第八章 有机化合物的波谱分析_2
第八章有机化合物的波谱分析

第⼋章有机化合物的波谱分析第⼋章有机化合物的波谱分析基本要求:1、掌握核磁共振氢谱1HNMR的化学位移、⾃旋偶合、⾃旋裂分与分⼦结构的⼀般规律。
掌握各种质⼦的化学位移δ,并能利⽤δ值、峰裂分的数⽬和形状、峰⾯积⽐等⼀级谱图的规律推断简单有机物分⼦的结构。
了解13C谱。
2、了解红外光区吸收分⼦的结构特征,掌握⼀些特征官能团及苯环的特征吸收频率,并能根据谱图的吸收峰位置、强度和形状鉴别简单有机物分⼦。
3、了解在4~400 nm紫外光区,价电⼦在分⼦轨道中跃迁的三种类型,掌握紫外光谱与共轭分⼦结构关系的⼀般规律。
4、了解质谱的基本原理,母离⼦峰与分⼦量的关系。
Contents8.1红外光谱⼀、基本原理⼆、有机基团的特征吸收频率及其影响因素三、各类有机物的红外吸收频率8.2 核磁共振氢谱⼀、基本原理⼆、化学位移三、⾃旋偶合和⾃旋裂分四、特征质⼦的化学位移与谱图解析五、碳谱(13C-NMR)简介8.3 紫外光谱8.4 质谱简介8.5 谱图综合解析有机化学是⽤结构式来描述的⼀门学科。
有机化合物、有机反应、反应机理、合成⽅法等都能⽤结构式来描述,从结构式可以推断出该化合物的性质。
化合物的结构式最早是⽤化学法测定。
⽤化学法测定化合物的结构往往是⼗分繁琐复杂的⼯作,⽽且在化学变化中往往会发⽣意想不到的变化,从⽽给结构的测定带来困难。
如吗啡(C15H15O3N)从1803年第⼀次被提纯,⾄1952年弄清楚其结构,其间经过了150年;胆固醇(C27H47O)结构的测定经历了40年,⽽所得结果经X-射线衍射发现还有某些错误。
测定有机物结构的波谱法,是20世纪五、六⼗年代发展起来的现代物理实验⽅法。
波谱法的应⽤使有机物结构测定、纯度分析等既快速准确,⼜⽤量极少,⼀般只需1~100 mg,甚⾄10-9g 也能给出化合物的结构信息。
应⽤波谱法可弥补化学⽅法之不⾜。
现在,化学⽅法基本上被物理实验⽅法所取代,现代的教科书、⽂献、论⽂中化合物的结构均以波谱数据为依据,正如熔点、沸点、折光率等作为每个化合物的重要物理常数⼀样的普遍,⽽且更加重要。
有机化合物光谱和波谱分析-2.2

1.价电子类型
有机化合物的紫外—可见吸收光谱是三种电子跃迁的结果: σ键电子(单键)
有机分子 价电子类型
π键电子(不饱和键)
未成键n电子(或称非键电子, 如氧,氮,硫,卤素等)
s
H
C H
O
p
n
2.电子跃迁类型
分子轨道理论:成键轨道—反键轨道。
s*
E
K E,B
R
p*
n
p
s
当外层电子吸收紫外或可见辐射后,就从基态向激发态(反 键轨道)跃迁。主要有四种跃迁所需能量Δ Ε 大小顺序为:
溶剂极性↑ π→π*跃迁的吸 收谱带发生红移
基发态 基态
例如: 环己烷改
乙极性对n→π*跃迁谱带的影响
溶剂极性↑ n→π*跃迁的吸收 谱带发生蓝移 例如: 环己烷改 乙醇: 蓝移7nm, 水: 蓝移8nm
异亚丙基丙酮CH3COCH=C(CH3)2吸收带与溶剂极性的关系
(1) 远紫外光区: 100-200nm
(2) 近紫外光区: 200-400nm
(3)可见光区:400-800nm 可用于结构鉴定和定量分析。 电子跃迁的同时,伴随着振动转 动能级的跃迁;带状光谱。
4. 电磁波与辐射能
光: 是一种电磁波, 具有波动性和粒子性.
波动性 – 传播运动过程中突出, 表现在光的偏振, 干涉, 衍射 粒子性 – 与物质相互作用时突出, 表现在光电效 应, 光的吸收和散射
c ν= λ
ν : Hz c 8 c : 光速 (3×10 m/s) E = hν =h λ λ : m
= hcν
※ 频率与波长成反比, 即波长越长, 频率越低, 波数越小 ※ 光量子的能量(E)与波长成反比, 而与频率及波数成正比.
基础有机化学-第八章 有机化合物的波谱分析

表 8.4 取代苯的C―H面外弯曲振动特征吸收
化合物
吸收位置/cm-1
一取代 邻位二取代
间位二取代
对位二取代
730~770 和 690~710
735~770 750~810 和 680~730
790~840
T /%
图lear magnetic resonance spectroscopy]
射 线
X 射 线
远
紫
紫 外
外
线
线
可
近中
远
微
线电 磁波
见 光
红红 外外 线线
红 外波 线
-0.01 0.01-0.1 10-200 200-400 400-800 -2.5 2.5-25 300-500 100 0.1nm nm nm nm nm μm μm μm mm 1000m
激发 能级
内层电子 σ电子 n电子和π电子
极性官能团一般都在高频区有较强的红外吸收特征峰。
8.2.2 有机化合物基团的特征频率 相同的基团或价键在特定的位置区域出
现相同的吸收峰 ——基团的特征吸收峰(特 征峰)。
影响化学键振动频率的因素:
▲ 成键原子质量越小,其化学键的振动频率 越高。
化学键
C―H O―H N―H
伸缩振动频率范围/cm-1
低场
高场
B实 = B0 + B感应
由于去屏蔽效应(顺磁屏 蔽效应),减小磁场强度 就能使质子,共振吸收。
外加磁场 B0
氢周围电子密度越大,屏蔽效应越大,就只有增加磁场强度才 能使氢质子发生共振吸收。所以:
电子密度越高的质子,就越在(右边)高场出现吸收峰。 (去屏 蔽效应效应的相反)
影响化学位移因素有:
第八章 有机化合物的波谱分析

X电负性
δ
1.8
0
2.1
0.23
2.5
2.16
2.8
2.68
3,1
3.05
3.5
3.40
4.0
4.26
B、磁各向异性效应:构成化学键的电子,在外加磁场作用下,产生 一个各向异性的磁场,使处于化学键不同空间位置上的质子受到不同的屏 蔽作用,即磁各向异性。处于屏蔽区域的质子的δ向高场,处于去屏蔽区 域的质子的δ移向低场。
8.2.2 有机化合物的特征振动频率
红外光谱特征吸收见299页表8-2
IR吸收曲线复杂,IR图划分为两大区域: ①官能团区(3800~1500 cm-1),都是官能团的特征吸收峰; ②指纹区(1500~650 cm-1),位置、强度、形状不同。
2.5
----------------------
20m
(2) 偶合常数: 自旋裂分所产生的谱线的间距称为偶合常数,一般用J表示,单 位为Hz。根据相互偶合质子间相隔键数的多少,可将偶合作用分为 同碳偶合(2J)、邻碳偶合(3J)和远程偶合。偶合常数的大小表示了偶 合作用的强弱。N、O、S等电负性大的原子上的质子不参与偶合。 (3) 核的化学全同(等价)、磁全同(等价): 在NMR谱中,化学环境相同的核具有相同的化学位移,这种化 学位移相同的核称为化学全同核(等价核)。例如,氯乙烷分子。分 子中的一组核,若不但化学位移全同,且对组外任一核的偶合常数 也都相同,则这组核称为磁全同核(等价核)。如CH2F2中的两个质 子为磁全同,因为它们不但化学位移相等,且两个质子对每个F的 偶合常数相等。 (4) 一级谱和n+1规律: 当两组(或几组)质子的化学位移差Δ ν 与其偶合常数之比至少 大于6时,相互之间干扰作用较弱,呈现一级谱图。 一级谱图有如下特征:①峰的裂分符合n+ 1规律,n为相邻碳原 子上磁全同氢核的数目;②各峰强度比符合二项式展开系数之比; ③组峰中心处为该组质子的化学位移;④各裂分峰等距,裂距即为 偶合常数J。
第八章_有机化合物的波谱分析

1 1 1 1 5 4 10 3
2 3 6 10
1 1 4 5 1 1
五、核磁共振谱的解析及应用
核磁共振谱图主要可以得到如下信息: (1)由吸收峰数可知分子中氢原子的种类。 (2)由化学位移可了解各类氢的化学环境。 (3)由裂分峰数目大致可知各种氢的数目。 (4)由各种峰的面积比即知各种氢的数目。
δ =
υ 样品
υ TMS
υ 仪器所用频率
106 标准化合物TMS的δ值为0。 ×
4.影响化学位移的因素
(1)诱导效应 1°δ值随着邻近原子或原子团的电负性的增加而增加。 2° δ值随着H原子与电负性基团距离的增大而减小。 3° 烷烃中H的δ值按伯、仲、叔次序依次增加。 (2) 电子环流效应(次级磁场的屏蔽作用) 烯烃、醛、芳环等中,π电子在外加磁场作用下产生环 流,使氢原子周围产生感应磁场,其方向与外加磁场 相同,即增加了外加磁场,所以在外加磁场还没有达 到Ho时,就发生能级的跃迁,因而它们的δ很大(δ= 4.5~12)。
H
感应磁场 H'
外加磁场 Ho
3.化学位移值
化学位移值的大小,可采用一个标准化合物为原点,测出峰与 原点的距离,就是该峰的化学位移值,一般采用四甲基硅烷为标 准物(代号为TMS)。 化学位移是依赖于磁场强度的。不同频率的仪器测出的化学位 移值是不同的, 为了使在不同频率的核磁共振仪上测得的化学位移值相同(不 依赖于测定时的条件),通常用δ来表示,δ的定义为:
试样 TMS 6 10 0
ν试样 试样共振频率频率; νTMS 四甲基硅烷的共振频率 ν0 操作仪器选用频率
不同类型质子的化学位移值
质子类型 RCH3 R2CH2 R3CH R2NCH3 RCH2I RCH2Br RCH2Cl RCH2F ROCH3 RCH2OH, RCH2OR RCOOCH3 RCOCH3, R2C=CRCH3 化学位移 0.9 1.2 1.5 2.2 3.2 3.5 3.7 4.4 3.4 3.6 3.7 2.1 质子类型 ArCH3 RCH=CH2 R2C=CH2 R2C=CHR RC≡CH ArH RCHO RCOOH, RSO3H ArOH ROH RNH2, R2NH RCONH2 化学位移 2.3 4.5 ~ 5.0 4.6 ~ 5.0 5.0 ~ 5.7 2.0 ~ 3.0 6.5 ~ 8.5 9.5 ~ 10.1 10 ~ 13 4~5 0.5 ~ 6.0 0.5 ~ 5.0 6.0 ~ 7.5
有机化合物波谱分析_ppt课件

二. 弯曲振动(变形振动,变角振动)
弯曲振动:指键角发生周期性变化,而键长不变的振动。
包括面内弯曲振动、面外弯曲和变形振动。
面内弯曲振动β:包括剪式振动和面内摇摆。
剪式振动δ
面内摇摆ρ
面外弯曲γ:包括面外摇摆和蜷曲。
面外摇摆ω
蜷曲τ
变形振动δ :包括对称变形振动和不对称变形振动。
对称的变形振动δs
可 见 光 红 外 光
波 长 引 起 分 子 振 动 和 转 动 状 态 变 化 引 起 单 电 子 自 旋 改 变 长
波 谱 区
微 波
无 线 电 波引 起 磁 性 核 的 自 旋 改 变
有机化学四大谱
1. 红外光谱 (IR) (Infrared Spectroscopy) 2. 紫外光谱 (UV) (Ultraviolet Spectroscopy) 3. 核磁共振谱 (NMR)
鉴定化合物结构:根据红外吸收曲线的峰位、峰强以及峰
形判断化合物的官能团,确定化合物类别。 红外光谱产生必要条件
分子在振、转过程中的净偶极矩的变化不为0,即分子产生
红外活性振动过程中: Δμ ≠ 0
8.1.1 分子的振动和红外光谱
8.1.1.1 振动方程式
1 v = 振 动 2 π
√ √
1 1 1 K = + K m m 2 μ 2 1 π
不同能量的电磁波能引起物质不同运动状态的变化,促 使一定能态的基态跃迁至激发态,在连续的电磁波谱上出现 吸收信号。
高 能 辐 射 区
γ射 线 x射 线 紫 外 光
引 起 原 子 核 的 裂 变 使 内 层 电 子 逸 出 轨 道 引 起 原 子 和 分 子 外 层 价 电 子 跃 迁
有机化学有机化合物的波谱分析PPT课件

5
7.2.1分子化学键的振动和红外光谱
1.振动方程式
可把双原子分子的振动近似地看成用弹簧连接着的两个小球的 简谐振动。根据Hooke定律可得其振动频率为:
分子化学键的振动是量子化的,其能级为:
式中: υ为振动量子数(0,1,2,…);h为Planck常量;ν振为化学 键的振动频率。
第8页/共80页
8
分子由基态υ =0跃迁到激发态υ =1时吸收光的能量为:
第9页/共80页
9
分子振动频率习惯以σ表示,由(7–2)式、(7–3)式和(7–5)式得:
红外吸收峰的峰位(σ)取决于键的力常数,以及键两端所连原子的 质量m1和m2,即取决于化合物分子的结构。这是红外光谱用来测 定化合物结构的理论依据。
n≥4在 725~720 处有吸 收。
32
1300 cm-1以下区域的光谱:715 cm-1处的面外弯曲振动吸收,表明 烯烃为顺式构型。
综合以上分析,有双键吸收,无三键及甲基吸收,另一不饱 和≥4在 725~720 处有吸 收。
33
7.3核磁共振谱(NMR)
这样对测定有机化合物结构毫无意义。但实验证明,在相同频 率照射下,化学环境不同的质子在不同的磁场强度处出现吸收峰。
第20页/共80页
20
3.鉴定已知化合物
用被测物的标准试样与被测物在相同条件下测定红外光谱,若 吸收峰位置、强度和形状完全相同,可认为是同一种物质(对映异 构体除外)。若无标准试样而有标准谱图,可查阅标准谱图。
查阅时应注意被测物与标准谱图所用试样的状态、制样方法、 所用仪器的分辨率等是否相同。
8有机化合物的波谱分析

积分曲线示意图
故核磁共振谱不仅揭示了H原子的种类,而且揭 示了不同H原子的数目。
三、峰的裂分和自旋偶合
1.峰的裂分
应用高分辨率的核磁共振仪时,得到等ห้องสมุดไป่ตู้质子的
吸收峰不是一个单峰而是一组峰。这种使吸收峰分裂
增多的现象称为峰的裂分。
例如:乙醚的裂分图示如下。
CH 3 CH 2 TMS TMS CH 3
CH 2
指纹区
在红外光谱上波数在1400~650cm-1低区域吸收峰
密集而复杂,像人的指纹一样,所以叫指纹区。在
指纹区内,吸收峰位置和强度不很特征,很多峰无
法解释。但分子结构的微小差异却都能在指纹区得
到反映。因此,在确认有机化合物时用处也很大。
如果两个化合物有相同的光谱,即指纹区也相
同,则它们是同一化合物。
2.电子跃迁的类型
在有机化合物中,电子跃迁有三种类型:σ电子、 π电子和未成键的n电子。电子跃迁类型、吸收能量 波长范围、与有机物关系如下:
跃迁类型 σ n π π σ* σ* (孤立) π*
(共轭) π* * π
吸收能量的波长范围 ~150nm 低于 200nm 低于 200nm 200~400nm 200~400nm 烷烃
第三节 红外光谱 ( I R )
在有机化合物的结构鉴定与研究工作中,红外光谱 是一种重要手段,用它可以确证两个化合物是否相 同,也可以确定一个新化合物中某一特殊键或官能 团是否存。 一、红外光谱图的表示方法 红外光谱图一般用波数为横坐标,以表示吸收带 的位置,用透射百分率(T%)为纵坐标表示吸收强 度。
一、化学位移与氢原子的化学环境
氢质子(1H)用扫场(固定磁场频率,改变磁场强度) 的方法产生的核磁共振。分子中各种不同环境下的氢,在不 同Ho下发生核磁共振,给出不同的吸收信号。 例如,对乙醇进行扫场则出现三种吸收信号,在谱图上就 是三个吸收峰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 第八章有机化合物的波谱分析第八章有机化合物的波谱分析授课对象:应用化学、制药工程、化学反应工程与工艺、药学学时安排:6h 教材:《有机化学》(第四版)高鸿宾主编2005 年 5 月一、教学目的与要求 1、了解分子的振动与转动能级跃与红外吸的关系, 2、掌握红外吸收峰的位置和强度与分子结构的关系。
3、熟悉各类有机物的特征吸收频率大致范围,解析红外光谱图的一般步骤。
4、核磁共振谱产生的基本原理,核的自旋和共振与 NMR。
掌握屏蔽效应和化学位移,影响化学位移的因素,峰面积与质子数的关系,自旋偶合裂分的一般1HNMR 谱的解析(寻找信号的位置、数目、强度及裂分状态) 。
规律;5、初步了解紫外光谱、质谱、核磁共振碳谱产生的基本原理及应用; 6、掌握红外光谱、核磁共振谱在鉴定有机化合物分子结构中的作用。
二、教学重点 1、屏蔽效应和化学位移,影响化学位移的因素,自旋偶合裂分的一般规律; 2、红外光谱、核磁共振谱分析(谱图剖析)。
三、教学难点 1、屏蔽效应和化学位移,影响化学位移的因1/ 23素,自旋偶合裂分的一般规律。
2、红外光谱和核磁共振谱图的剖析。
3.质谱的产生原理。
四、教学方法讲授法。
为突出重点,突破难点,应注意如下几点:1、通过复习物理学已学过的波的性质,引出四大波谱。
并举例说明其在有机化合物分析中的应用。
2、尽量结合实际波谱谱图来分析有机化合物的结构,多做多练。
六、教学过程及时间分配引言:研究有机化合物,不论是从天然产物中提取的还是化学方法合成的,都要测定它们的分子结构。
如果对某一有机化合物的结构还不太了解,则对其性质和作用的研究是很难深入的,更不用说合成和改进它了,因此,确定有机化合物的结构很自然地变成了研究有机化学的首要任务。
经典的化学方法花费时间长,消费样品多,操作手续繁杂。
特别是对一些复杂有机物结构的研究,有时要花费有机化学家几年甚至几十年、几代人的精力。
而得到的结构还会有某些错误,例如,对胆固醇结构式的确定经三、四十年(1889~1927)的工作获得的结构式(为此曾颁发了诺贝尔奖金, 1928 年颁发给德国人文道斯)。
后经 X 射线衍射证明还有某些错误。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 测定有机化合物结构的现代物理方法有多种,常用的有紫外(UV)光谱、红外(IR)光谱、核磁共振(NMR)谱和质谱(MS),简称四谱。
8. 1 吸收光谱的一般原理一、光的频率与波长光是电磁波,有波长和频率两个特征。
电磁波包括了一个极广阔的区域,从波长只有千万分之一纳米的宇宙线到波长用米,甚至千米计的无线电波都包括再内。
波长与频率的关系为:= c / =频率,单位:赫(HZ); =波长,单位:厘米(cm),表示波长的单位很多。
频率的另一种表示方法是用波数,即在 1cm 长度内波的数目。
二、光的能量及分子吸收光谱 1、光的能量每一种波长的电磁辐射时都伴随着能量。
E=h =hc/ h-普郎克常数(6. 62610-34J. S) 2、分子吸收光谱分子吸收幅射,就获得能量,分子获得能量后,可以增加原子的转动或振动,或激发电子到较高的能级。
但它们是量子化的,因此只有光子的能量恰等于两个能级之间的能量差时(即 E)才能被吸收。
(1)动光谱(2)动光谱 3、电子光谱分子所吸收的光3/ 23能使电子激发到较高能级(电子能级的跃迁)吸收波长在100400nm,为紫外光谱。
8. 2 红外光谱(IR) 引言物质吸收的电磁辐射如果在红外光区域,用红外光谱仪把产生的红外谱带记录下来,就得到红外光谱图。
所有有机化合物在红外光谱区内都有吸收,因此,红外光谱的应用广泛,在有机化合物的结构鉴定与研究工作中,红外光谱是一种重要手段,用它可以确证两个化合物是否相同,也可以确定一个新化合物中某一特殊键或官能团是否存。
=c=3 1010cm/s300 10-7cm= 1015s-1 一、外光谱图的表示方法红外光谱图用波长(或波数)为横坐标,以表示吸收带的位置,用透射百分率(T%)为纵坐标表示吸收强度。
见多媒体课件。
二、红外光谱的产生原理红外光谱是由于分子的振动能级的跃迁而产生的,当物质吸收一定波长的红外光的能量时,就发生振动能级的跃迁。
研究在不同频率照射下样品吸收的情况就得到红外光谱图。
1.分子的振动类型(1)伸缩振动成键原子沿着键轴的伸长或缩短(键长发生改变,键角不变)。
(2)弯曲振动引起键角改变的振动 2.振动频率(振动能量)对于分子的振动应该用量子力学来说明,但为了便于理解,也可用经典力学来说明。
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 一般用不同质量的小球代表原子,以不同硬度的弹簧代表各种化学键。
讲解化学键的振动频率与化学键的强度(力常数 K)及振动原子的质量(m1和 m2)的关系。
三、红外光谱与分子结构的关系 1 .特征吸收峰和指纹区在红外光谱上波数在 3800~1400cm-1(2.50~7.00 m)高频区域的吸收峰主要是由化学键和官能团的伸缩振动产生的, 故称为特征吸收峰(或官能团区) 。
在官能团区, 吸收峰存在与否可用于确定某种键或官能团是否存在, 是红外光谱的主要用途。
在红外光谱上波数在 1400~650cm-1(7.00~15.75 m)低区域吸收峰密集而复杂,像人的指纹一样,所以叫指纹区。
在指纹区内,吸收峰位置和强度不很特征,很多峰无法解释。
但分子结构的微小差异却都能在指纹区得到反映。
因此,在确认有机化合物时用处也很大。
2.相关峰一种基团可以有数种振动形式,每种振动形式都产生一个相应的吸收峰,通常把这些互相依存而又互相可以佐证的吸收峰称为相关峰。
确定有机化合物中是否有某种基团,要先看特征峰,再看有无相关峰来确定。
3. 影响特征吸收频率(基团吸收位置)的因素 1)外界因5/ 23素,如,状态、溶剂极性等例如:2)分子内部结构的影响 a.电子效应的影响丙酮C = O 的吸收气态吸收频率液态溶液1738cm-11715cm-11703cm-1吸电子基使吸收峰向高频区域移动,供电子基使吸收峰向低频区域移动。
例如:OC=Ob. 氢键缔合的影响能形成氢键的基团吸收频率向低频方向移动,且谱带变宽。
例如:伯醇-OH 的伸缩振动吸收频率 c.张力效应(张力越大,吸收频率越高)。
四、红外光谱图解析举例讲解 P299-301烃类、红外光谱谱图,其它类型化合物谱图在以后的章节讲授。
8. 3 核磁共振谱引言核磁共振技术是珀塞尔(Purcell)和布洛齐(Bloch)始创于 1946 年,至今已有近六十年的历史。
自 1950 年应用于测定有机化合物的结构以来,经过几十年的研究和实践,发展十分迅速,现已成为测定有机化合物结构不可缺少的重要手段。
一、基本知识 1 .核的自旋与磁性由于氢原子是带电体,当自旋时,可产生一个磁场,因此,我们可以把一个自旋的原子核看作一块小磁铁。
氢的自旋量子数 ms为 + , - 。
2.核磁共振现象原子的磁矩在无外磁场影响下,取向是紊---------------------------------------------------------------最新资料推荐------------------------------------------------------ 乱的,在外磁场中,它的取向是量子化的,只有两种可能的取向。
12当 ms= + 时,如果取向方向与外磁场方向平行,为低能级(低能态) 12当 ms= - 时,如果取向方向与外磁场方向相反,则为高能级(高能态)两个能级之差为 E:E = rROH(气)(二聚)(多聚)ROHROH3640cm-13550~3450cm-13400~3200cm-1C = OOOO1715cm-11745cm-11775cm-11212h2HoHo1H1HE = h低能态高能态氢原子在外加磁场中的取向CH3-C-HOCH3-C-CH3CH3-C-OOC=OC=OC=O= 1730cm-1= 1715cm-1= 1680cm-1CH3为供电子基的供电性比甲基强CH3-C-CH2ClOCH3-C-ClC=O= 1750cm-1= 1780cm-1CH2Cl为吸电子基Cl的吸电子性比强CH2Cl1212r 为旋核比,一个核常数, h 为 Planck 常数, 6.62610-34J.S。
E 与磁场强度(Ho)成正比。
给处于外磁场的质子辐射一定频率的电磁波,当辐射所提供的能量恰好等于质子两种取向的能量差( E)时,质子就吸收电磁辐射的能量,从低能级跃迁至高能级,这种现象称为核磁共振。
3.核磁共振谱仪及核磁共振谱的表示方法(1)核磁共振谱仪基本原理示意图见多媒体课件装有样品的玻璃管放在磁场强度很大的电磁铁的两极之间,用恒定频率的无线电波照射通过样品。
在扫描发生器的线圈中通直流电流,产生一个微小磁场,使总7/ 23磁场强度逐渐增加,当磁场强度达到一定的值 Ho 时,样品中某一类型的质子发生能级跃迁,这时产生吸收,接受器就会收到信号,由记录器记录下来,得到核磁共振谱。
(2) 核磁共振谱图的表示方法度二、屏蔽效应和化学位移 1 .化学位移氢质子(1H)用扫场的方法产生的核磁共振,理论上都在同一磁场强度(Ho)下吸收,只产生一个吸收信号。
实际上,分子中各种不同环境下的氢,再不同Ho 下发生核磁共振,给出不同的吸收信号。
例如,对乙醇进行扫场则出现三种吸收信号,在谱图上就是三个吸收峰。
这种由于氢原子在分子中的化学环境不同,因而在不同磁场强度下产生吸收峰,峰与峰之间的差距称为化学位移。
2.屏蔽效应化学位移产生的原因有机物分子中不同类型质子的周围的电子云密度不一样,在加磁场作用下,引起电子环流,电子环流围绕质子产生一个感应磁场(H),这个感应磁场使质子所感受到的磁场强度减弱了,即实际上作用于质子的磁场强度比 Ho 要小。
这种由于电子产生的感应磁场对外加磁场的抵消作用称为屏蔽效应。
在有 H 时氢核实受外磁场强度 H=Ho-H 未达到跃迁的能量,不能发生核磁共振。