二次根式知识点归纳
《二次根式》知识点总结

《二次根式》知识点总结I.二次根式的定义和概念:、定义:一般地,形如√ā(a≥0)的代数式叫做二次根式.当a>0时,√a表示a的算数平方根,√0=02、概念:式子√ā(a≥0)叫二次根式.√ā(a≥0)是一个非负数.II.二次根式√ā的简单性质和几何意义)a≥0;√ā≥0[双重非负性]2)(√ā)^2=a(a≥0)[任何一个非负数都可以写成一个数的平方的形式]3)√表示平面间两点之间的距离,即勾股定理推论.III.二次根式的性质和最简二次根式)二次根式√ā的化简a2)积的平方根与商的平方根√ab=√a·√b(a≥0,b≥0)√a/b=√a/√b(a≥0,b>0)3)最简二次根式条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√a(a≥0)、√x+y等;含有可化为平方数或平方式的因数或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等IV.二次根式的乘法和除法运算法则√a·√b=√ab(a≥0,b≥0)√a/b=√a/√b(a≥0,b>0)二数二次根之积,等于二数之积的二次根.2共轭因式如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式.V.二次根式的加法和减法同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.2合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式.3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并Ⅵ.二次根式的混合运算确定运算顺序2灵活运用运算定律3正确使用乘法公式4大多数分母有理化要及时5在有些简便运算中也许可以约分,不要盲目有理化VII.分母有理化分母有理化有两种方法I.分母是单项式如:√a/√b=√a×√b/√b×√b=√ab/bII.分母是多项式要利用平方差公式如1/√a+√b=√a-√b/=√a-√b/a-b如图II.分母是多项式要利用平方差公式如1/√a+√b=√a-√b/=√a-√b/a-b。
二次根式知识点总结

二次根式知识点总结1. 二次根式的定义和性质二次根式是指具有形式√a的数,其中a是非负实数。
以下是二次根式的一些重要性质:•非负性:对于任何非负实数a,√a也是一个非负实数。
•平方性:对于任何非负实数a,(√a)2=a。
•唯一性:每个非负实数都有唯一的平方根。
2. 化简和计算二次根式化简和计算二次根式是处理二次根式的基本操作。
下面是一些常见的规则和方法:•合并同类项:如果两个或多个二次根式具有相同的根指数并且根下的值相同,则可以合并它们。
•分解因子:对于某些特定的二次根式,可以将其分解为更简单的形式,例如√ab=√a⋅√b。
•有理化分母:当一个二次根式出现在分母中时,可以通过乘以适当的形式来有理化分母,例如√2=√22。
•乘法和除法规则:二次根式可以与其他数进行乘法和除法运算,例如√a⋅√b=√ab和√a√b =√a√b⋅√b√b=√abb。
3. 二次根式的性质和定理二次根式具有许多重要的性质和定理,这些性质和定理可以帮助我们解决各种问题。
以下是一些常见的性质和定理:•无理数性质:对于大多数非完全平方数a,√a是一个无理数。
•比较大小:对于两个非负实数a和b,如果a<b,那么√a<√b。
•平方根的加法公式:√a+√b不能化简为一个更简单的形式,除非a和b 存在某种特殊关系(例如互为有理数倍)。
•平方根的乘法公式:√a⋅√b=√ab,其中a和b可以是任意非负实数。
4. 解二次根式的方程和不等式解二次根式的方程和不等式是应用二次根式知识的重要方面。
以下是一些解决这类问题的方法:•方程:将方程两边进行平方操作,然后化简为二次根式形式,最后解得方程的解。
•不等式:根据二次根式的性质,可以比较大小或使用其他方法来解决不等式。
5. 与其他数学概念的关系二次根式与其他数学概念之间存在着密切的关系。
以下是一些与二次根式相关的重要概念:•平方数:对于某个非负实数a,如果存在另一个非负实数b,使得b2=a,那么a就是一个平方数。
初二下册数学知识点归纳

初二下册数学知识点归纳第十六章二次根式。
1. 二次根式的概念。
- 形如√(a)(a≥slant0)的式子叫做二次根式。
被开方数a必须是非负数,这是二次根式有意义的条件。
例如√(4),√(x + 1)(x≥slant - 1)都是二次根式。
2. 二次根式的性质。
- (√(a))^2=a(a≥slant0),例如(√(3))^2 = 3。
- √(a^2)=| a|=a(a≥slant0) - a(a<0),如√((-2)^2)=| - 2|=2。
3. 二次根式的乘除。
- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0),例如√(2)·√(3)=√(2×3)=√(6)。
- 二次根式的除法法则:(√(a))/(√(b))=√(frac{a){b}}(a≥slant0,b>0),如(√(8))/(√(2))=√(frac{8){2}}=√(4) = 2。
4. 二次根式的加减。
- 先把二次根式化成最简二次根式,然后合并同类二次根式。
最简二次根式需满足被开方数不含分母且被开方数中不含能开得尽方的因数或因式。
例如√(12)=√(4×3)=2√(3),3√(2)+2√(2)=(3 + 2)√(2)=5√(2)。
第十七章勾股定理。
1. 勾股定理。
- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。
例如在直角三角形中,a = 3,b = 4,则c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。
2. 勾股定理的逆定理。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
例如三边长为3、4、5的三角形,因为3^2+4^2=5^2,所以它是直角三角形。
3. 勾股数。
- 满足a^2+b^2=c^2的三个正整数,称为勾股数,如3、4、5;5、12、13等。
第十八章平行四边形。
二次根式知识点归纳

二次根式知识点归纳定义:一般的,式子a (a ≥0)叫做二次根式。
其中“”叫做二次根号,二次根号下的a 叫做被开方数。
性质:1、2≥0,等于a;a<0,等于-a3、45612789一.1.【05A.25 B.52 C.542.【05南京】9的算术平方根是(???).A.-3B.3C.±3D.813.【05南通】已知2x <,的结果是(???).A 、2x -B 、2x +C 、2x --D 、2x -4.【05泰州】下列运算正确的是(???).A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b 2D =5.【05无锡】下列各式中,与y x 2是同类项的是()A 、2xyB 、2xyC 、-y x 2D 、223y x6.【05武汉】若a ≤1,则化简后为(???). A.??B. C.???D.7.【05绵阳】化简时,甲的解法是:==,乙的解法是:,以下判断正确的是(???).A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确8.【05(A)a >9.【05A.8 10.【05A.2411.【05A.(-1)312.【05A 、x 213.【05A .114.【05 A 15.【05A .aa b ++b a b +=1B .1÷b a ×a b =1 C .21()a b +·22a b a b --=1a b +二、填空题1.【05连云港】计算:)13)(13(-+=.2.【05南京】10在两个连续整数a 和b 之间,a<10<b,那么a,b 的值分别是。
3.【05上海】计算:)11=4.【05嘉兴5.【05丽水】当a ≥0.6.【05南平=.7.【05漳州,2,(第n 个数).8.【05曲靖】在实数-2,31,0,-1.2,2中,无理数是. 9.【05黄石】若最简根式b a a +3与b a 2+是同类二次根式,则ab =.10.【05太原】将棱长分别为a cm 和bcm 的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为.(不计损耗)11.【05黄岗】立方等于–64的数是。
二次根式知识点归纳

二次根式知识点归纳二次根式是数学中的一个重要概念,也是我们在中学阶段学习的数学知识之一、学好二次根式的知识,不仅可以提高我们的数学实力,还能够帮助我们更好地理解和应用数学。
下面是对二次根式的知识点进行归纳总结。
一、二次根式的定义与性质1.二次根式的定义:如果一个数x的平方等于一个有理数a,那么称x是a的二次根,记作√a=x。
其中,a是被开方数,x是二次根。
2.二次根式的性质:二次根式具有以下基本性质:-非负性:对于所有的a≥0,√a≥0。
-唯一性:对于任意一个正数a,二次根√a是唯一确定的。
-传递性:对于任意的a≥0和b≥0,如果√a=√b,那么a=b。
-加减性:对于任意的a≥0和b≥0,有√a±√b=√(a±b)。
-乘除性:对于任意的a≥0和b≥0,有√(a×b)=√a×√b,√(a/b)=√a/√b(其中,b不为零)。
二、二次根式的化简1.因式分解法:将二次根式的被开方数进行因式分解,然后利用乘除性质化简。
2.合并同类项法:将二次根式中相同的根号项合并,然后根据加减性质化简。
三、二次根式的比较大小1.当被开方数相同时,二次根式相等,即√a=√b,当且仅当a=b。
2.当被开方数不同时,可以通过平方的方式来比较大小。
即对于a≥b≥0,有√a≥√b。
四、二次根式的运算1.加减运算:对于任意的a≥0和b≥0,可以进行二次根式的加减运算。
-加法:√a+√b=√(a+b)。
-减法:√a-√b=√(a-b)(需要满足a≥b)。
2.乘法运算:对于任意的a≥0和b≥0,可以进行二次根式的乘法运算。
-乘法:√a×√b=√(a×b)。
3.除法运算:对于任意的a≥0和b>0,可以进行二次根式的除法运算。
-除法:√a/√b=√(a/b)(需要满足b≠0)。
五、二次根式的应用二次根式在实际问题中的应用非常广泛1.几何问题:二次根式可以用来表示长度、面积、体积等物理量,例如计算一个正方形的对角线长度、一个圆的半径等等。
二次根式的知识点的总结

二次根式的知识点的总结二次根式是高中数学中重要的一个内容,也是学习代数的基础。
在学习二次根式时,需要了解其定义、性质、运算法则等知识点。
下面是对二次根式知识的总结:一、二次根式的定义和性质:1. 定义:对于非负实数a,b,如果存在非负实数x使得$x^2=a$,则称x为a的平方根,记作$x=\sqrt{a}$。
简记作$\sqrt{a}$,a称为二次根式的被开方数。
2.性质:(1)非负实数的平方根是唯一的。
即对于非负实数a,其平方根也是非负实数且唯一(2)非负实数a的平方根如果记作±$\sqrt{a}$,则规定非负实数a的平方根仅指称为非负实数$\sqrt{a}$。
(3)非负实数a的平方根的平方等于a。
即$(\sqrt{a})^2=a$。
(4)非负实数的平方根存在且非负。
即对于非负实数a,总是存在非负实数x使得$x^2=a$,且x唯一(5)相等的二次根式具有相等的平方根。
即如果$\sqrt{a}=\sqrt{b}$,则有a=b。
(6)平方根的运算:$\sqrt{ab}=\sqrt{a}\sqrt{b}$、$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$。
二、二次根式的化简:1. 因式分解法:将二次根式的被开方数进行因式分解,然后利用性质$\sqrt{ab}=\sqrt{a}\sqrt{b}$和$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$对二次根式进行简化,最后利用性质$\sqrt{a^2}=,a,$化简。
2. 合并同类项法:对于同根号的二次根式,可以合并同类项进行简化。
如$\sqrt{2}+\sqrt{3}+\sqrt{2}=\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{2}+\sqrt{3}$。
3.有理化法:对于含有分母的二次根式,可以通过有理化的方法将其化简为一个无理数。
三、二次根式的比大小:1. 利用性质$\sqrt{a^2}=,a,$,我们可以对二次根式的大小进行比较。
二次根式数学知识点(8篇)

二次根式数学知识点(8篇)二次根式数学知识点1知识点一:二次根式的概念形如a(a0)的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a0是a为二次根式的前提条件,如5,(x2+1),(x-1)(x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。
知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a0时a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,a没有意义。
知识点三:二次根式a(a0)的非负性a(a0)表示a的算术平方根,也就是说,a(a0)是一个非负数,即0(a0)。
注:因为二次根式a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a0)的算术平方根是非负数,即0(a0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若a+b=0,则a=0,b=0;若a+|b|=0,则a=0,b=0;若a+b2=0,则a=0,b=0。
知识点四:二次根式(a)的性质(a)2=a(a0)文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式(a)2=a(a0)是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若a0,则a=(a)2,如:2=(2)2,1/2=(1/2)2.知识点五:二次根式的性质a2=|a|文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:1、化简a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即a2=|a|=a(a若a是负数,则等于a的相反数-a,即a2=|a|=-a(a﹤0);2、a2中的a的取值范围可以是任意实数,即不论a取何值,a2一定有意义;3、化简a2时,先将它化成|a|,再根据绝对值的意义来进行化简。
二次根式知识点总结

二次根式知识点总结
一、二次根式的定义
二次根式是指形如 $\sqrt{a}$ 的无理数或代数式,其中 $a$ 是一个
非完全平方数,即 $a$ 不能表示为某个正整数的平方。
二、简化二次根式
1. 将二次根式 $\sqrt{a}$ 化简为 $\sqrt{b}$ 的形式,其中
$b$ 是 $a$ 的正因子;
2. 对于 $\sqrt{a}\pm\sqrt{b}$,可通过有理化分母的方法化为
$\frac{\sqrt{c}\pm\sqrt{d}}{e}$ 的形式,其中 $c$、$d$、$e$ 均
为整数。
三、二次根式的运算
1. 二次根式加减法:将同类项合并,并对结果进行简化;
2. 二次根式乘法:利用分配律,将每一项分别与另一个二次根式相乘,并化简结果;
3. 二次根式除法:将除数、被除数都乘以分母的共轭复数,化为分母
为整数的形式后进行约分。
四、二次根式的应用
1. 应用勾股定理求直角三角形的一条边;
2. 当面积或体积为二次根式时,可通过二次根式的运算得到结果。
五、注意事项
1. 化简二次根式时,应将完全平方因子提出;
2. 二次根式运算时,不同二次根式之间不能进行加减法;
3. 对于 $\sqrt{a}$,$a$ 不能为负数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式知识点归纳定义:一般的,式子a ( a ≥ 0 ) 叫做二次根式。
其中“”叫做二次根号,二次根号下的a 叫做被开方数。
性质:1、a (a ≥0)是一个非负数.即a ≥02、2a =│a │即a ≥0,等于a;a<0,等于-a3、4、a ·b =ab .(a ≥0,b ≥0)反过来: ab =a ·b (a ≥0,b ≥0)5、a b=a b (a ≥0,b>0) 反过来,a b =a b(a ≥0,b>0) 6、最简二次根式:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.7、同类二次根式:几个二次根次化成最简二次根式以后如果被开数相同,这几个二次根式就叫做同类二次根式8、数的平方根与二次根式的区别:①4的平方根为±2,算术平方根为2;②4=2,二次根式即是算术平方根9、二次根式化运算及化简:①先化成最简 ②合并同类项二次根式中考试题精选一.选择题:1.【05宜昌】化简20的结果是 ( ).A. 25B.52C. 210.D.54 2.【05南京】9的算术平方根是 ( ).A.-3B.3C.± 3D.813.【05南通】已知2x <,244x x -+ ).A 、2x -B 、2x +C 、2x --D 、2x -4.【05泰州】下列运算正确的是( ).A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b 2D 2832=(a )2=a (a ≥0)5.【05无锡】下列各式中,与y x 2是同类项的是( )A 、2xyB 、2xyC 、-y x 2D 、223y x 6.【05武汉】若a ≤1,则化简后为( ).A.B. C. D.7.【05绵阳】化简52-时,甲的解法是:52-=3(52)(52)(52)+-+=52,乙的解法是:52-(52)(52)52+--52,以下判断正确的是( ).A. 甲的解法正确,乙的解法不正确B. 甲的解法不正确,乙的解法正确C. 甲、乙的解法都正确D. 甲、乙的解法都不正确8.【05杭州】设32,23,52a b c ==-=,则,,a b c 的大小关系是: ( ).(A)a b c >> (B)a c b >> (C)c b a >> (D)b c a >> 9.【05丰台】4的平方根是( ). A. 8B. 2C. ±2D. ±210.【05北京】下列根式中,与3是同类二次根式的是( ).A.24B.12C.32D.1811.【05南平】下列各组数中,相等的是( ).A.(-1)3和1B.(-1)2和-1C.|-1|和-1 2(1)- 1 12.【05宁德】下列计算正确的是( ).A 、x 2·x 3=x 6B 、(2a 3)2=4a 6C 、(a -1)2=a 2-1D 、 4 =±2 13.【05毕节2(3)a -―a 的正整数a 的值有( ).A .1个B .2个C .3个D .4个14.【05黄岗】已知y x ,为实数,且()02312=-+-y x ,则y x -的值为( ).A .3B .– 3C .1D .– 115.【05湘潭】下列算式中,你认为错误的是 ( ).A .aa b++b a b+=1B .1÷ba×ab=1 C 21-2 D .21()a b +·22a b a b --=1a b+二、填空题1.【05连云港】计算:)13)(13(-+= .2.【05南京】10在两个连续整数a 和b 之间,a<10<b, 那么a , b 的值分别是 。
3.【05上海】计算:)2121=4.【05嘉兴a ab b5.【05丽水】当a ≥0= .6.【05南平= .7.【05漳州,2,,…, (第n 个数). 8.【05曲靖】在实数-2,31,0,-1.2,2中,无理数是 . 9.【05黄石】若最简根式b a a +3与b a 2+是同类二次根式,则ab = . 10.【05太原】将棱长分别为a cm 和bcm 的两个正方体铝块熔化,制成一个大正方体铝 块,这个大正方体的棱长为 .(不计损耗) 11.【05黄岗】立方等于– 64的数是 。
12.【05梅山】计算:)2= . 13.【05湘潭】计算:+―= .三、解答题1、【05连云港】计算 2(2+. 2、【05青岛】计算:2251220+⎪⎭⎫⎝⎛--.3.【05苏州)11212-÷+4.【05温州】计算:12+12-3-(2+3)2 ; 5.【05丰台】计算:1218--6.【05曲靖】计算:(12 )1-+(3.14-π)0- 8+22 ;7.【05玉林】18)21(1221+---8.【05泉州】先化简下面的代数式,再求值:)1(2)2)(2(++-+x x x ,其中2=x9.【05梅山】已知:y <3,化简:(13y +)-110.【05黄石】计算:0232)17()2(27)21(|5|-----++--11.计算:210(2)(1--- 12.计算:(13-)0+(31)-1-2)5(--|-1|13.【05台州】我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-+-=222222241c b a b a s ……①(其中a 、b 、c 为三角形的三边长,s 为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:))()((c p b p a p p s ---= ……②(其中2cb a p ++=). ⑴ 若已知三角形的三边长分别为5、7、8,试分别运用公式①和公式②, 计算该三角形的面积s ; ⑵ 你能否由公式①推导出公式②?请试试.练习: 一、选择题1、下列判断⑴12 3 和13 48 不是同类二次根式;⑵145 和125 不是同类二次根式;⑶8x与8x 不是同类二次根式,其中错误的个数是( )A 、3B 、2C 、1D 、02、如果a 是任意实数,下列各式中一定有意义的是( ) A 、 a B 、1a2 C 、3-a D 、-a 23、下列各组中的两个根式是同类二次根式的是( )A 、52x 和3xB 、12ab 和13ab C 、x 2y 和xy 2 D 、 a 和1a 24、下列二次根式中,是最简二次根式的是( ) A 、8x B 、x 2-3 C 、x -y xD 、3a 2b 5、在27 、112 、112 中与3 是同类二次根式的个数是( )A 、0B 、1C 、2D 、36、计算:⑴)36)(16(3--⋅-; ⑵521312321⨯÷;⑶; (4)375-12532272-+(5))21218(3+-⨯ (6)xx x x 1246932-+7. 你见过像324-,625-等这样的根式吗?这一类根式叫做复合二次根式,有一些复合二次根式可以化简。
如()1313113233242-=-=+⨯-=-⑴、请用上述方法化简625+;⑵、请自已编一道有上述特点的复合二次根式并化简; ⑶、思考:你会化简154+吗?请试一试。
练习1。
1.下列各式属于最简二次根式的是( )A 、12+xB 、32y xC 、12D 、5.0 2、下列各组二次根式中,是同类二次根式的是( ) A 、122与 B 、183与 C 、182与 D 、93与 3、式子21+-x x 的取值范围是( )A 、x ≥1 ;B 、x>1且x ≠-2;C 、x ≠-2;D 、x ≥1 且 X ≠-2 4、10的整数部分是x ,小数部分是y ,则y (x+10)的值是( ) A 、1 B 、2 C 、3 D 、4 5、把-33a根号外的因式移到根号内,所得的结果正确的是( ) A 、-aB 、-a -C 、-a 3D 、a 36、若a<0,则|a 2 -a|的值是( ) A 、0 B 、2a C 、2a 或-2a D 、-2a7、把(a -1)11-a根号外的因式移入根号内,其结果是( ) A 、1-a B 、-1-a C 、a -1 D 、-a -1 8、若a+b4b 与3a +b 是同类二次根式,则a 、b 的值为( )A 、a=2、b=2B 、a=2、b=0C 、a=1、b=1D 、a=0、b=2 或a=1、b=19、下列说法错误的是( )A 、(-2)2的算术平方根是2B 、 3 - 2 的倒数是 3 + 2C 、当2<x<3时,x 2-4x+4 (x -3)2 = x -2x -3 D 、方程x+1 +2=0无解10、若 a + b 与 a - b 互为倒数,则( )A 、a=b -1B 、a=b+1C 、a+b=1D 、a+b=-111、若0<a<1,则a 2+1a 2 -2 ÷(1+1a )×11+a 可化简为( )A 、1-a 1+aB 、a -11+a C 、1-a 2 D 、a 2-1 二、填空题1、要使1-2xx+3 +(-x)0有意义,则x 的取值范围是 。
2、若a 2 =( a )2,则a 的取值范围是 。
3、若x 3+3x 2 =-x x+3 ,则x 的取值范围是 。
4、观察下列各式:1+13 =213 ,2+14 =314 ,3+15 =415 ,……请你将猜想到的规律用含自然数n(n≥1)的代数式表示出来是 。
5、若a>06、若o<x<1= .7、化简:||-x 2 -1|-2|= 。
8、在实数范围内分解因式:x 4+x 2-6= . 四、化简求值 1、已知x= 2 +12 -1 ,y=3 -13 +1,求x 2-y 2的值。
2、已知x=2+ 3 ,y=2- 3 ,求x +yx -y - x -y x +y 的值。
五、已知x +1x =4,求x -1x 的值。
练习2。
认真填一填(3*12=36)1、3的同类二次根式是 (写出一个即可)2、当x 时,根式1-x 有意义。
3、在实数范围内,因式分解a 2 – 3 =4、化简:=8 ,=971, 5、如果化简后的二次根式 —7535321-+x x 与 是同类二次根式,则x= 6、(1)2)12(-= ,(2)若a >b ,则 2)(a b - = 7、如果5-a +2-b = 0,那么以a ,b 为边长的等腰三角形的周长是 8、在ΔABC 中,a ,b ,c 为三角形的三边,则b a c c b a ---+-2)(2= 9、计算:(20072007)154()415-⋅+=10、小明和小芳在解答题目:“先化简下式,再求值:a+221a a +-,其中a=9”时,得出了不同答案,小明的解答是:原式=a+2)1(a -=a+(1-a )= 1;小芳的解答是:原式=a+2)1(a -=a+a+1=2a-1=2×9-1=17。