基于单片机控制的自动灌溉系统的制作流程

合集下载

单片机的自动盆栽浇灌系统设计与制作

单片机的自动盆栽浇灌系统设计与制作

单片机的自动盆栽浇灌系统设计与制作
单片机的自动盆栽浇灌系统是一种以单片机技术为基础,能够实现自动浇灌植物的系统。

该系统以检测植物土壤湿度为基础,当盆栽中的植物土壤湿度低于设定值时,传感器自动触发单片机系统,打开新鲜水的阀门,实现自动浇灌的功能。

该系统的主要设计和制作步骤有:
1、首先,需要准备一台单片机,一个湿度传感器,阀门控制电磁阀,显示管及各路电源。

2、然后,在单片机系统上编写程序,将适当的参数设定在湿度传感器上,如检测植物土壤湿度低于设定值时,单片机就会自动触发,从而打开电磁阀,向盆栽中施水。

3、再为单片机系统添加限流电阻,接通电源,将电磁阀和湿度传感器进行连接控制。

4、最后,在显示管上调试程序,以确保系统功能正常,系统可以连续循环运行。

以上就是自动盆栽浇灌系统的主要设计和制作步骤。

设计研究的这一系统,既可以节省人力,又有助于环保,因为可以更精确地给植物浇水,可以降低水的浪费。

基于单片机的智能灌溉系统设计

基于单片机的智能灌溉系统设计

基于单片机的智能灌溉系统设计智能灌溉系统是一种集传感器、单片机、控制器等技术于一体的系统,可以根据土壤湿度、气温、光照等环境参数自动控制水泵的启停,实现对植物的科学浇水,提高农作物的产量和质量。

本文将介绍一种基于单片机的智能灌溉系统的设计。

一、系统框架本系统由传感器模块、控制器模块、单片机模块和执行器模块组成,其中传感器模块用于采集土壤湿度、气温、光照等环境参数,控制器模块用于实现对水泵的控制,单片机模块用于处理传感器采集的数据和控制器模块的指令,执行器模块则对水泵进行启停控制。

二、传感器模块传感器模块由土壤湿度传感器、温度传感器和光照传感器组成,分别用于采集土壤湿度、气温、光照等环境参数。

传感器部分采用数字信号输出,需要将其与单片机的数码管接口相连,以便将采集的数据传输到单片机模块。

三、控制器模块控制器模块主要由继电器和电容器组成,用于实现对水泵的控制。

当采集到的土壤湿度低于一定阈值时,控制器模块将通过继电器控制水泵启动,根据实际需要进行浇水,当土壤湿度达到一定阈值时,控制器模块会通过继电器控制水泵停止。

四、单片机模块单片机模块主要负责处理传感器采集的数据和控制器模块的指令,并将处理后的数据显示在数码管上。

单片机采用AT89C52单片机,因为其集成度高、体积小、低功耗等优点,比较适合本系统的应用。

五、执行器模块执行器模块主要由水泵组成,水泵的启停控制通过控制器模块实现。

六、系统流程(1)土壤湿度、气温、光照等环境参数通过传感器模块采集;(2)采集的数据通过单片机模块进行处理,并将处理后的数据显示在数码管上;(3)单片机模块将处理后的数据比较后,将控制器模块的指令传输到执行器模块,控制水泵的启停;(4)灌溉过程中,实时监测土壤湿度,并根据实际需要调整浇水时间和水量。

七、系统优势本系统具有以下优势:(1)系统采用数字信号传输,具有稳定性和可靠性;(2)系统采用继电器控制水泵,使系统的控制精度更高、更准确;(3)系统采用单片机模块处理数据和控制指令,实现了对系统的智能化控制。

基于单片机的智能灌溉系统设计

基于单片机的智能灌溉系统设计

基于单片机的智能灌溉系统设计随着现代农业技术的不断进步,智能化农业、智能化灌溉已经成为农业领域的研究热点和发展方向。

基于单片机的智能灌溉系统通过无线通讯、传感器控制等技术手段,实现对水源、土壤、气候等情况的实时监测和掌控,从而实现对灌溉的精准控制、降低浪费,提高作物产量和质量,助力农业现代化建设。

本文将介绍基于单片机的智能灌溉系统的设计,主要包括系统的硬件、软件设计与实现等方面。

一、系统硬件设计1.传感器模块智能灌溉系统需要使用多种传感器来实现对土壤、空气、水源等信息的测量和控制。

目前常用的传感器有土壤湿度传感器、温度传感器、湿度传感器、光照度传感器和PH值传感器等。

2.控制模块控制模块是系统的核心组成部分,它通过对传感器的测量值进行分析和处理,得出灌溉时机、灌溉量等决策,并通过执行器如水泵、阀门等,实现自动灌溉控制。

3.执行器模块执行器模块主要由水泵、阀门等组件构成,负责将水源供给给灌溉点。

在水泵的控制方面,可以使用PWM技术,控制电机的转速,从而实现灌溉量的精准控制。

1.数据采集模块数据采集模块需要定时测量土壤湿度、温度、湿度、光照度和PH值等参数,并将数据存储在数据库中,为后续的决策和操作提供支持。

控制决策模块对采集到的各种参数进行分析和处理,根据设定的灌溉策略,制定相应的灌溉控制方案。

例如,当土壤湿度低于一定水平时,控制模块会根据该阈值点打开水泵并持续一定时间。

智能灌溉系统需要与互联网相连,实现实时数据采集、传输和操作控制。

采用WiFi、GPRS等方式实现无线通讯,并在网页上实时显示各种参数信息和操作控制界面。

三、系统实现在基于单片机的智能灌溉系统的实现过程中,需要进行硬件和软件的相互配合和优化。

硬件的调试和测试需要结合软件的开发,完成各个模块的调试和优化。

最终的系统应该具有以下特点:1. 灵活性:系统能够适应不同的作物、不同的灌溉场地和不同的环境条件,灌溉策略可以进行相应的调整和修改。

基于32单片机控制的智能灌溉系统

基于32单片机控制的智能灌溉系统

基于32单片机控制的智能灌溉系统智能灌溉系统是一种能够实现自动化管理的灌溉系统,能够根据植物的需水量和环境条件进行智能化的灌溉,提高灌溉效率,减少资源浪费。

本文将介绍一种基于32单片机控制的智能灌溉系统,通过32单片机的控制,实现对植物的精准灌溉,提高植物的生长效率。

一、系统的设计原理本系统的设计原理是通过32单片机作为主控制器,连接传感器对植物的需水量和环境条件进行监测,通过控制执行器对灌溉设备进行控制,实现对植物的智能化灌溉。

通过32单片机的编程,对监测到的数据进行分析处理,制定出相应的灌溉方案,从而实现对植物的精准灌溉。

二、系统的硬件设计1. 主控制器:32单片机作为主控制器,通过接收传感器的数据,进行数据的处理和分析,并控制执行器的工作。

2. 传感器:包括土壤湿度传感器、光照传感器和温湿度传感器,用于监测植物的需水量和环境条件。

3. 执行器:包括电磁阀和水泵,用于控制灌溉设备的开关。

五、系统的优势1. 精准灌溉:通过32单片机对监测到的数据进行处理和分析,制定出精准的灌溉方案,提高灌溉效率。

2. 节约资源:根据植物的需水量和环境条件制定灌溉方案,减少水资源浪费。

3. 自动化管理:实现对灌溉设备的自动控制,减少人工管理的成本和工作量。

六、系统的应用前景1. 农业灌溉:可应用于农业生产中,实现对作物的精准灌溉,提高作物的产量和质量。

2. 园林绿化:可应用于城市园林的绿化工程中,提高植物的存活率和观赏价值。

3. 智能管控:可应用于农田和园林的智能化管控中,提高管理效率和节约资源成本。

基于32单片机控制的智能灌溉系统具有精准灌溉、节约资源、自动化管理的优势,有着广泛的应用前景。

在未来的发展中,将会得到更多的应用和推广。

基于某单片机智能浇灌系统设计

基于某单片机智能浇灌系统设计

基于某单片机智能浇灌系统设计智能浇灌系统是一种利用现代科技实现自动浇灌的系统,可以实现定时浇水、自动监测土壤湿度和温度等功能,以提高浇灌的准确性和效率,同时也节约用水。

本设计基于某单片机,实现智能浇灌系统的设计。

1. 系统框架设计该智能浇灌系统主要由单片机控制模块、输入输出模块、电磁阀模块、水泵模块和传感器模块组成。

其中,单片机控制模块作为系统的核心,负责控制整个系统的运行。

输入输出模块负责与用户交互,如调整浇水时间和浇水量等参数。

电磁阀模块控制系统的水流开关,水泵模块为系统提供水源,传感器模块用于监测土壤湿度和温度等。

2. 硬件设计(1)单片机选择本设计选用STM32F103C8T6单片机,具有较高的运算性能和丰富的外设接口。

(2)输入输出模块设计输入输出模块采用LCD1602屏幕和4x4矩阵键盘,用户可以通过矩阵键盘设置浇水时间、浇水量和浇水频率等参数。

屏幕显示实时土壤湿度和温度,并显示当前状态和设置参数。

(3)电磁阀模块设计电磁阀模块由2个5V直流电磁阀组成,分别控制两个出水口的水流开关,使其可以实现按需浇水的功能。

(4)水泵模块设计水泵采用直流水泵,连接电源和水箱,为系统提供水源。

(5)传感器模块设计传感器模块由土壤湿度传感器和温度传感器组成,分别连接引脚和单片机接口。

通过读取传感器的电信号,可以实时监测土壤湿度和温度等参数。

3. 软件设计本系统的软件设计主要包括三个部分:单片机控制程序、传感器采集程序和用户交互程序。

(1)单片机控制程序单片机控制程序通过从输入输出模块读取用户设置参数,控制水泵和电磁阀模块,同时读取传感器模块数据,计算土壤湿度和温度的变化趋势,根据设定的浇水条件进行自动浇水。

(2)传感器采集程序传感器采集程序负责读取土壤湿度和温度传感器的电信号,将其转换成数字信号,并发送到单片机控制程序。

(3)用户交互程序用户交互程序负责读取矩阵键盘的按键信号,并将用户输入的参数显示在LCD屏幕上,同时显示当前状态和设置参数。

基于32单片机控制的智能灌溉系统

基于32单片机控制的智能灌溉系统

基于32单片机控制的智能灌溉系统智能灌溉系统是一种能够根据土壤湿度自动进行喷水的系统,能够根据土壤的湿度情况来合理地供水,减少水资源的浪费,提高作物的产量和质量。

基于32单片机的控制系统主要是利用硬件以及相应的软件来实现对灌溉系统的控制和监测。

本文将介绍基于32单片机控制的智能灌溉系统的设计与实现。

一、系统架构智能灌溉系统的整体架构如下图所示:硬件部分包括传感器、执行器以及与32单片机相连接的模块。

传感器用于检测土壤的湿度,光照强度和温度等信息,执行器则用于根据32单片机的控制输入来实现灌溉和喷水的功能。

这些模块通过32单片机的引脚直接连接,实现对其感知和控制。

32单片机则是作为整个系统的大脑,通过对传感数据的采集和处理生成相应的控制指令,从而实现智能灌溉的目的。

软件部分主要包括系统的控制逻辑和算法,并通过32单片机的编程来实现。

通过对传感数据的分析和处理,系统可以确定何时进行灌溉,以及需要的水量和时间等参数。

在实际的应用中,可以根据具体的需求进行相应的优化和调整,以满足不同地区和作物的生长需求。

二、传感器模块1.土壤湿度传感器土壤湿度传感器一般采用电阻式或电容式传感器,能够准确地测量土壤中的水分含量。

32单片机通过传感器模块读取土壤湿度的数值,并根据一定的阈值来判断是否需要进行灌溉。

传感器的准确度和稳定性对系统的控制精度和可靠性有着很大的影响,因此选用合适的传感器模块十分重要。

2.光照传感器光照传感器主要用于检测光照强度,可以帮助系统根据环境的实际情况进行调整。

在光照强度较大的情况下,作物本身就能够进行光合作用,因此相应的灌溉的需求就会减少。

通过光照传感器的数据,系统可以根据不同的光照条件来确定灌溉的时机和水量。

温度传感器用于检测土壤的温度,土壤的温度对于作物的生长有着重要的影响。

在一些特殊时期如春季和秋季,温度的变化对于作物来说特别重要。

因此系统可以根据温度传感器的数据对灌溉进行相应的调整。

基于AT89C51的自动灌溉控制器设计

基于AT89C51的自动灌溉控制器设计

基于AT89C51的自动灌溉控制器设计自动灌溉控制器是一种能够根据土壤湿度自主控制灌溉设备的智能装置。

本文将基于AT89C51单片机设计一个简单的自动灌溉控制器。

1.硬件设计我们首先需要准备以下硬件组件:-AT89C51单片机:用于控制整个系统的运行。

-湿度传感器:用于检测土壤湿度,可以选择模拟输出或数字输出的传感器。

-继电器:用于控制水泵的开关。

-LCD液晶显示屏:用于显示当前土壤湿度。

-按键开关:用于手动开启或关闭自动灌溉功能。

2.软件设计接下来,我们需要设计单片机的程序代码来实现自动灌溉控制器的功能。

主要包括以下几个部分:-初始化:设置单片机的各项参数,如IO口配置、定时器配置等。

-读取湿度:利用ADC模块读取湿度传感器的模拟或数字输出值,并进行转换。

-显示湿度:将湿度值通过LCD显示屏显示出来,用户可以直观地知道当前土壤湿度。

-控制继电器:根据设定的湿度阈值,通过继电器控制水泵的开关。

-手动控制:通过按键开关实现手动开启或关闭自动灌溉功能。

3.主要流程整个自动灌溉控制器的主要流程如下:-初始化单片机,并设置各项参数。

-循环执行以下步骤:1)读取湿度传感器的数值。

2)将湿度值显示在LCD显示屏上。

3)判断当前湿度是否低于设定的阈值,如果低于则控制继电器闭合,打开水泵进行灌溉;如果高于则控制继电器断开,关闭水泵停止灌溉。

4)判断按键开关的状态,如果按下则进入手动模式,手动控制开启或关闭自动灌溉功能。

4.总结通过上述的设计和实现,我们可以得到一个基于AT89C51的自动灌溉控制器。

它具有检测土壤湿度、显示湿度值、自动控制水泵等功能。

除此之外,我们还可以根据实际需求进行扩展,如添加温度传感器来检测环境温度,以及通过通信模块实现远程控制等功能。

总的来说,这个自动灌溉控制器能够非常方便地实现对植物的自动灌溉,提高了灌溉的效率和准确性,同时也减少了人工操作。

在农业生产和植物养护方面具有重要的应用价值。

基于单片机的智能灌溉系统设计

基于单片机的智能灌溉系统设计

基于单片机的智能灌溉系统设计随着农业现代化的不断发展,智能化灌溉系统越来越受到农业生产者的关注。

传统的人工灌溉方式不仅浪费了大量水资源,还无法根据作物的需水量进行精准灌溉。

基于单片机的智能灌溉系统应运而生,通过自动监测土壤湿度和环境温湿度,实现对植物的智能定量灌溉,有效节约水资源,并提高作物的产量和质量。

一、系统设计思路基于单片机的智能灌溉系统主要由土壤湿度传感器、温湿度传感器、单片机控制模块、执行模块和用户界面组成。

土壤湿度传感器用于监测土壤湿度,温湿度传感器用于监测环境温湿度,单片机控制模块负责数据采集和灌溉控制,执行模块用于控制灌溉设备的开关,用户界面用于实时监测和设置灌溉参数。

系统采用闭环反馈控制策略,根据监测到的土壤湿度和环境温湿度信息,通过单片机控制执行模块实现对植物的智能定量灌溉。

1. 传感器模块:(1) 土壤湿度传感器:采用数字式土壤湿度传感器,能够准确测量土壤湿度,并输出模拟电压信号。

2. 控制模块:单片机控制模块采用高性能低功耗的微控制器,具有较强的计算和控制能力,能够对传感器采集到的数据进行处理,并控制执行模块实现对植物的智能定量灌溉。

执行模块采用继电器或电磁阀等执行器件,通过单片机控制,实现对灌溉设备的开关控制。

4. 用户界面:用户界面采用液晶显示屏和按键开关,通过单片机控制,实现对灌溉参数的实时监测和设置。

单片机控制程序主要包括数据采集和灌溉控制两部分。

1. 数据采集:单片机通过模拟输入端口接收土壤湿度传感器输出的模拟电压信号,并通过数字输入端口接收温湿度传感器输出的数字信号。

然后,将采集到的土壤湿度和环境温湿度数据进行数字转换和处理,得到实际的湿度和温度数值。

单片机根据采集到的土壤湿度和环境温湿度数据,利用预先设定的灌溉参数,计算出当前植物的需水量。

然后,根据需水量控制执行模块实现对灌溉设备的开关控制,进而实现对植物的智能定量灌溉。

四、系统工作流程1. 初始化设置:用户通过界面设置灌溉参数,包括灌溉时间、灌溉间隔、触发湿度等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图片简介:本技术介绍了一种基于单片机控制的自动灌溉系统,包括土壤温湿度检测单元、水源检测单元、预警单元、ARM单片机和无线通信模块;土壤温湿度检测单元用于实时检测土壤的温度和湿度;水源检测单元用于实时检测灌溉水的pH值、含氯量以及灌溉水位值;该系统通过ARM单片机控制自动灌溉系统,有效的提高了水资源的利用效果,当土壤湿度不满足设定要求时,自动启动电磁阀进行喷灌,同时通过调节水泵的流量、压力以及喷水方向可以更加有效的进行灌溉;并且该系统使用太阳能蓄电池供电,节约用电,其结构简单,设计合理,使用操作便捷,智能化程度高,实现了温度和湿度集成一起控制调节的同时也节约了能源,使用效果好,便于推广使用。

技术要求1.基于单片机控制的自动灌溉系统,其特征在于,包括土壤温湿度检测单元、水源检测单元、预警单元、ARM单片机和无线通信模块;所述土壤温湿度检测单元用于实时检测土壤的温度和湿度,并将检测到的土壤温度和湿度数据实时发送给所述ARM单片机;所述水源检测单元用于实时检测灌溉水的pH值、含氯量以及灌溉水位值,并将检测到的灌溉水的pH值、含氯量以及灌溉水位值实时发送给所述ARM单片机;所述ARM单片机用于实时接收所述土壤温湿度检测单元所发送的土壤的温度和湿度数据并发送给无线通信模块,ARM单片机同时将所接收到的土壤的温度和湿度数据与设定的土壤的温度和湿度数据进行实时对比,若所接收到的土壤的温度和湿度数据两者中的一个或者两个出现异常,所述ARM单片机向所述预警单元发出土壤温湿度检测异常报警指令;所述ARM单片机同时控制水泵开启并向土壤进行灌溉;所述ARM单片机还用于实时接收所述水源检测单元所发送的灌溉水的pH值、含氯量以及灌溉水位值并发送给无线通信模块,ARM单片机同时将接收到的灌溉水的pH值、含氯量以及灌溉水位值与设定的灌溉水的pH值、含氯量以及灌溉水位值进行实时对比,若所接收到的灌溉水的pH值、含氯量以及灌溉水位值三者中的一个或者多个出现异常,所述ARM单片机向所述预警单元发出水源检测异常报警指令;所述预警单元包括包括第一报警器和第二报警器;所述第一报警器用于接收所述ARM单片机发送来的土壤温湿度检测异常报警指令并发出第一报警声;所述第二报警器用于接收所述ARM单片机发送来的水源检测异常报警指令并发出第二报警声;所述无线通信模块用于实时接收所述ARM单片机发送来的土壤的温度和湿度并发送给监控中心以及移动客户端;所述无线通信模块还用于实时接收所述ARM单片机发送来的灌溉水的pH值、含氯量以及灌溉水位值并发送给监控中心以及移动客户端。

2.如权利要求1所述的基于单片机控制的自动灌溉系统,其特征在于,所述ARM单片机还信号连接有光照强度检测传感器,所述光照强度检测传感器用于实时检测大气的光照强度。

3.如权利要求1所述的基于单片机控制的自动灌溉系统,其特征在于,所述ARM单片机还信号连接有雨量传感器,所述雨量传感器用于测量降雨量。

4.如权利要求1所述的基于单片机控制的自动灌溉系统,其特征在于,所述ARM单片机还信号连接有显示器,所述显示器用于显示土壤温湿度数据。

5.如权利要求1所述的基于单片机控制的自动灌溉系统,其特征在于,所述ARM单片机还信号语音播放模块,所述语音播放模块用于播放检测数据。

6.如权利要求1所述的基于单片机控制的自动灌溉系统,其特征在于,所述ARM单片机还信号电源模块,所述电源模块通过导线连接有太阳能电池板。

7.如权利要求1所述的基于单片机控制的自动灌溉系统,其特征在于,所述ARM单片机还信号水泵控制单元,所述水泵控制单元包括流量控制阀、水压调节阀和喷水方向控制阀。

8.如权利要求1所述的基于单片机控制的自动灌溉系统,其特征在于,所述无线通信模块是3G无线通信模块、4G无线通信模块或WIFI模块。

技术说明书基于单片机控制的自动灌溉系统技术领域本技术涉及农业灌溉技术领域,特别涉及一种基于单片机控制的自动灌溉系统。

背景技术随着时代的发展与科技的进步,农业,作为衣食住行中最重要的一环,也逐步向智能化、电气化、自动化发展,大力发展农业,已经成为21世纪国力比拼中的重中之重。

但随着工业和城市用水量的激增,水稻农业用水量占全国总用水量的比重已从七十年代的80%左右下降到目前的70%左右,且仍有下降趋势,农业用水供需矛盾日益突出,但一方面水稻农业缺水,另一方面水稻农业用水浪费现象又普遍存在,我国目前的水稻农业用水有效利用率只有30%-40%,也就是说有一半多的水在输送和灌溉过程中白白浪费了,不能被水稻农作物利用。

技术内容本技术的目的是提供一种基于单片机控制的自动灌溉系统,以解决上述背景技术中提出的问题。

本技术提供了一种基于单片机控制的自动灌溉系统,包括土壤温湿度检测单元、水源检测单元、预警单元、ARM单片机和无线通信模块;所述土壤温湿度检测单元用于实时检测土壤的温度和湿度,并将检测到的土壤温度和湿度数据实时发送给所述ARM单片机;所述水源检测单元用于实时检测灌溉水的pH值、含氯量以及灌溉水位值,并将检测到的灌溉水的pH值、含氯量以及灌溉水位值实时发送给所述ARM单片机;所述ARM单片机用于实时接收所述土壤温湿度检测单元所发送的土壤的温度和湿度数据并发送给无线通信模块,ARM单片机同时将所接收到的土壤的温度和湿度数据与设定的土壤的温度和湿度数据进行实时对比,若所接收到的土壤的温度和湿度数据两者中的一个或者两个出现异常,所述ARM单片机向所述预警单元发出土壤温湿度检测异常报警指令;所述ARM单片机同时控制水泵开启并向土壤进行灌溉;所述ARM单片机还用于实时接收所述水源检测单元所发送的灌溉水的pH值、含氯量以及灌溉水位值并发送给无线通信模块,ARM单片机同时将接收到的灌溉水的pH值、含氯量以及灌溉水位值与设定的灌溉水的pH值、含氯量以及灌溉水位值进行实时对比,若所接收到的灌溉水的pH值、含氯量以及灌溉水位值三者中的一个或者多个出现异常,所述ARM单片机向所述预警单元发出水源检测异常报警指令;所述预警单元包括包括第一报警器和第二报警器;所述第一报警器用于接收所述ARM单片机发送来的土壤温湿度检测异常报警指令并发出第一报警声;所述第二报警器用于接收所述ARM单片机发送来的水源检测异常报警指令并发出第二报警声;所述无线通信模块用于实时接收所述ARM单片机发送来的土壤的温度和湿度并发送给监控中心以及移动客户端;所述无线通信模块还用于实时接收所述ARM单片机发送来的灌溉水的pH值、含氯量以及灌溉水位值并发送给监控中心以及移动客户端。

较佳地,所述ARM单片机还信号连接有光照强度检测传感器,所述光照强度检测传感器用于实时检测大气的光照强度。

较佳地,所述ARM单片机还信号连接有雨量传感器,所述雨量传感器用于测量降雨量。

较佳地,所述ARM单片机还信号连接有显示器,所述显示器用于显示土壤温湿度数据。

较佳地,所述ARM单片机还信号语音播放模块,所述语音播放模块用于播放检测数据。

较佳地,所述ARM单片机还信号电源模块,所述电源模块通过导线连接有太阳能电池板。

较佳地,所述ARM单片机还信号水泵控制单元,所述水泵控制单元包括流量控制阀、水压调节阀和喷水方向控制阀。

较佳地,所述无线通信模块是3G无线通信模块、4G无线通信模块或WIFI模块。

本技术的有益效果是:本技术提供的一种基于单片机控制的自动灌溉系统,通过ARM单片机控制自动灌溉系统,有效的提高了水资源的利用效果,当土壤湿度不满足设定要求时,自动启动电磁阀进行喷灌,同时通过调节水泵的流量、压力以及喷水方向可以更加有效的进行灌溉;并且该系统使用太阳能蓄电池供电,节约用电,其结构简单,设计合理,使用操作便捷,智能化程度高,实现了温度和湿度集成一起控制调节的同时也节约了能源,使用效果好,便于推广使用。

附图说明图1为本技术提供的系统原理图。

具体实施方式下面结合附图,对本技术的一个具体实施方式进行详细描述,但应当理解本技术的保护范围并不受具体实施方式的限制。

如图1所示,本技术实施例提供了一种基于单片机控制的自动灌溉系统,包括土壤温湿度检测单元、水源检测单元、预警单元、ARM单片机和无线通信模块;土壤温湿度检测单元用于实时检测土壤的温度和湿度,并将检测到的土壤温度和湿度数据实时发送给ARM 单片机;水源检测单元用于实时检测灌溉水的pH值、含氯量以及灌溉水位值,并将检测到的灌溉水的pH值、含氯量以及灌溉水位值实时发送给ARM单片机;ARM单片机用于实时接收土壤温湿度检测单元所发送的土壤的温度和湿度数据并发送给无线通信模块,ARM单片机同时将所接收到的土壤的温度和湿度数据与设定的土壤的温度和湿度数据进行实时对比,若所接收到的土壤的温度和湿度数据两者中的一个或者两个出现异常,ARM单片机向预警单元发出土壤温湿度检测异常报警指令;ARM单片机同时控制水泵开启并向土壤进行灌溉;ARM单片机还用于实时接收水源检测单元所发送的灌溉水的pH值、含氯量以及灌溉水位值并发送给无线通信模块,ARM单片机同时将接收到的灌溉水的pH值、含氯量以及灌溉水位值与设定的灌溉水的pH值、含氯量以及灌溉水位值进行实时对比,若所接收到的灌溉水的pH值、含氯量以及灌溉水位值三者中的一个或者多个出现异常,ARM单片机向预警单元发出水源检测异常报警指令;预警单元包括包括第一报警器和第二报警器;第一报警器用于接收ARM单片机发送来的土壤温湿度检测异常报警指令并发出第一报警声;第二报警器用于接收ARM单片机发送来的水源检测异常报警指令并发出第二报警声;无线通信模块用于实时接收ARM单片机发送来的土壤的温度和湿度并发送给监控中心以及移动客户端;无线通信模块还用于实时接收ARM单片机发送来的灌溉水的pH值、含氯量以及灌溉水位值并发送给监控中心以及移动客户端。

在本技术实施例中,ARM单片机还信号连接有光照强度检测传感器,光照强度检测传感器用于实时检测大气的光照强度。

ARM单片机还信号连接有雨量传感器,雨量传感器用于测量降雨量。

ARM单片机还信号连接有显示器,显示器用于显示土壤温湿度数据。

ARM单片机还信号语音播放模块,语音播放模块用于播放检测数据。

ARM单片机还信号电源模块,电源模块通过导线连接有太阳能电池板。

ARM单片机还信号水泵控制单元,水泵控制单元包括流量控制阀、水压调节阀和喷水方向控制阀。

无线通信模块是3G无线通信模块、4G无线通信模块或WIFI模块。

综上所述,本技术实施例提供的一种基于单片机控制的自动灌溉系统,通过ARM单片机控制自动灌溉系统,有效的提高了水资源的利用效果,当土壤湿度不满足设定要求时,自动启动电磁阀进行喷灌,同时通过调节水泵的流量、压力以及喷水方向可以更加有效的进行灌溉;并且该系统使用太阳能蓄电池供电,节约用电,其结构简单,设计合理,使用操作便捷,智能化程度高,实现了温度和湿度集成一起控制调节的同时也节约了能源,使用效果好,便于推广使用。

相关文档
最新文档