所以2213x y y kx⎧+=⎪⎨⎪=⎩,化简得22(31)3k x += 解得12331x k =+ 所以222233313131k AO k k k +=+=++……………… 8分 又AB 的中垂线为1y x k=-,它l 的交点记为00(,)P x y 由301x y y x k +-=⎧⎪⎨=-⎪⎩解得003131k x k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩则2299(1)k PO k +=-……………… 10分 因为PAB ∆为等边三角形, 所以应有3PO AO =代入得到222299333(1)31k k k k ++=-+,解得0k =(舍),1k =- 综上可知,0k = 或1k =- ……………… 13分21解: (Ⅰ)由题设知,)(x f 的定义域为),0(+∞,xba x f +=)(', 因为)(x f 在e x =处的切线方程为0)1(=-+-e ey x e , 所以'1()e f e e -=-,且()2f e e =-,即1b e a e e-+=-,且2ae b c e ++=-, 又0)1(=+=c a f ,解得1-=a ,1=b ,1=c ………………5分 (Ⅱ)由(Ⅰ)知)0(1ln )(>++-=x x x x f因此,22()()ln (0)g x x mf x x mx m x m x =+=-++> 所以)0)(2(12)(2'>+-=+-=x m mx x xx m m x x g ………………7分 令2()2(0)d x x mx m x =-+>.(ⅰ)当函数)(x g 在)3,1(内有一个极值时,0)('=x g 在)3,1(内有且仅有一个根,即02)(2=+-=m mx x x d 在)3,1(内有且仅有一个根,又因为(1)20d =>,当0)3(=d ,即9=m 时,02)(2=+-=m mx x x d 在)3,1(内有且仅有一个根32x =,当0)3(≠d 时,应有0)3(<d ,即03322<+-⨯m m ,解得9>m ,所以有9m ≥.(ⅱ)当函数)(x g 在)3,1(内有两个极值时,0)('=x g 在)3,1(内有两个根,即二次函数02)(2=+-=m mx x x d 在)3,1(内有两个不等根,所以22420(1)20(3)2330134m m d m m d m m m ⎧∆=-⨯⨯>⎪=-+>⎪⎪⎨=⨯-+>⎪⎪<<⎪⎩,解得98<<m .综上,实数m 的取值范围是),8(+∞ ………………13分。
2020年普通高等学校招生全国统一考试(全国Ⅲ卷)压轴卷 数学(文) 含解析
20.(12 分)中心在原点的椭圆 E 的一个焦点与抛物线 C : x2 = 4 y 的焦点关于直线 y = x 对
称,且椭圆 E 与坐标轴的一个交点坐标为 (2, 0) .
(I)求椭圆 E 的标准方程;
A.等腰直角三角形 B.等腰三角形 C.直角三角形
D.等边三角形
7.宋元时期,中国数学鼎盛时期中杰出的数学家有“秦﹝九韶﹞、李﹝冶﹞、杨﹝辉﹞、朱
﹝世杰﹞四大家”,朱世杰就是其中之一.朱世杰是一位平民数学家和数学教育家.朱世杰
平生勤力研习《九章算术》,旁通其它各种算法,成为元代著名数学家.他全面继承了前人 数学成果,既吸收了北方的天元术,又吸收了南方的正负开方术、各种日用算法及通俗歌诀, 在此基础上进行了创造性的研究,写成以总结和普及当时各种数学知识为宗旨的《算学启 蒙》,其中有关于“松竹并生”的问题:松长四尺,竹长两尺,松日自半,竹日自倍,松竹
何日而长等.如图,是源于其思想的一个程序框图.若输入的 a, b 分别为 3 ,1,则输出的 n =
()
A. 2
B. 3
C. 4
D. 5
{ } 8.已知等比数列 an 中,公比为 q, a2 = 3 ,且 −1, q, 7 成等差数列,又 bn = log3 an ,
数列{bn} 的前 n 项和为 Tn ,则T9 = ( )
log3
25
=
_________.
x
≥
0,
14.已知 x,y 满足 x + y ≥ 4,若 x + 2 y 的最小值为_________.
x − 2 y ≤1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年新课标高考数学三大层级(45+75+30)压轴拉分专题(层级三)层级三 30分压轴拉分题(选填/解答题压轴题)压轴专题一 选择题第12题、填空题第16题的抢分策略【全国卷3年考情命题分析】选择题第12题、填空题第16题,一般难度较大,从近几年试题分析,这两道题主要考查函数与导数 问题、创新问题、圆锥曲线的性质、数列、三角函数、立体几何等知识.大多数考生对这类题目存在畏惧心理,其实若能静下心来审读这类题目,也是完全可以得分的.一些能力欠佳的考生,会用一定的猜题技巧,极有可能猜对答案,即平常我们所说的“瞎猜的不如会猜的”.策略1 身体探寻实质[典例] (2016·四川高考)在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为P ′yx 2+y 2,-xx 2+y 2;当P 是原点时,定义P 的“伴随点”为它自身.现有下列命题: ①若点A 的“伴随点”是点A ′,则点A ′的“伴随点”是点A ; ②单位圆上的点的“伴随点”仍在单位圆上;③若两点关于x 轴对称,则它们的“伴随点”关于y 轴对称; ④若三点在同一条直线上,则它们的“伴随点”一定共线. 其中的真命题是________(写出所有真命题的序号).[解析] 对于①,特殊值法.取A (1,1),则A ′⎝⎛⎭⎫12,-12,A ′的“伴随点”为点(-1,-1).故①为假命题. 对于②,单位圆的方程为x 2+y 2=1,设其上任意一点(x ,y )的“伴随点”为(x ′,y ′),则⎩⎪⎨⎪⎧x ′=yx 2+y2=y ,y ′=-xx 2+y 2=-x ,∴y 2+(-x )2=y 2+x 2=1.故②为真命题.③设A (x ,y ),B (x ,-y ),则它们的伴随点分别为A ′⎝ ⎛⎭⎪⎫y x 2+y 2,-x x 2+y 2,B ′⎝ ⎛⎭⎪⎫-y x 2+y 2,-x x 2+y 2,A ′与B ′关于y 轴对称,故③为真命题.④设共线的三点A (-1,0),B (0,1),C (1,2),则它们的伴随点分别为A ′(0,1),B ′(1,0),C ′⎝⎛⎭⎫25,-15,此三点不共线,故④为假命题.故真命题为②③. [答案] ②③ [题后悟通]1.解答此题应理解“伴随点”的含义,即P (x ,y )→P ′⎝ ⎛⎭⎪⎫yx 2+y 2,-x x 2+y 2,问题即可解决.2.解答新定义问题要仔细观察,认真阅读,在彻底领悟、准确辨析的基础上,进行归纳、类比,将新定义问题转化为已有知识的问题解决.[针对训练]1.对于数列{a n },定义H n =a 1+2a 2+…+2n -1a nn为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n+1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n ∈N *恒成立,则实数k 的取值范围为________. 解析:由H n =2n +1,得n ·2n +1=a 1+2a 2+…+2n -1a n ,①则当n ≥2时,(n -1)·2n =a 1+2a 2+…+2n -2a n -1,② ①-②,得2n -1a n =n ·2n +1-(n -1)·2n , 所以a n =2n +2,令b n =a n -kn =(2-k )n +2, 又S n ≤S 5对任意的n ∈N *恒成立,所以⎩⎨⎧b 5≥0,b 6≤0,即⎩⎨⎧52-k +2≥0,62-k +2≤0,解得73≤k ≤125.答案:⎣⎡⎦⎤73,125策略2 运算善用技巧[典例] (2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.[解析] 求得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点为(x 1,y 1),曲线y =ln(x +1)上的切点为(x 2,y 2),则k =1x 1=1x 2+1,所以x 2+1=x 1.又y 1=ln x 1+2,y 2=ln(x 2+1)=ln x 1, 所以k =y 1-y 2x 1-x 2=2,所以x 1=1k =12,y 1=ln 12+2=2-ln 2,所以b =y 1-kx 1=2-ln 2-1=1-ln 2. [答案] 1-ln 2 [题后悟通]解答本题体现了运算技巧,在求解中,巧妙地利用斜率k 得出x 1=x 2+1,利用斜率公式可求得k 的值,再代入直线方程,求出b 的值.解答此类问题应注意整体代换、变形代换的思想.[针对训练]2.设正实数x ,y 满足x >12,y >1,不等式4x 2y -1+y 22x -1≥a 恒成立,则a 的最大值为( )A .22B .4 2C .8D .16解析:选C 法一:依题意得,2x -1>0,y -1>0,4x 2y -1+y 22x -1=[2x -1+1]2y -1+[y -1+1]22x -1≥42x -1y -1+4y -12x -1≥4×22x -1y -1×y -12x -1=8,即4x 2y -1+y22x -1≥8,当且仅当⎩⎪⎨⎪⎧2x -1=1,y -1=1,2x -1y -1=y -12x -1,即⎩⎨⎧x =1,y =2时,取等号,因此4x 2y -1+y 22x -1的最小值是8,即a ≤8,故a 的最大值是8.法二:令m =2x -1,n =y -1, 则m >0,n >0,x =m +12,y =n +1,4x 2y -1+y 22x -1=4⎝⎛⎭⎫m +122n +n +12m=m +12n+n +12m≥4m n +4nm ≥24m n ×4nm =8,当且仅当m =1且n =1,即x =1,y =2时取等号,即4x 2y -1+y 22x -1≥8, 故a ≤8,所以a 的最大值是8.策略3 排除简化过程[典例] (2017·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧|x |+2,x <1,x +2x ,x ≥1.设a ∈R ,若关于x 的不等式f (x )≥⎪⎪⎪⎪x 2+a 在R 上恒成立,则a 的取值范围是( )A .[-2,2]B .[-23,2]C .[-2,2 3 ]D .[-23,2 3 ][解析] 选A 法一:作出f (x )的图象如图所示.当y =⎪⎪⎪⎪x 2+a 的图象经过点(0,2)时,可知a =±2. 当y =x 2+a 的图象与y =x +2x 的图象相切时,由x 2+a =x +2x ,得x 2-2ax +4=0,由Δ=0, 并结合图象可得a =2. 要使f (x )≥⎪⎪⎪⎪x 2+a 恒成立,当a ≤0时,需满足-a ≤2,即-2≤a ≤0, 当a >0时,需满足a ≤2,即0<a ≤2, 综上可知,-2≤a ≤2.法二:∵f (x )≥⎪⎪⎪⎪x 2+a 在R 上恒成立, ∴-f (x )-x 2≤a ≤f (x )-x2在R 上恒成立.①令g (x )=-f (x )-x2.当0≤x <1时,f (x )=x +2,g (x )=-x -2-x 2=-32x -2≤-2,即g (x )max =-2.当x <0时,f (x )=-x +2,g (x )=x -2-x 2=x2-2,即g (x )<-2. 当x ≥1时,f (x )=x +2x ,g (x )=-x -2x -x 2=-32x -2x ≤-23,即g (x )max =-2 3. ∴a ≥-2.②令h (x )=f (x )-x2.当0≤x <1时,f (x )=x +2,h (x )=x +2-x 2=x2+2≥2,即h (x )min =2. 当x <0时,f (x )=-x +2,h (x )=-x +2-x 2=-32x +2>2,即h (x )>2. 当x ≥1时,f (x )=x +2x ,h (x )=x +2x -x 2=x 2+2x ≥2,即h (x )min =2. ∴a ≤2.综上可知,-2≤a ≤2.法三:若a =23,则当x =0时,f (0)=2, 而⎪⎪⎪⎪x 2+a =23,不等式不成立,故排除选项C ,D.若a =-23,则当x =0时,f (0)=2,而⎪⎪⎪⎪x 2+a =23,不等式不成立,故排除选项B.故选A.[针对训练]3.已知函数f (x )=cos x +mcos x +2,若对∀a ,b ,c ∈R ,f (a ),f (b ),f (c )都为某个三角形的三边长,则实数m的取值范围是( )A.⎝⎛⎭⎫54,6B.⎝⎛⎭⎫53,6 C.⎝⎛⎭⎫75,5 D.⎝⎛⎭⎫54,5 解析:选C f (x )=cos x +m cos x +2=1+m -2cos x +2,令t =cos x +2,由于-1≤cos x ≤1,因此1≤t ≤3, 设g (t )=1+m -2t(1≤t ≤3).法一:若对∀a ,b ,c ∈R ,f (a ),f (b ),f (c )都为某个三角形的三边长,不妨设a <c ,b <c ,则只需满足f (a )+f (b )>f (c )恒成立,故只需2f (x )min >f (x )max 即可,即2g (t )min >g (t )max .当m =2时,f (a )=f (b )=f (c )=1,成立,故m =2符合题意;当m <2时,g (t )=1+m -2t 在[1,3]上单调递增,则⎩⎪⎨⎪⎧2m -1>1+m -23,m <2,解得75<m <2;当m >2时,g (t )=1+m -2t 在[1,3]上单调递减,则⎩⎪⎨⎪⎧2⎝⎛⎭⎫1+m -23>m -1,m >2,解得2<m <5.综上,75<m <5.法二:令m =5,则g (t )=1+3t (1≤t ≤3),∴2≤g (t )≤4.取f (a )=f (b )=2,f (c )=4.不合题意,排除A 、B ;取m =1310,则g (t )=1-710t (1≤t ≤3),∴310≤g (t )≤2330,取f (a )=310,f (b )=310,f (c )=2330,不合题意,排除D ,故选C.策略4 破解巧取特殊[典例] (2016·全国卷Ⅱ)已知函数f (x )(x ∈R)满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A .0B .mC .2mD .4m[解析] 法一:因为f (-x )=2-f (x ),所以f (-x )+f (x )=2.因为-x +x 2=0,f -x +f x2=1,所以函数y =f (x )的图象关于点(0,1)对称.函数y =x +1x =1+1x ,故其图象也关于点(0,1)对称.所以函数y =x +1x与y =f (x )图象的交点(x 1,y 1),(x 2,y 2),…,(x m ,y m )成对出现,且每一对均关于点(0,1)对称,所以∑i =1mx i =0,∑i =1my i =2×m2=m ,所以∑i =1m (x i +y i )=m .法二:因为f (-x )=2-f (x ),所以f (-x )+f (x )=2.因为-x +x 2=0,f -x +f x2=1,所以函数y=f (x )的图象关于点(0,1)对称.可设y =f (x )=x +1,由⎩⎪⎨⎪⎧y =x +1,y =x +1x ,得交点(-1,0),(1,2),则x 1+y 1+x 2+y 2=2,结合选项,应选B.[答案] B [题后悟通]1.解答此题的思路是由条件f (-x )=2-f (x )知y =f (x )的图象关于点(0,1)对称,从而构造特殊函数y =x +1,解出与y =x +1x的交点坐标,代入、验证.2.处理此类问题经常根据题中所给出的条件巧妙选择特殊函数、特殊图形、特殊位置等进行求解.[针对训练]4.已知P 是双曲线x 23-y 2=1上任意一点,过点P 分别作双曲线的两条渐近线的垂线,垂足分别为A ,B ,则PA ―→·PB ―→的值是( )A .-38B.316 C .-38D.38解析:选A 法一:令点P (x 0,y 0),因为该双曲线的渐近线分别是x 3-y =0,x3+y =0,所以可取|PA |=⎪⎪⎪⎪x 03-y 013+1,|PB |=⎪⎪⎪⎪x 03+y 013+1,又cos ∠APB =-cos ∠AOB =-cos2∠AOx =-cos π3=-12,所以PA ―→·PB ―→=|PA ―→|·|PB ―→|·cos ∠APB =⎪⎪⎪⎪x 203-y 2043·⎝⎛⎭⎫-12=34×⎝⎛⎭⎫-12=-38. 法二:如图,由题意知,双曲线的渐近线方程为y =±33x ,∴∠AOB =60°, ∴∠APB =120°, ∴PA ―→·PB ―→<0.取P 点为双曲线右顶点. 则|PA |=|PB |=12|OP |=32,∴PA ―→·PB ―→=-38.【专题过关检测一】一、选择题1.设a 1,a 2,a 3,…,a n ∈R ,n ≥3.若p :a 1,a 2,a 3,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:选A (特殊数列)取大家最熟悉的等比数列a n =2n ,代入q 命题(不妨取n =3)满足,再取a n =3n代入q 命题(不妨取n =3)也满足,反之取a 1=a 2=a 3=…=a n =0时,满足q 命题,但不满足p 命题,故p 是q 的充分条件,但不是q 的必要条件.2.(2017·全国卷Ⅲ)已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一零点,则a =( )A .-12B .13C .12D .1解析:选C 法一:由f (x )=x 2-2x +a (e x -1+e -x +1),得f (2-x )=(2-x )2-2(2-x )+a [e 2-x -1+e-(2-x )+1]=x 2-4x +4-4+2x +a (e 1-x +e x -1)=x 2-2x +a (e x -1+e -x +1),所以f (2-x )=f (x ),即x =1为f (x )图象的对称轴.由题意,f (x )有唯一零点,所以f (x )的零点只能为x =1,即f (1)=12-2×1+a (e 1-1+e -1+1)=0,解得a=12. 法二:由f (x )=0⇔a (e x -1+e -x +1)=-x 2+2x .e x -1+e-x +1≥2e x -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”.若a >0,则a (e x -1+e-x +1)≥2a ,要使f (x )有唯一零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯一. 综上所述,a =12.3.已知函数f (x )在(-1,+∞)上单调,且函数y =f (x -2)的图象关于直线x =1对称,若数列{a n }是公差不为0的等差数列,且f (a 50)=f (a 51),则数列{a n }的前100项的和为( )A .-200B .-100C .0D .-50解析:选B 因为函数y =f (x -2)的图象关于直线x =1对称,则函数f (x )的图象关于直线x =-1对称.又函数f (x )在(-1,+∞)上单调,数列{a n }是公差不为0的等差数列,且f (a 50)=f (a 51),所以a 50+a 51=-2,所以S 100=100a 1+a 1002=50(a 50+a 51)=-100.4.(2017·贵州适应性考试)已知点A 是抛物线x 2=4y 的对称轴与准线的交点,点F 为抛物线的焦点,P 在抛物线上且满足|PA |=m |PF |,当m 取最大值时,|PA |的值为( )A .1B . 5 C. 6D .2 2解析:选D 设P (x ,y ),由抛物线的定义知|PF |=y +1,|PA |=x 2+y +12,所以m =x 2+y +12y +1,平方得m 2=x 2+y +12y +12,又x 2=4y ,当y =0时,m =1,当y ≠0时,m 2=4y +y +12y +12=4y y +12+1=1+4y +1y +2,由基本不等式可知y +1y ≥2,当且仅当y =1时取等号,此时m 取得最大值2,故|PA |=4+1+12=22.5.对任意实数a ,b ,c ,d ,定义⎝ ⎛⎭⎪⎫a b c d =⎩⎪⎨⎪⎧ad -bc ,ad ≥bc ,12bc -ad ,ad <bc ,已知函数f (x )=⎝ ⎛⎭⎪⎫x 41 x ,直线l :kx -y +3-2k =0,若直线l 与函数f (x )的图象有两个交点,则实数k的取值范围是( )A.⎝⎛⎭⎫-1,23∪⎝⎛⎭⎫34,1 B.⎝⎛⎭⎫-1,1724 C.⎝⎛⎭⎫-1,1724∪⎝⎛⎭⎫34,1 D .(-1,1)解析:选A 由题意知,f (x )=⎝ ⎛⎭⎪⎫x 41 x =⎩⎪⎨⎪⎧x 2-4,x ≤-2或x ≥2,124-x 2,-2<x <2,直线l :y =k (x -2)+3过定点A (2,3),画出函数f (x )的图象,如图所示,其中f (x )=x 2-4(x ≤-2或x ≥2)的图象为双曲线的上半部分,f (x )=124-x 2(-2<x <2)的图象为椭圆的上半部分,B (-2,0),设直线AD与椭圆相切,D 为切点.由图可知,当k AB <k <1或-1<k <k AD 时,直线l 与f (x )的图象有两个交点.k AB =3-02--2=34,将y =k AD (x -2)+3与y =12 4-x 2(-2<x <2)联立消去y ,得(1+4k 2AD )x 2+8k AD (3-2k AD )x+16k 2AD -48k AD +32=0,令Δ=0,解得k AD =23.综上所述,k 的取值范围是⎝⎛⎭⎫-1,23∪⎝⎛⎭⎫34,1. 6.(2016·浙江高考)已知实数a ,b ,c ,( ) A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100 B .若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100 C .若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100 D .若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100 解析:选D 对于A ,取a =b =10,c =-110, 显然|a 2+b +c |+|a +b 2+c |≤1成立,但a 2+b 2+c 2>100,即a 2+b 2+c 2<100不成立. 对于B ,取a 2=10,b =-10,c =0, 显然|a 2+b +c |+|a 2+b -c |≤1成立,但a 2+b 2+c 2=110,即a 2+b 2+c 2<100不成立. 对于C ,取a =10,b =-10,c =0, 显然|a +b +c 2|+|a +b -c 2|≤1成立,但a 2+b 2+c 2=200,即a 2+b 2+c 2<100不成立. 综上知,A 、B 、C 均不成立,所以选D. 7.已知函数f (x )=sin x2+cos x.若当x >0时,函数f (x )的图象恒在直线y =kx 的下方,则k 的取值范围是( )A.⎣⎡⎦⎤13,33B.⎣⎡⎭⎫13,+∞C.⎣⎡⎭⎫33,+∞ D.⎣⎡⎦⎤-33,32解析:选B 由题意,当x >0时,f (x )=sin x2+cos x <kx 恒成立.由f (π)<k π,知k >0.又f ′(x )=1+2cos x 2+cos x 2,由切线的几何意义知,要使f (x )<kx 恒成立,必有k ≥f ′(0)=13.要证k ≥13时不等式恒成立,只需证g (x )=sin x 2+cos x -13x <0,∵g ′(x )=2cos x +12+cos x 2-13=-cos x -1232+cos x 2≤0,∴g (x )在(0,+∞)上单调递减,∴g (x )<g (0)=0,∴不等式成立.综上,k ∈⎣⎡⎭⎫13,+∞.8.设D ,E 分别为线段AB ,AC 的中点,且BE ·CD ―→=0,记α为AB ―→与AC ―→的夹角,则下述判断正确的是( )A .cos α的最小值为22B .cos α的最小值为13C .sin ⎝⎛⎭⎫2α+π2的最小值为825D .sin ⎝⎛⎭⎫π2-2α的最小值为725解析:选D 依题意得CD ―→=12(CA ―→+CB ―→)=12[-AC ―→+(AB ―→-AC ―→)]=12(AB ―→-2AC ―→),BE ―→=12(BA―→+BC ―→)=12[-AB ―→+(AC ―→-AB ―→)]=12(AC ―→-2AB ―→).由CD ―→·BE ―→=0,得14(AB ―→-2AC ―→)·(AC ―→-2AB ―→)=0,即-2AB ―→2-2AC ―→2+5AB ―→·AC ―→=0,整理得,|AB ―→|2+|AC ―→|2=52|AB ―→|·|AC ―→|cos α≥2|AB ―→|·|AC ―→|,所以cos α≥45,sin π2-2α=cos 2α=2cos 2α-1≥2×⎝⎛⎭⎫452-1=725,所以sin π2-2α的最小值是725. 9.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则f (x )的图象大致是( )解析:选A 如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则由鳖臑的定义知PQ ∥AB ,QR ∥CD .设AB =BD =CD =1, 则CP AC =x 3=PQ 1,即PQ =x 3,又QR 1=BQ BC =APAC =3-x 3,所以QR =3-x 3, 所以PR =PQ 2+QR 2=⎝⎛⎭⎫x 32+⎝ ⎛⎭⎪⎫3-x 32 =332x 2-23x +3, 所以f (x )=362x 2-23x +3=66 ⎝⎛⎭⎫x -322+34,结合图象知选A.10.过坐标原点O 作单位圆x 2+y 2=1的两条互相垂直的半径OA ,OB ,若在该圆上存在一点C ,使得OC ―→=a OA ―→+b OB ―→(a ,b ∈R),则以下说法正确的是( )A .点P (a ,b )一定在单位圆内B .点P (a ,b )一定在单位圆上C .点P (a ,b )一定在单位圆外D .当且仅当ab =0时,点P (a ,b )在单位圆上解析:选B 使用特殊值法求解.设A (1,0),B (0,-1),则OC ―→=a OA ―→+b OB ―→=(a ,-b ).∵C 在圆上,∴a 2+b 2=1,∴点P (a ,b )在单位圆上,故选B. 二、填空题1.已知函数f (x )=⎩⎨⎧a x+1,x ≤0,|ln x |,x >0,当1<a <2时,关于x 的方程f [f (x )]=a 实数解的个数为________.解析:当1<a <2时,作出f (x )的图象如图所示,令u =f (x ),则f (u )=a ,由f (x )的图象可知,若u 满足u <0,此时f (x )=u 无解,若u >0,解得1e 2<u <1e <1或2<e<u <e 2,显然,当x <0时,不可能使得f (x )=u 有解,当x >0,1e 2<u <1e <1时,f (x )=u 有2个解,当x >0,2<e<u <e 2时,f (x )=u 也有2个解.因此f [f (x )]=a 有4个实数解.答案:42.(2015·全国卷Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.解析:(特殊图形)如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在△BCE 中,∠B =∠C =75°,∠E =30°,BC =2,由正弦定理可得BC sin ∠E =BE sin ∠C ,即2sin 30°=BE sin 75°,解得BE =6+2,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B =∠BFC =75°,∠FCB =30°,由正弦定理知,BF sin ∠FCB =BC sin ∠BFC ,即BF sin 30°=2sin 75°,解得BF =6-2,所以AB 的取值范围是(6-2,6+2).答案:(6-2,6+2)3.设0<m <12,若1m +11-2m ≥k 恒成立,则实数k 的取值范围是________.解析:由题可知,k 的最大值即为1m +11-2m 的最小值.因为1m +11-2m =[2m +(1-2m )]⎝⎛⎭⎫1m +11-2m =3+1-2m m +2m 1-2m ≥3+22,取等号的条件是当且仅当1-2m =2m ,即m =1-22∈⎝⎛⎭⎫0,12时成立,所以k 的最大值为3+2 2.故所求实数k 的取值范围是(-∞,3+2 2 ].答案:(-∞,3+2 2 ]4.设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0,且f (x )的最小正周期大于2π,则ω=________,φ=________.解析:∵f ⎝⎛⎭⎫5π8=2,f ⎝⎛⎭⎫11π8=0, ∴11π8-5π8=T4(2m +1),m ∈N , ∴T =3π2m +1,m ∈N ,∵f (x )的最小正周期大于2π,∴T =3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝⎛⎭⎫2x 3+φ. 由2sin ⎝⎛⎭⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z. 又|φ|<π,∴取k =0,得φ=π12. 答案:23 π125.已知向量a ,b ,c 满足|a |=2,|b |=a ·b =3,若(c -2a )·(2b -3c )=0, 则|b -c |的最大值是________. 解析:设a 与b 的夹角为θ,则a ·b =|a ||b |cos θ, ∴cos θ=a ·b |a ||b |=32×3=22,∵θ∈[0,π],∴θ=π4.设OA ―→=a ,OB ―→=b ,c =(x ,y ),建立如图所示的平面直角坐标系. 则A (1,1),B (3,0),∴c -2a =(x -2,y -2),2b -3c =(6-3x ,-3y ), ∵(c -2a )·(2b -3c )=0,∴(x -2)(6-3x )+(y -2)(-3y )=0. 即(x -2)2+(y -1)2=1. 又知b -c =(3-x ,-y ), ∴|b -c |=x -32+y 2≤3-22+0-12+1=2+1,即|b -c |的最大值为2+1. 答案:2+16.等腰△ABC 中,AB =AC ,BD 为AC 边上的中线,且BD =3,则△ABC 的面积的最大值为________. 解析:设AD =x ,则AB =AC =2x ,因为两边之和大于第三边,两边之差小于第三边,所以AB +AD >BD ,即2x +x >3,x >1,AB -AD <BD ,即2x -x <3,x <3,所以x ∈(1,3). 在△ABD 中,由余弦定理得9=(2x )2+x 2-2·2x ·x cos A ,即cos A =5x 2-94x 2,S △ABC =2S △ABD =2×12×2x ×x ×sin A=2x 21-⎝⎛⎭⎫5x 2-94x 22=32-x 4-10x 2+9, 令t =x 2,则t ∈(1,9),S △ABC =32-t -52+16,当t =5,即x =5时,S △ABC 有最大值6.答案:67.对于函数f (x )与g (x ),若存在λ∈{x ∈R|f (x )=0},μ∈{x ∈R|g (x )=0},使得|λ-μ|≤1,则称函数f (x )与g (x )互为“零点密切函数”,现已知函数f (x )=e x -2+x -3与g (x )=x 2-ax -x +4互为“零点密切函数”,则实数a 的取值范围是________.解析:易知函数f (x )为增函数,且f (2)=e 2-2+2-3=0,所以函数f (x )=e x -2+x -3只有一个零点x =2,则取λ=2,由|2-μ|≤1,知1≤μ≤3.由f (x )与g (x )互为“零点密切函数”知函数g (x )=x 2-ax -x +4在区间[1,3]内有零点,即方程x 2-ax -x +4=0在[1,3]内有解,所以a =x +4x -1,而函数y =x +4x -1在[1,2]上单调递减,在[2,3]上单调递增,所以当x =2时,a 取最小值3,且当x =1时,a =4,当x =3时,a =103,所以a max=4,所以实数a 的取值范围是[3,4].答案:[3,4]8.对于数列{a n },定义{Δa n }为数列{a n }的一阶差分数列,其中Δa n =a n +1-a n (n ∈N *).对正整数k ,规定{Δk a n }为数列{a n }的k 阶差分数列,其中Δk a n =Δk -1a n +1-Δk -1a n =Δ(Δk -1a n ).若数列{Δ2a n }的各项均为2,且满足a 11=a 2 015=0,则a 1的值为________.解析:因为数列{Δ2a n }的各项均为2,即Δa n +1-Δa n =2,所以Δa n =Δa 1+2n -2,即a n +1-a n =Δa 1+2n -2,所以a n -a 1=(n -1)Δa 1+(0+2+4+…+2n -4) =(n -1)Δa 1+(n -1)(n -2)(n ≥2),所以⎩⎨⎧a 11-a 1=10Δa 1+10×9,a 2 015-a 1=2 014Δa 1+2 014×2 013,即⎩⎨⎧0-a 1=10Δa 1+10×9,0-a 1=2 014Δa 1+2 014×2 013,解得a 1=20 140. 答案:20 1409.已知圆O :x 2+y 2=1 和点A (-2,0),若定点B (b,0)(b ≠-2) 和常数 λ满足:对圆 O 上任意一点 M ,都有|MB |=λ|MA |,则b =________ ;λ=________ .解析:法一:(三角换元)在圆O 上任意取一点M (cos θ,sin θ),则由|MB |=λ|MA |可得(cos θ-b )2+sin 2θ=λ2[(cos θ+2)2+sin 2θ],整理得1+b 2-5λ2-(2b +4λ2)·cos θ=0,即⎩⎨⎧1+b 2-5λ2=0,2b +4λ2=0,解得⎩⎨⎧b =-12,λ=12.法二:(特殊点)既然对圆O 上任意一点M ,都有|MB |=λ|MA |,使得λ与b 为常数,那么取M (1,0)与M (0,1)代入|MB |=λ|MA |,得⎩⎨⎧b -12=9λ2,b 2+1=5λ2,解得⎩⎨⎧b =-12,λ=12.答案:-12 1210.(2017·江苏高考)设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )=⎩⎨⎧x 2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =n -1n ,n ∈N *,则方程f (x )-lg x =0的解的个数是________.解析:由于f (x )∈[0,1),因此只需考虑1≤x <10的情况,在此范围内,当x ∈Q 且x ∉Z 时,设x =qp ,q ,p ∈N *,p ≥2且p ,q 互质. 若lg x ∈Q ,则由lg x ∈(0,1),可设lg x =nm ,m ,n ∈N *,m ≥2且m ,n 互质,因此10n m =qp ,则10n =⎝⎛⎭⎫q p m ,此时左边为整数,右边为非整数,矛盾,因此lg x ∉Q , 故lg x 不可能与每个周期内x ∈D 对应的部分相等, 只需考虑lg x 与每个周期内x ∉D 部分的交点.画出函数草图(如图),图中交点除(1,0)外其他交点横坐标均为无理数,属于每个周期x ∉D 的部分, 且x =1处(lg x )′=1x ln 10=1ln 10<1,则在x =1附近仅有一个交点,因此方程f (x )-lg x =0的解的个数为8.答案:8。