煤自燃的原因及倾向性预测
煤炭自燃解析

煤炭自燃解析煤炭自燃是我国乃至世界煤矿及储煤场的主要自然灾害之一,煤矿或储煤场一旦发生煤炭自燃,后果将不堪设想,损失往往也是难以估量的。
下面我们先看几个煤炭自燃的案例,让大家对煤炭自燃有一个直观的了解。
一、案例简介1.连云港黄陵块煤自燃1987年6月底至7月下旬,连云港港务局进港仅3个月的黄陵块煤连续3次发生自燃。
由于控制了企业用水,民用水供应紧缺,致使无法注水灭火。
7月25日,堆存量达3.1万吨黄陵块煤的64#、74#垛位上火头达一米多高,价值约150多万美元的外贸煤面临着化为灰烬的危险,价值上千万元输煤系统受到了严重的威胁。
为了灭火,公司召开了紧急联席会议,确定筑坝蓄水,拦截排洪沟水流,报告市政府请求特殊安排供水,用推土机推避火道,防止火势蔓延,请求消防队派车拉水协助灭火等措施。
可是,在熊熊燃烧的火焰前,救火措施显得软弱无力,大量的可燃气体在垛顶燃烧,浇水推铲也无济于事,最后被迫将内销煤装船一万余吨,腾出空场,转垛翻垛才扑灭了这起大火。
这次大火前后历时29天,虽保住了3万多砘煤炭和港口机械设备,但由于部分黄陵块煤出口转内销,国家少换外汇达60万美元,港口也承担了较大的入力、物力、财力损失。
2.内蒙古锡林郭勒盟百万吨“煤山”自燃变“火焰山”2009年3月17日16时53分,内蒙古锡盟消防指挥中心接到报警:称锡林浩特市火车站西侧储煤站起火,情况紧急,请求消防官兵速来救援。
锡盟消防指挥中心迅速指派锡林浩特市消防二中队迅速出动2辆水罐车,10名消防官兵赶往火灾现场。
17时02分,当消防官兵到达火场后,发现该站为露天式储煤站,整个“煤山”已变成了“火焰山”了,此时正处于猛烈燃烧阶段,火光耀眼,消防车辆无法靠近,4级的西北风伴随着烟雾弥漫吹向东侧的火车站。
消防中队指挥员询问在场知情人得知,上午10时左右,该“煤山”下角处自燃起来,也没当回事,没想到下午随着西北风变成名副其实的“火焰山”了。
经了解,该院内堆积“煤山”总面积约10万平方米、储存有上百万吨煤炭,而煤堆与煤堆之间相连,离“煤山”不远处的东侧是火车站,北侧是中石化锡林郭勒盟油库,如火势得不到及时控制,将会造成火烧连营,吞噬整个“煤山”,殃及火车站和油库,后果不堪设想。
煤自燃的原因及倾向性预测

煤自燃的原因及倾向性预测作者:贾淑洁来源:《科技传播》2013年第10期摘要一直以来,煤自燃都是煤炭开采中比较普遍现象。
因此,许多相关人士都致力于研究煤自然原因,结合这些原因实施倾向性预测,确保露天开采的安全性。
本文就是笔者依据多年经验,探析煤自然原因以及倾向性预测。
关键词倾向性预测;煤自燃;原因中图分类号TD82 文献标识码A 文章编号 1674-6708(2013)91-0086-020 引言2012年,山西某露天选煤厂发生煤自燃,给该企业造成严重的经济损失。
事实上对于煤矿企业中的原煤场时常发生自燃现象,不仅仅给煤矿企业造成洗选困难,还会带来不必要损失。
因此,探究煤自燃原因以及倾向性预测具有现实意义。
1煤自燃原因探析事实上造成煤自然因素比较多,关系到煤堆特性、煤质特性及气象环境等影响。
具体体现在如下几个方面。
1.1 煤化的程度在低温状态下煤会发生氧化,主要取决煤炭种类。
从分析发现煤质较高煤炭,长时间储存就会发生氧化而降低了煤质,一般是不会发生自燃现象;但是煤化程度较低煤炭,比如褐煤,伴随中煤化程度减小而增加了氧化作用,极易发生自燃。
事实上煤化的程度越高其含氧量就越低,低温环境下也就极难氧化。
所以只要煤化程度加深了,煤自燃就会逐渐减低。
1.2 煤炭中含有大量硫铁矿煤炭中所含硫铁矿就会从地下还原态逐渐成为地上氧化态,因为空气中存在氧与水分,就能够发生化学反应:1)FeS2+3O2→FeSO4+SO2+热量;2)FeS2+2H2O+7O2→FeSO4+ 2H2SO4+热量;3)FeS2+3O2→2Fe2O3+8S+热量;4)S+O2→SO2+热量在这些反应之中都会放出热量,产生出硫酸加快了黄铁矿进一步分解。
在加快黄铁矿氧化同时也会产生出大量热量,这些热量不断聚集在煤炭上,最终达到着火点而自然。
1.3煤岩与煤质组分煤自然的倾向性主要和分子结构具有密切关系,即是煤炭分子结构单元所含的活性基团数量与种类,以及分子空间结构。
煤炭自燃火灾分析及采取的安全措施

高温环境会加速煤炭的氧化反应,提高自 燃的风险。
积煤堆积
不当储存
长时间堆积的煤炭容易发生自燃,因为堆 积内部的煤炭与空气接触不充分,导致氧 化反应产生的热量不易散发。
如果煤炭储存环境潮湿、通风不良或者受 到阳光长时间暴晒,都有可能提高自燃的 风险。
02
煤炭自燃火灾分析
热力分析
热量积聚
煤炭自燃火灾通常起源于煤炭内 部热量的积聚。在适宜的条件下 ,煤炭内部的热量逐渐积累,达 到煤炭的自燃温度,引发火灾。
微生物分析
1. 控制煤炭堆存环境
保持良好的通风条件,减少热量积聚 ,降低自燃风险。
2. 合理配煤
控制煤炭的水分含量,通过合理配煤 ,降低自燃的可能性。
3. 微生物防控
定期检测煤炭中的微生物种类和数量 ,采取必要的防控措施,抑制微生物 的生长和活动。
4. 温度监控
定期对煤炭堆存区域进行温度监测, 及时发现潜在的自燃风险。
灭火器材配备
在储煤场、输送带等关键部位配 备适量的灭火器材,如灭火器、 灭火沙箱等,确保在发现火情时
能够迅速进行初期扑救。
消防设施
设立消防水池、消防泵房等消防 设施,确保在火灾发生时能够提
供足够的消防用水。
员工培训
定期对员工进行消防培训,提高 员工的火灾应对能力,确保在紧 急情况下能够迅速、有效地使用
后期处理与调查
火场清理:在灭火救援行动 结束后,对火场进行清理, 消除安全隐患,防止次生事 故的发生。
事故调查:成立事故调查组 ,对火灾事故进行深入调查 。调查内容包括火灾原因、 责任追究、改进措施等,为 后续防范类似事故提供经验 教训。
恢复生产:在确保安全的前 提下,逐步恢复生产活动。 对受损设备设施进行修复或 更换,确保生产线的正常运 行。
煤场煤堆自燃原因及治理措施

煤场煤堆自燃原因及治理措施煤在无需外火源加热,而受其自身氧化作用所产生的积蓄热引起的着火就称为煤的自燃。
煤是在常温下会发生缓慢氧化的物料,它受空气中氧的作用而被氧化产生的热量聚集在煤堆内部,而温度的升高又会加速煤的氧化,当温度升高到60℃后,煤堆温度会加速上升,若不及时采取措施,就会发生煤堆自燃。
影响煤堆自燃的因素很多,主要包括煤的性质、组堆工艺过程、气候条件等。
(1)煤的性质煤的变质程度对煤的氧化和自燃具有决定意义。
一般变质程度低的煤,其氧化自燃倾向大。
在电煤日常煤质检测项目中,一般含硫量和挥发分高的煤比较容易自燃。
煤中水分对其氧化速度也有相当大的影响,煤堆中水分蒸发生成大量汽化热,热量在煤堆较高部位出现聚积,这样就更加剧了煤的氧化和自燃。
(2)组堆的工艺过程在组堆时,煤块与煤末有偏析现象,在煤堆底部内形成大量空洞,空气可自由透入。
当煤开始氧化放热时,这些空洞给热量聚积创造了有利条件,从而也促进了煤堆温度的迅速提高,因此自燃也大多发生在这个部位。
(3)气候条件大气温度、大气压力波动、风力风向、雨雪量等因素,都会影响自燃的发生。
秋冬过渡时期是煤堆自燃高发时期,尤其是气温骤降(特别是下降10℃及以上),由于气压和风力的作用,使煤堆内外空气对流加速,容易发生自燃。
煤场的自燃重在预防,一旦发生自燃,根据不同阶段和不同程度,处理方式有所不同。
(1)当发热冒烟、自燃发生在煤堆浅层,或煤堆不大,那么可以用推土机或铲车将发热自燃的煤与主煤堆分离或推散开来,充分浇水降温、灭火。
(2)当发热冒烟、自燃发生在大煤堆深处,又无法倒堆,那么首选用推土机反复压实,窒息灭火。
而此时,浇水是不可取的,由于很难对自燃点及附近区域进行全面有效地降温,加湿煤堆反而会加速和扩大自燃。
当然,推土机无法操作的地方,或有明火产生时还是需要先浇水灭火。
(3)清场是处理自燃最有效最彻底的方法。
根据不同的煤质和季节,合理安排各块煤场清场。
取清场煤时,一旦打开发热煤堆,由于大量空气进入,很有可能会冒烟甚至发生明火,在上煤仓前必须首先灭火。
煤堆自燃原因及预防措施3篇

煤堆自燃原因及预防措施3篇煤堆自燃原因及预防措施篇一煤大体上由有机物和无机物组成,主要可燃元素是碳(约占65%~95%),其次是氢(约占1%~2%),并含少量氧(约占3%~5%,有时高达25%)、硫(约占10%),上述元素一起构成可燃化合物,称为煤的可燃质。
除此之外,煤中还含有一些不可燃的矿物质灰分(5%~15%,也有高达50%)和水分(一般在2%~20%之间变化),这些物质称为煤的惰性质。
煤被空气中的氧气氧化是煤自燃的根本原因。
煤中的碳、氢等元素在常温下就会发生反应,生成可燃物co、ch4及其他烷烃物质。
煤的氧化又是放热反应,如果热量不能及时散发掉,将使煤的堆积温度升高,反过来又加速煤的氧化,放出更多的可燃质和热量。
当热量聚集,温度上升到一定值时,即会引起可燃物质燃烧而自燃。
煤堆发生自燃要同时具备以下4个条件:(1)具有自燃倾向性。
煤的自燃倾向性是煤的一种自然属性,反映了煤的变质程度,水分、灰分、含硫量、粒度、孔隙度、导热性,是煤自燃的基本条件。
煤在常温下的氧化能力主要取决于挥发分的含量,挥发分含量越高,自燃倾向性越强,而且自燃时间也会相应缩短。
根据煤的氧化程度与着火点之间的关系,利用原煤样的着火点和氧化煤样的着火点的差值Δt 来推测煤的自燃倾向。
一般,原煤样着火点低,而且Δt大的煤容易自燃;Δt40℃的煤为易自燃煤;Δt20℃的煤(褐煤和长焰煤除外)是不易自燃煤。
从表1可看出,从褐煤到无烟煤,其着火点越来越高,自燃倾向性越来越弱。
(2)供氧条件。
煤堆暴露于空气中,表面与空气充分接触,而且空气通过煤块之间的间隙渗透到煤堆内部,给煤堆内部氧化创造了条件。
煤的块度越大,煤块之间的间隙越大,其供氧条件越好。
(3)氧化时间。
煤从氧化发展到自燃有一个过程,氧化时间达到自燃发火期才能自燃。
如长焰煤的自然发火期为1~3个月,气煤为4~6个月。
(4)储热条件。
煤在氧化的过程中放出热量,只有当放出的热量大于散发掉的热量时,才能使热量聚集,温度上升,达到煤的着火点就会自燃。
自然倾向性分析预测

安全工程师:煤炭自燃预测与预报1.煤炭自燃的早期识别和预报(1)人的直接感觉1)浅部开采时,冬季在地面钻孔口或塌陷区,有时发现冒出水蒸气或冰雪融化现象。
井下两股温度不同的风流交汇处,过饱和的水蒸气凝聚也会出现雾气。
因此,在发现这种现象时,应结合具体条件分析。
2)煤从自热到自燃过程中,氧化产物中有各种碳氢化合物,所以,在井下可以闻到煤油、汽油或松节油味。
如闻到焦油气味则表明自燃已经发展到相当的程度。
3)从煤炭自热或自燃地点流出的水或空气,其温度较平常为高。
4)人有不舒适感,如头痛、闷热、精神疲乏等,这与空气中有害气体(如CO、CO2)的浓度增加有关。
由于人的感觉总带有相当大的主观性和弱敏感性,人的直接感觉不能作为识别早期煤炭自热过程的可靠方法。
(2)测定矿内空气成分的变化根据应用原理不同,预测的方法可分为气体分析法和煤炭氧化速度测定法,这是及时发现和预报煤炭自燃的主要手段。
(3)测定空气和围岩的温度测温法有时可以作为一种补充手段。
空气温度用普通温度计或电阻温度计测定。
围岩温度要在一定深度的钻孔中测定。
为掌握采空区和密闭区内自燃发展情况,可以用远距离电阻温度计测定其温度变化。
2.煤炭自燃倾向性的鉴定《煤矿安全规程》要求生产矿井将煤样送到有关单位进行煤的自燃倾向性鉴定,依据鉴定分类拟定正确的开采方法和经济有效的防火措施。
影响煤炭自燃的因素:(1)煤炭自身特性1)煤的炭化程度。
炭化程度越高,氧流离基的含量越少,其自燃倾向性越小,反之则大。
炭化程度相同的煤的自燃倾向性由大到小的顺序是褐煤、烟煤、贫煤和无烟煤。
在烟煤中又以长焰煤的自燃危险性较大。
2)煤的岩石学成分。
煤的岩石学成分有丝煤、暗煤、亮煤和镜煤。
它们具有不同的氧化性。
丝煤在常温下吸氧能力特别强,煤中含丝煤越多,自燃倾向越大。
相反,含暗煤多的煤,一般是不易自燃的。
3)煤的水分。
煤层的自燃危险性往往和煤的湿润程度,甚至空气中的相对湿度有关。
煤孔隙内水分的存在,将降低煤吸附氧气的能力,减小煤的自燃性倾向。
煤炭自燃解析

煤炭自燃解析煤炭自燃是我国乃至世界煤矿及储煤场的主要自然灾害之一,煤矿或储煤场一旦发生煤炭自燃,后果将不堪设想,损失往往也是难以估量的。
下面我们先看几个煤炭自燃的案例,让大家对煤炭自燃有一个直观的了解。
一、案例简介1.连云港黄陵块煤自燃1987年6月底至7月下旬,连云港港务局进港仅3个月的黄陵块煤连续3次发生自燃。
由于控制了企业用水,民用水供应紧缺,致使无法注水灭火。
7月25日,堆存量达3.1万吨黄陵块煤的64#、74#垛位上火头达一米多高,价值约150多万美元的外贸煤面临着化为灰烬的危险,价值上千万元输煤系统受到了严重的威胁。
为了灭火,公司召开了紧急联席会议,确定筑坝蓄水,拦截排洪沟水流,报告市政府请求特殊安排供水,用推土机推避火道,防止火势蔓延,请求消防队派车拉水协助灭火等措施。
可是,在熊熊燃烧的火焰前,救火措施显得软弱无力,大量的可燃气体在垛顶燃烧,浇水推铲也无济于事,最后被迫将内销煤装船一万余吨,腾出空场,转垛翻垛才扑灭了这起大火。
这次大火前后历时29天,虽保住了3万多砘煤炭和港口机械设备,但由于部分黄陵块煤出口转内销,国家少换外汇达60万美元,港口也承担了较大的入力、物力、财力损失。
2.内蒙古锡林郭勒盟百万吨“煤山”自燃变“火焰山”2009年3月17日16时53分,内蒙古锡盟消防指挥中心接到报警:称锡林浩特市火车站西侧储煤站起火,情况紧急,请求消防官兵速来救援。
锡盟消防指挥中心迅速指派锡林浩特市消防二中队迅速出动2辆水罐车,10名消防官兵赶往火灾现场。
17时02分,当消防官兵到达火场后,发现该站为露天式储煤站,整个“煤山”已变成了“火焰山”了,此时正处于猛烈燃烧阶段,火光耀眼,消防车辆无法靠近,4级的西北风伴随着烟雾弥漫吹向东侧的火车站。
消防中队指挥员询问在场知情人得知,上午10时左右,该“煤山”下角处自燃起来,也没当回事,没想到下午随着西北风变成名副其实的“火焰山”了。
经了解,该院内堆积“煤山”总面积约10万平方米、储存有上百万吨煤炭,而煤堆与煤堆之间相连,离“煤山”不远处的东侧是火车站,北侧是中石化锡林郭勒盟油库,如火势得不到及时控制,将会造成火烧连营,吞噬整个“煤山”,殃及火车站和油库,后果不堪设想。
煤自燃机理及自燃倾向性

在组成煤炭的四种煤岩成份中,暗煤硬度也最大,占比重最大, 难以自燃。镜煤与亮煤脆性大、易破裂,而且在其次生的裂隙中常 常充填有黄铁矿,开采中局碎裂为微细的颗粒。细粒状的煤粒或黄 铁矿都有较高的自燃性,因它的氧化接触面积大,着火温度低。丝
煤结构松散,着火点温度低,仅为190-270℃,正是由于它的微孔
抑制煤的自燃。
上一页 下一页 回主目录
返回
2018/4/24
二、煤自燃机理及自燃倾向性
吸氧量与湿度关系
煤的吸氧量与湿度之间的关系
上一页 下一页 回主目录
返回
2018/4/24
二、煤自燃机理及自燃倾向性
3.1 影响煤的自燃倾向性的因素 3) 煤岩成份
按煤岩成份可将煤的类型分为:暗煤、亮煤、镜煤、丝煤
2)开拓、开采条件
采煤方法对自然发火的影响主要表现在煤炭回收率的
高低、回采时间的长短上。丢煤愈多,丢失的浮煤愈集中, 留煤皮伪顶,留刀柱支撑顶板的长壁式采煤法以及回来率
工作面的推进速度愈慢愈易发生自燃。旧的落垛式采煤法,
较低的水力采煤,都容易发生自燃火灾。炮采工作面木支
架推进速度慢、拖的时间长,也很难控制采空区自燃火灾 的发生。
上一页 下一页 回主目录
返回
2018/4/24
二、煤自燃机理及自燃倾向性
2.2 煤的自燃发展过程
1)潜伏(自燃准备)期:
自煤层被开采、接触空气起
至煤温开始升高的时间区间
称之为潜伏期。在潜伏期, 煤与氧的作用是以物理吸附 为主,放热很小,无宏观效 应;经过潜伏期后煤的燃点
降低,表面的颜色变暗。
煤种
褐煤 烟煤
着火温度(℃)
250 300~350
贫瘦煤、无烟煤
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤自燃的原因及倾向性
预测
Hessen was revised in January 2021
煤自燃的原因及倾向性预测
作者:贾淑洁
来源:《科技传播》2013年第10期
摘要一直以来,煤自燃都是煤炭开采中比较普遍现象。
因此,许多相关人士都致力于研究煤自然原因,结合这些原因实施倾向性预测,确保露天开采的安全性。
本文就是笔者依据多年经验,探析煤自然原因以及倾向性预测。
关键词倾向性预测;煤自燃;原因
中图分类号TD82 文献标识码A 文章编号 1674-6708(2013)91-0086-02
0 引言
2012年,山西某露天选煤厂发生煤自燃,给该企业造成严重的经济损失。
事实上对于煤矿企业中的原煤场时常发生自燃现象,不仅仅给煤矿企业造成洗选困难,还会带来不必要损失。
因此,探究煤自燃原因以及倾向性预测具有现实意义。
1煤自燃原因探析
事实上造成煤自然因素比较多,关系到煤堆特性、煤质特性及气象环境等影响。
具体体现在如下几个方面。
1.1 煤化的程度
在低温状态下煤会发生氧化,主要取决煤炭种类。
从分析发现煤质较高煤炭,长时间储存就会发生氧化而降低了煤质,一般是不会发生自燃现象;但是煤化程度较低煤炭,比如褐
煤,伴随中煤化程度减小而增加了氧化作用,极易发生自燃。
事实上煤化的程度越高其含氧量就越低,低温环境下也就极难氧化。
所以只要煤化程度加深了,煤自燃就会逐渐减低。
1.2 煤炭中含有大量硫铁矿
煤炭中所含硫铁矿就会从地下还原态逐渐成为地上氧化态,因为空气中存在氧与水分,就能够发生化学反应:
1)FeS2+3O2→FeSO4+SO2+热量;
2)FeS2+2H2O+7O2→FeSO4+ 2H2SO4+热量;
3)FeS2+3O2→2Fe2O3+8S+热量;4)S+O2→SO2+热量
在这些反应之中都会放出热量,产生出硫酸加快了黄铁矿进一步分解。
在加快黄铁矿氧化同时也会产生出大量热量,这些热量不断聚集在煤炭上,最终达到着火点而自然。
1.3煤岩与煤质组分
煤自然的倾向性主要和分子结构具有密切关系,即是煤炭分子结构单元所含的活性基团数量与种类,以及分子空间结构。
处于低温氧化时,分子结构中的芳香环构成的结构单元侧链就被氧化,包含了亚甲基、甲基、羟基与芳香醚氧键等,尤其是醚氧键氧化的速度最快,甲基或者亚甲基次之。
残殖煤、腐泥煤与腐殖煤中,尤其是腐殖煤很容易进行风化与自燃,特别是褐煤最严重,伴随着煤化逐渐升高,也就提升了腐殖煤着火点,自燃和风华趋势降低。
在实验之时因方法与样品存在差异,各种煤炭的自燃倾向性不同,研究发现:煤岩各个显微组分氧化活性的顺序是:镜质组 > 壳质组 > 丝质组,但是丝质组内表面
比较大,在低温环境下吸附氧能力比较强,所含FeS2发生氧化之时会散发出大量热量,故此有丝碳积累地方,就会造成温度升高,极大促进了煤炭自身氧化。
1.4环境温度因素
如果储存着大量煤炭极可能引发自然。
事实上煤炭内部和表面温度存在一个逆向变化过程,也就是环境稳定和煤堆表面温度成正比关系,但是却和煤堆内部稳定成反比关系。
白天环境温度升高时,煤炭体表面因吸热而不断升高温度,加之煤炭具有不良导热性,这些温度极难传递到内部,可煤体中水分却是良好导热介质,一旦受热升高了温度,一部分水分就会蒸发吸收内部的热量,导致发生放热降温,属于动态过程。
水分一散失必然增大煤体的空隙度,更容易传递热量。
此时外界环境降温之时,就降低了水分的蒸发量,煤体内部就进行缓慢氧化而升高温度,最终达到相对稳定状态。
这种交替动态过程必然增加煤体内部的孔隙,加大了气体的流通和煤炭氧化反应,进而造成煤堆自燃自热。
2 煤自燃倾向性预测
从煤自燃原因来看,造成煤自燃因素比较多,就必须要针对这些因素进行倾向性预测,尽可能将煤自燃降到极限。
2.1早期识别与预报
平直觉进行感知:
其一开采浅部时,冬天在钻孔口或者坍陷区时常冒出一些水蒸气或者冰雪融化现象。
这是井下有两股温度不一样的风交汇,因过饱和造成水蒸气凝聚而产生雾气,一旦发生这种现象就要具体情况具体分析;
其二如井下能够闻出汽油、煤油或者松节油味,一旦闻到了焦油气味说明自燃达到了一定程度;
其三煤炭自燃或者自热地点流出空气或者水,温度都比平常高了;
其四人感觉到不舒适感觉,比如闷热、头痛及精神贫乏等等,这些都是因空气之中有害气体浓度加重了。
2)其他测量方法
人感觉上总是带有极大主观性与弱敏感性,因此仅仅依靠人直觉并不能够完全识别煤炭自热的过程,还必须要采用其他可靠方法。
首先是对旷内空气成分进行测定,依据测定原理差别预测方法有煤炭氧化速度测定法与分析气体法。
其次是测定围岩和空气中温度,其实测温法属于一种补充手段,测量空气温度使用普通的温度计或者电阻温度计即可,而测围岩温度就需要钻到一定深度测定。
2.2倾向性预测法
自燃倾向测试法
这种方法主要是以煤炭氧化性作为指导思想,严密考察煤炭吸附氧以及消耗量,进而评估煤炭自燃发火期,比较常见方法就是化学试剂法与吸氧法这两种预测方法。
化学试剂法主要是针对人因素而加剧了煤炭氧化速度,在煤炭着火点的温度数据基础上去推算出煤炭自燃发火期。
这种方法有下面几种:
而吸氧法主要在某温度下每1g干煤,干煤吸氧量划分出煤炭自燃的发火期,主要有两种情况:
2)预测煤堆内部的温度
从一些研究中发现,媒体内的稳定θ随着时间t依照幂的指数规律进行变化,也就是有:θ=39.82477×1.003436t×e-0.009134d。
该式子中的t表示时间,而h,d表示测点和热源之间的间距。
通过这个式子就能够预测出媒体中不同点温度变化情况,对煤炭自燃倾向性预测具有真正实用价值。
3结论
总之,影响煤自燃因素比较复杂,相应煤炭企业必须要高度重视自燃原因,进而在原因基础上采取可行的倾向性预测方法,将煤自燃降到极限。
参考文献
[1]牛会永,张辛亥.煤的自燃机理及防治技术分类研究[J].工业安全与环境,2010(10):45-48.
[2]邓军,徐精彩,陈晓坤.煤自燃机理及预测理论研究进展[J].辽宁工程技术大学学报,2008,22(4):455-459.
[3]陈文敏,刘淑云.煤质及化验知识问答[M].北京:化学工业出版社,2008.。