反激式开关电源隔离变压器设计步骤
反激式开关电源隔离变压器设计步骤-华为

二.设计步骤
1. 1. 高频下电流穿透深度为(单位:cm) :D
6.62 f
导线直径(单位:cm) :d=2D(然后选择相近的导线)
d2 导线裸线面积 Aw 4 1 2. T (s) f
3. 计算晶体管最大导通时间: ton max 4. 计算总的负载功率:
TDmax (s)
lg L 0.4 Ac F 10 8
23. 计算磁通密度的峰值:
0.4 N np FI p pk 104 B pk (T ) MPL lg m
24. 计算一次新的:
(μΩ / cm) (New)μΩ / cm (μΩ / cm 1.7 / A w) S np
25. 计算一次绕组的电阻:
最大占空比:
最小占空比:
Dmin
最大导通时间:
ton max TDmax T (1 Dmin )
最大截止时间: toff max 电感器电流的变化量:
I
TVin max Dmin 1 Dmin L I 2
电感器的峰值电流:
I pk I o max
I 2
不连续电流模式时 Buck-Boost 倒向变换器的设计公式
电感 L: Lmax
V V T 1 Dmax Dw o d
2 I o max
2
(H )
最大占空比: Dmax
Vo Vd 1 Dw
Vo Vd Vin min
最小占空比: Dmin
I p pk ton 3T
7. 计算一次电流的有效值: I p rms
8. 计算最大输入功率: P in max
反激式开关电源变压器设计步骤(重要)

反激式开关电源变压器设计反激式变压器是反激式开关电源的核心,它决定了反激式变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。
这样可以让其发热量尽量小,对器件的磨损也尽量小。
同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源性能会有很大的下降,如损耗会加大,最大输出功率会下降.设计变压器,就是要先选定一个工作点,在这个点就是最低的交流输入电压,对应于最大的输出功率。
第一步,选定原边感应电压V OR 。
这个值是有自己来设定的,这个值就决定了电源的占空比.可能朋友们不理解什么是原边感应电压。
我们分析一个工作原理图。
当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性上升:I 升=Vs*Ton/L 。
这三项分别是原边输入电压,开关开通时间和原边电感量。
在开关管关断的时候,原边电感放电,电感电流会下降,此时有下降了的电流:I 降=V OR *T OFF /L 。
这三项分别是原边感应电压(即放电电压)、开关管管段时间和电感量。
经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以有:Vs *T ON /L=V OR *T OFF /L 。
即上升了的等于下降了的。
上式中用D 来代替T ON ,用(1-D )来代替T OFF .移项可得:D=V OR /(V OR +Vs)。
这就是最大占空比了.比如说我设计的这个变压器,我选定电感电压V OR =20V ,则Vs 为24V ,D=20/(20+24)=0。
455。
第二步,确定原边电流波形的参数原边电流波形有三个参数,平均电流,有效值电流,峰值电流,首先要知道原边电流的波形,原边电流的波形如下。
这是一个梯形波横向表示时间,总想表示电流大小,这个波形有三个值,一个是平均值I 平均,二是有效值I ,三是峰值Ip 。
首先要确定平均值I 平均:I 平均=Po/(η*Vs )。
反激式变压器的设计步骤

反激式变压器的设计步骤1 明确产品的设计要求。
一、 输入电压范围(a)220±20% (b)110±20% (c)85-264V(d)220/110V AC.二、 输入电压、电流,输出电压V 、电流A 。
三、 工作频率F四、 工作效率 :70-90%,Rcc 一般取70%-75%。
五、 工作占空比 D 取0.45-0.5 2 计算输入功率Pin=Po/n n:工作效率 3 设算变压器初级的反射电压:V orV or = V min :滤波电容上的最谷底电压VV min=V acmin *1.414-37V3 计算匝比:N N=V or:反射电压 V o:输出电压 V f :二极管正向电压4 计算原边峰电流(Ip )和有效值电流。
I rms = Po/(n* Vmin ) I rms : 初级有效电流 AVmin ×D (1-D)V orV o+VDI p = P in : 输入功率WV min : 滤波电容上的最谷底电压V或I p = I rms /[(1-0.5*K rp )* D max ] V min=V acmin *1.414-37VK rp : 电流脉动系数 取0.6-0.75 或K rp = △B/ B max△ B= 工作磁感强度 TB max = 饱和磁同密度 I p= I p2: 初级峰值电流 A D max : 最大占空比5 计算Ip1I p1=I p2*(1-K rp ) I p2=I p : 初级峰值电流 A连续模式非连续模式F F6 计算初级电感量 LpLp= V min : 最小输入DC 电压D max : 最大占空比L p : 初级电感量(mH )2PinV min ×D max ×(2-K rp )PoI p 2* K rp *(1-0.5* K rp )*F*nI p= I p2: 初级峰值电流 A F : 频率KHz n : 工作效率7.计算初次级匝数 NpNp = Ae: 磁芯截面积 mm 2B max : 饱和磁同密度 TN p : 初级匝数L p : 初级电感量(mH )Ns = Ns: 次级匝数N: 匝比8 .校验饱和磁同密度 B max =( L p *I p )/( Ae* N p )L p *103*IpAe*B maxNpN。
反激式开关电源变压器设计

反激式开关电源变压器设计三个电流参数,就是这个电流的有效值,电流有效值和平均值是不一样的,有效值的定义还记得吗,就是说把这个电流加在一个上,若是其发热和另处一个直流电流加在这个电阻上发热效果一样的话,那么这个电流的有效值就等于这个直流的电流值。
所以这个电流的有效值不等于其平均值,普通比其平均值要大。
而且同样的平均值,可以对应无数个有效值,若是把KRP的值选得越大,有效值就会越大,有效值还和占空比D也有关系,总之。
它这个电流波形的外形是休戚相关的。
我就挺直给出有效值的电流公式,这个公式要用积分才干推得出来,我就不推了,只要大家区别开来有效值和平均值就可以了。
电流有效值=电流峰值*根号下的D*(KRP的平方/3-KRP+1)如我现在这个,电流有效值=0.419*根号下0.47*(0.36/3-0.6+1)=0.20A.所以对应于相同的功率,也就是有相同的输入电流时,其有效值和这些参数是有关的,适当的调节参数,使有效值最小,发热也就最小,损耗小。
这便优化了设计。
第三步,开头设计变压器预备工作。
已知了开关频率是100KHZ则开关周期就是10微秒了,占空比是0.47.那么TON就是4.7微秒了。
记好这两个数,对下面实用。
第四步,选定变压器磁芯,这个就是凭阅历了,假如你不会选,就估一个,计算就行了,若是不可,可以再换一个大一点的或是小一点的,不过有的资料上有如何按照功率去选磁芯的公式或是区线图,大家不妨也可以参考一下。
我普通是凭阅历来的。
第五步,计算变压器的原边匝数,原边用法的经径。
计算原边匝数的时候,要选定一个磁芯的振幅B,即这个磁芯的磁感应强度的变幻区间,由于加上方波电压后,这个磁感应强度是变幻的,正是由于变幻,所以其才有了变压的作用,NP=VS*TON/SJ*B,这几个参数分离是原边匝数,,最小输入电压,导通时光,磁芯的横节面积和磁芯振幅,普通取B的值是0.1到0.2之间,取得越小,变压器的铁损就越小,但第1页共2页。
反激变压器设计过程

反激变压器设计过程1、初始值设定1.1 开关频率fkHz对于要接受EMI规格适用的产品,不要设定在150kHz预计余量的话120kHz左右以上;一般设定在65kHz左右;1.2 输入电压范围设定主要对瞬时最低输入电压/连续最低输入电压/最大输入电压的3类进行设定;1.3 最大输出电流设定对于过电流保护最大输出电流/连接最大输出电流/峰值最大输出电流在规格书上有规定的情况下3种类,进行设定;另外,在这最大输出电流中需包括对于各自偏差的余量;1.4 最大二次绕组输出端电压设定用以下公式算出:最大二次绕线端输出电压:V N2max V =接插件端输出电压+线间损失0.1~0.5V +整流元器件Vf 0.4~0.6V※ 在有输出电压可变的情况下,根据客户要求规格书的内容不同,适用的范围而各不相同;只保证输出电压 ※只在装置试验时电压可变的情况下; 磁芯用最大输出电压来设计;绕线是用额定输出电压来设计;保证所有的性能※在实际使用条件下通常的电压可变的情况下; 磁芯、绕线都用最大输出电压来设计;1.5 一次电流倾斜率设定输入电压,瞬时最低动作电压、输出电流,在过电流保护最大输出电流/连接最大输出电流/峰值最大输出电流的任意一个最大输出电流的条件下,设定图1-1的一次电流波形的斜率;K 的设定公式如下;作为目标,设定到0.5~0.6,兼顾到之后的其他特性,作最适当的变更;1.6 最大占空比设定一般设定为0.45~0.65;1.7 最大磁通密度设定Bmax设定为磁芯的产品目录上所记载的饱和磁通密度×0.8~0.9;设计的要点:单一输入的情况下设定为0.45、普遍输入的情况下设定为0.65左右;图1-2中表示了TDK 制的磁珠磁芯PC44的B-H 曲线图; 磁芯的磁通密度BT,如图1-2所示,与磁场强度HA/m 成比例,增加;另外,当B 达到一定的值时,在那基础上,即使增加H,B 也不会增加;在此磁束饱和状态下,不仅仅达不到作为变压器的机能,还有开关FET 破损的危险性,因此磁芯绝对必须在此饱和磁通密度以下来使用;另外,从产品目录上引用数据时,需要在符合使用条件的温度下选择饱和磁通密度,因此请注意;※磁芯的饱和磁通密度是根据温度而变动;在TDK 制PC44的120℃下的饱和磁通密度,将降低到25℃时的值的68.6%;因此,如果在25℃的条件下设计的话,有可能发生使用时的故障;1.8 绕线电流密度设定绕线电流密度对绕线的温度上升有一定影响,因此一定要考虑冷却条件、使用温度范围、变压器构造等,再进行适当的设定;设计要点:・ 变压器的发热,是根据,根据磁芯损失的铁损和根据绕线损失的铜损来决定2、变压器特性设计2.1 计算一次绕组的电流峰值变压器总输出功率P 2W 是瞬时最大值;在输出电流规格书中有设定峰值条件的情况下,用I o peak ×V N2max ;另外,多输出的情况下,将各电路的输出功率的总和作为变压器总输出功率;变压器效率一般为0.95;2.2 计算一次/二次绕组的匝数比匝数比根据输出入电压和最大占空比来决定;2.3 计算一次绕组的电感量3、变压器构造设计3.1 计算一次绕组的电流有效值 计算一次绕线电流有效值I N1 TYP RMS ;不用考虑瞬时最低动作输入电压、过电流、峰值最大电流;首先求出占空比α;接着用以上所求出的占空比α,求出一次绕线电流有效值;作为标准,从1.1.8项中设定的绕线电流密度I/SA/mm 2和一次绕线电流有效值I N1typrms A 中,计算出一次绕线截面积S N1mm 2;3.2 计算二次绕组的电流有效值※省略以下的详细计算,可以将直流输入电流的1.6倍作为一※可以省略以下的详细计算,将直流输出电流的1.4倍作为二在实使用条件的通常驻机构状态下,用在1.3.1项中算出的占空比α、一次绕线电流有效值IN1typrmsA,算出连续流出的最大的二次绕线电流有效值;替换为与各自的二次绕线和一次卷的绕线比,进行计算,另※多输出变压器的情况下,将N12中加上对于全功力的其电路输出功力的比率;外在所求得的IN2typrmsA作为标准,从在1.1.8项中设定的绕线电流密度I/SA/mm2与二次绕线电流有效值IN2typrms中,计算出二次绕线断面积Smm2;N2设计要点:・变压器的发热,是根据,根据磁芯损失的铁损和根据绕线损失的铜损来决定的;绕线电流密。
反激式开关电源变压器设计说明

2.6 计算一次绕组最大匝数Npri
Lpri 452*10-6
Npri = =
= 61.4匝 取Npri=62匝
AL 120*10-9
2.7 计算二次主绕组匝数NS1〔NS1为DC+5V绕组
Npri<V01+VD><1-Dmax> 62*<5+0.7>*<1-0.5>
Ns1=
=
= 2.78匝
Vin<min>Dmax
技术部培训教材
反激式开关电源变压器设计(2)
表二 变压器窗口利用因数
变压器情况
窗口
反激式变压器 一个二次绕组 两个或多个二次绕组 相互隔离的二次绕组 满足UL或CSA标准 满足IEC标准 法拉第屏屏蔽
1.1 1.2
1.3 1.4 1.1 1.2 1.1
用下式按变压器情况将各窗口利用因数综合起来 Knet=Ka.Kb…
技术部培训教材
反激式开关电源变压器设计(2)
变压器绕制结构如下:
0.06/3层 0.06/3层 0.06/3层 0.06/3层
偏置绕组 ½一次绕组 二次绕组 ½一次绕组
3mm
3mm 技术部培训教材
反激式开关电源变压器设计(2)
2.11 计算变压器损耗
1铜损:Pcun = NnV* MLT*Rn>In2 MLT = 2E+2C=2*25.27+2*9.35=69.24mm
5+0.7
取13匝
技术部培训教材
反激式开关电源变压器设计(2)
2.9 检查相应输出端电压误差 Vsn
δVsn%=<< = *Ns’n-Vsn>/Vsn>*100% Nsn
反激式开关电源变压器设计步骤及公式

反激式开关电源变压器设计步骤及公式(4种计算方法比较)1.确定已知参数: (主要PWM方式)确定已知参数:(主要RCC方式)来自现代高频开关电源实用技术1,确定系统规格输出功率:输入功率: P୧=输入平均电流: Iୟ୴ൌሺౣሻ同左边占空比D୫ୟ୶=୲=0.5 f୫୧୬:25KHz输入直流电压Vୈେ=√2Vୟୡ在了解输出功率后确定所需磁芯A p=A e*A w(cm4)Ae:磁芯中心柱横截面积(cm2);A w:磁芯窗口面积(cm2)最小AC输入电压:V ACMIN,单位:V最大AC输入电压:V ACMAX,单位:V输入电压频率:f L,50Hz or 60Hz输出电压:V O,最大负载电流:I O输出功率:P O,单位:WIo:Po=Vo*Ioη:0.85P୧ൌP୭η2.峰值电流1T=10000G s输入峰值电流:Iൌכሺౣሻ对于BUCK(降压),推挽,全桥电路K=1.4对于半桥和正激K=2.8对于Boost,BUCK-Boost和反激K=5.5 I୮ൌ2כP୭כTηכV୧୬ሺ୫୧୬ሻכt୭୬A e*A w>כଵలଶככ౩כౣכஔכౣכౙ(cmସ) ;Ae是磁芯截面积(cm2),Aw是磁芯窗口面积(cm2);f的单位为Hz,Bm的单位为Gs,取(1500)不大于3000Gs,δ导线电流密度取:2~3A/mmଶ ,K୫窗口填充系数取0.2~0.4,Kc磁芯填充系数,对于铁氧体该值取1IୋൌP୧V୧୬୫୧୬IൌIୟ୴D୫ୟ୶כ2T୭୬ൌଵD୫ୟ୶(uint:µs)1S=106µsLൌౣכ୍ౌే(µH)3.计算初级电感因所以t୭୬ൌDכTൌଵଶכ若f取25KHz,则t୭୬为20μS选磁芯也可用公式Fosc<50KHz S=1.15*√Po(cmଶሻFosc<60KHz S=0.09*√Po(cmଶሻFosc>=60KHz S=0.075*√Po(cmଶሻNPൌౌכ୍ౌేככ10L P:mH; ΔB:260mT;A e:mm2NsൌሺV୭Vୈሻכሺ1െD୫ୟ୶ሻכNV୧୬୫୧୬כD୫ୟ୶NaൌሺVୟVୟୈሻכሺ1െD୫ୟ୶ሻכNV୧୬୫୧୬כD୫ୟ୶L =ሺౣሻכୈ୍ౌేכ౩ౙ其中L 单位:H f:Hz 电压:V, 电流:A匝比:n=ሺౣሻ=౩౦4. 计算初级匝数初级电感:L ୮ൌሺౣሻכ୲୍౦检验磁芯正规名牌磁性材料的Bm 不得大于3000Gs ,国产杂牌不大于2500Gs 更保险A 值是在磁芯上绕1000匝测得(美国)则N ൌ1000ටౌై此式中L 单位为mH变压器次级圈数:Ns>୬כ୍౦כ౦ୗכౣ*10其中S 为磁芯截面积,B୫值为3000Gs若A 值是用100匝测得且单位是nH/N ଶ,则N ൌ100ටౌై此式中L 单位为mH,A 单位为mH/N ଶ,在计算时要将A 的值由nH 转换为mH 后再代入式中计算;例如:某A 值为1300 nH/N ଶ, L 值为2.3mH,则A =1300nH/N ଶ=1.3 mH/N ଶ代入中计算得N 为133T 初级匝数为:Np=౩୬B(max) = 铁心饱合的磁通密度(Gauss)Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm2 )B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以5. 匝比n=౩ౌ=ሺౣሻ晶体管的基极电流I =୍౦୦ూు6. 次级绕组匝数N ୱ=N *n N ୱଵ=౦כሺାౚሻכሺଵିୈౣ౮ሻሺౣሻכୈౣ౮多路输出时N ୱ୶=ሺ౮ାౚ౮ሻכ౩భభାౚభ其中x 代表几路I ୰୫ୱൌI √27. 原边供电绕组N ୟ=N ୱכ在多路输出时Vo 为主输出电压计算线径(包括初级次级)同左边8. 选择磁芯型号要满足,磁芯中心柱截面积S=0.09*√Po (cm ଶሻ或满足公式A=A ୣכA ୵ൌכଵలଶככ౩כౣכஔכౣכౙ(cm ସ ) ;Ae 是磁芯截面积(cm 2),Aw 是磁芯窗口面积(cm 2);f 的单位为Hz ,Bm 的单位为Gs ,取(1500)不大于3000Gs ,δ导线电流密度取:2~3A /mm ଶ ,K ୫窗口填充系数取0.2~0.4,Kc 磁芯填充系数,对于铁氧体该值取1做较大瓦数的 Power 。
反激式开关电源变压器的设计方法

反激式开关电源变压器的设计方法反激式开关电源变压器是一种常用于电子设备中的高效率、高频率开关电源变压器。
其设计方法包括了选择合适的变压器参数、计算变压器工作状态、考虑磁芯损耗和温升等方面。
下面将详细介绍反激式开关电源变压器的设计步骤。
首先,确定设计目标和性能要求。
根据所需的输入和输出电压和电流,确定变压器的额定功率和输出功率。
同时,考虑变压器的体积限制以及可用的材料,进行适当的权衡。
第二步是选择磁芯材料。
磁芯的选择对于反激式开关电源变压器来说非常重要,因为磁芯的性能直接影响着变压器的效率和工作频率。
常见的磁芯材料包括铁氧体和软磁合金等,可以根据具体的应用需求和成本进行选择。
第三步是计算变压器的主要参数。
包括主磁链感应系数、匝数比、实际绕组电压和电流等。
根据设计目标和性能要求,以及选择的磁芯材料,可以通过一系列公式和计算来决定这些参数。
第四步是进行磁芯损耗和温升的估算。
反激式开关电源变压器在工作过程中会产生磁芯损耗和温升。
这些损耗会导致变压器的效率下降,甚至导致变压器无法正常工作。
因此,需要根据具体的磁芯材料和使用条件,进行损耗和温升的估算。
第五步是进行变压器的绕组设计。
根据变压器的参数和工作状态,设计变压器的绕组结构和匝数。
通过合理设计绕组,可以提高变压器的效率和性能。
第六步是进行变压器的线径选择和导线布局。
根据所需的电流和损耗,选择合适的线径,并进行合理的导线布局,以提高变压器的效率和散热性能。
最后一步是进行变压器的实际制造和测试。
根据设计图纸和规格要求进行变压器的实际制造,并通过测试来验证设计的正确性和性能。
总之,反激式开关电源变压器的设计是一个复杂的过程,需要考虑多个因素的综合影响。
通过合理选择磁芯材料、计算变压器参数、评估磁芯损耗和温升等步骤,可以设计出性能良好、效率高的变压器。