遥感原理与应用名词解释

合集下载

遥感技术的原理和应用

遥感技术的原理和应用

遥感技术的原理和应用1. 遥感技术的概述遥感技术是指利用航空器和卫星等遥感平台对地球表面进行高分辨率、多光谱的观测和监测的一种技术。

它通过获取地球表面反射、辐射和散射的电磁能量,将其转化为数字信息,从而获取地表特征的一种方法。

2. 遥感技术的原理遥感技术的原理基于以下几个核心概念:2.1 电磁能谱电磁能谱是指在不同波长的电磁辐射中,包含了各种能量和信息的分布。

遥感技术利用不同波长的电磁辐射来观测地球表面,衍生出不同的信息。

2.2 传感器传感器是遥感技术中的核心设备,用于接收和记录地球表面发出的电磁辐射。

传感器的种类多种多样,包括运载在卫星上的遥感传感器、航空器上的航空传感器等。

2.3 数字图像处理遥感技术通过将传感器接收到的电磁辐射转化为数字图像,然后利用数字图像处理技术对图像进行增强、分类、配准等处理,从而提取出地表特征。

3. 遥感技术的应用3.1 环境监测遥感技术可以对地球上的环境进行全面和实时的监测。

可以通过监测植被覆盖、土地利用、气候变化等因素,为环境保护和自然资源管理提供重要数据。

3.2 土地资源调查遥感技术可以用于土地资源的调查和评估。

通过获取地表的光谱信息,可以判断土壤的类型、水分含量、植被生长状况等,为农业生产和土地规划提供依据。

3.3 城市规划遥感技术可以帮助城市规划部门更好地了解城市的发展情况和需求。

通过监测城市的土地利用、建筑高度、交通状况等,可以为城市规划提供数据支持。

3.4 自然灾害监测遥感技术在自然灾害监测方面具有重要作用。

通过监测地表变化、水体沉积物等,可以提前预警和监测洪水、地震、火灾等自然灾害的发生。

3.5 农业生产遥感技术可以应用于农业生产的监测和管理。

通过监测植被生长情况、土壤水分状况等,可以提高农作物的产量和质量,实现精细化农业管理。

3.6 资源勘探遥感技术在矿产资源勘探方面有广泛应用。

通过监测地表的地质特征和矿产指标,可以提供矿区选址和资源储量估计的依据。

简述遥感的基本原理及应用

简述遥感的基本原理及应用

简述遥感的基本原理及应用遥感是利用人造卫星、飞机、无人机或地面观测站等平台对地球表面进行观测和测量的技术。

遥感的基本原理是通过接收和记录地球表面反射和辐射的能量,并将其转化为电信号,进而提供地面信息和数据。

遥感技术主要应用于地质勘探、农业、气象、环境保护、城市规划等领域。

遥感的基本原理包括电磁波与物体相互作用、反射与辐射、传感器及数据的获取与处理等。

遥感利用电磁波来获取地面信息,电磁波通过空气、云、尘埃等自然界中的物质传播,当它与地球表面上的物体相互作用时,会发生反射、散射、吸收等过程。

利用这些过程,遥感技术可以测量并分析地球表面上的对象的光谱、热力学特性和形状等重要信息。

遥感的应用广泛,涵盖了很多领域。

在地质勘探方面,遥感可以帮助寻找地下资源,如石油、天然气和矿藏。

通过分析地质特征、土壤类型和植被覆盖等信息,可以确定矿区位置和资源储量。

在农业领域,遥感可以监测作物的生长状况、土壤湿度和病虫害等问题,提供精确的农作物管理和灾害预警信息。

在气象领域,遥感可以监测大气成分、云层和降水等,为气象预报和天气监测提供重要数据。

在环境保护方面,遥感可以检测森林覆盖变化、土地利用变化和水资源管理等问题,促进可持续发展和生态保护。

在城市规划方面,遥感可以提供城市发展和用地规划所需的数据,帮助城市规划师做出更科学的决策,在城市建设过程中提高效率和减少资源浪费。

遥感还有其他一些应用领域。

例如,遥感可以监测自然灾害,如洪水、地震、火灾等,及时提供救援和应急响应。

遥感还可以监测海洋和水质,了解海洋生态系统的变化和海洋资源的利用情况。

另外,遥感还可以用于考古学领域,帮助寻找古代文明的遗址和文化遗产等。

此外,遥感技术还可以用于导航和测绘等领域,提供高精度的地理数据。

总之,遥感技术的基本原理和应用十分重要和广泛。

通过利用遥感技术,可以获取地球表面的重要信息,提供决策支持和数据支持,促进各个领域的发展和进步。

同时,随着遥感技术的不断发展和创新,未来遥感技术的应用领域还将继续扩大,为人类社会的可持续发展做出更大的贡献。

遥感原理与应用

遥感原理与应用
监测原理
通过长时间序列的卫星 遥感影像,分析城市建 成区的变化。
技术特点
动态监测,时间跨度长, 可分析城市扩张的规模 和速度。
应用效果
为城市规划、土地管理、 环境保护等提供决策依 据。
THANKS FOR WATCHING
感谢您的观看
04 遥感应用案例
森林火灾监测
监测原理
利用卫星或飞机搭载的遥感设备,通过热红外波段探测地表温度 异常,及时发受地面条件限制,可迅速定位火灾位 置。
应用效果
为灭火救援提供宝贵时间,减少火灾损失,评估火灾影响。
土地利用变化监测
监测原理
01
通过比较不同时期的卫星遥感影像,分析土地利用类型的差异。
利用遥感技术监测城市扩张情况,为城市规划和土地管理提供数 据支持。
城市绿地监测
遥感技术能够监测城市绿地分布和面积,为城市绿化建设和生态保 护提供依据。
城市交通状况监测
通过遥感影像分析城市交通状况,为城市交通管理和规划提供数据 支持。
灾害监测遥感
地震灾害监测
利用遥感技术监测地震灾害造成的破 坏,为灾后救援和重建提供数据支持 。
洪涝灾害监测
遥感技术能够实时监测洪涝灾害发生 区域,为灾害救援和灾后评估提供依 据。
03 遥感技术发展
高光谱遥感
高光谱遥感是一种利用光谱信息进行地物识别和分类的技术,通过获取地物在不 同光谱波段的反射和辐射信息,实现对地物的精细分类和特征提取。
高光谱遥感技术能够提供更丰富、更准确的地物光谱信息,广泛应用于环境监测 、资源调查、城市规划等领域。
农业灾害监测
遥感技术能够快速发现病虫害、旱 涝等灾害,为农业减灾提供预警和 决策支持。
林业遥感

《遥感原理与应用》习题答案解析

《遥感原理与应用》习题答案解析

《遥感原理与应用》习题答案解析遥感原理与应用习题第一章遥感物理基础一、名词解释1遥感:在不接触的情况下,对目标或自然现象远距离感知的一门探测技术。

2遥感技术:遥感技术是从人造卫星、飞机或其他飞行器上收集地物目标的电磁辐射信息,判认地球环境和资源的技术。

3电磁波:电磁波(又称电磁辐射)就是由同相震荡且互相横向的电场与磁场在空间中以波的形式移动,其传播方向旋转轴电场与磁场形成的平面,有效率的传达能量和动量。

电磁辐射可以按照频率分类,从高频率至高频率,包含存有无线电波、微波、红外线、红外线、紫外光、4电磁波五音:把各种电磁波按照波长或频率的大小依次排序,就构成了电磁波五音5绝对黑体:能够完全吸收任何波长入射能量的物体6灰体:在各种波长处的发射率相等的实际物体。

7绝对温度:热力学温度,又叫做热力学温标,符号t,单位k(开尔文,缩写上开)8色温:在实际测量物体的光谱电磁辐射通量密度曲线时,常常用一个最吻合灰体电磁辐射曲线的黑体电磁辐射曲线做为参考这时的黑体电磁辐射温度就叫做色温。

9大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段称。

10发射率:实际物体与同温度的黑体在相同条件下的辐射功率之比。

11光谱反射率:物体的散射电磁辐射通量与入射光电磁辐射通量之比。

12波粒二象性:电磁波具备波动性和粒子性。

13光谱反射特性曲线:反射波谱曲线是物体的反射率随波长变化的规律,以波长为横轴,反射率为纵轴的曲线。

问答题1黑体电磁辐射遵从哪些规律?(1由普朗克定理知与黑体辐射曲线下的面积成正比的总辐射通量密度w随温度t的增加而迅速增加。

(2绝对黑体表面上,单位面积升空的总辐射能与绝对温度的四次方成正比。

(3黑体的绝对温度增高时,它的电磁辐射峰值向短波方向移动。

(4不好的辐射体一定就是不好的吸收体。

(5在微波段黑体的微波辐射亮度与温度的一次方成正比。

2电磁波五音由哪些相同特性的电磁波段共同组成?遥感技术中所用的电磁波段主要存有哪些?a.包括无线电波、微波、红外波、可见光、紫外线、x射线、伽玛射线等b.微波、红外波、可见光3物体的电磁辐射通量密度与短萼有关?常温下黑体的电磁辐射峰值波长就是多少?(1与光谱反射率,太阳入射在地面上的光谱照度,大气光谱透射率,光度计视场角,光度计有效接受面积。

遥感的工作原理和应用

遥感的工作原理和应用

遥感的工作原理和应用工作原理遥感是利用传感器对地球表面物体的电磁辐射进行探测和测量的技术。

它基于物体对不同波段的辐射具有不同的反射、散射、吸收特性这一原理。

遥感技术主要包括被动遥感和主动遥感两种形式。

被动遥感被动遥感是指传感器接收地球表面反射和发射的自然辐射。

传感器通过不同波段(如可见光、红外线、微波等)接收地表反射出的辐射,然后进行记录和分析。

被动遥感可用于获取地表反射率、植被覆盖度、气温变化等信息。

主动遥感主动遥感是指传感器通过发射电磁波并接收其返回信号来获取地表信息。

常见的主动遥感技术包括雷达和激光雷达。

雷达利用电磁波在地表和大气中的传播特性来探测地表目标,可用于获取地表高程、地表形状等信息。

激光雷达则利用激光束对地表进行扫描,并通过接收返回的激光信号来获取地表的距离和形状等信息。

应用领域遥感技术在地球科学、农业、环境保护、城市规划等领域有着广泛的应用。

地球科学遥感技术在地球科学领域扮演着重要的角色。

通过遥感技术,科学家可以获得大范围的地表地貌、地质构造、水文等信息,从而深入研究地球的演化历史、自然灾害等。

遥感技术还可用于监测地壳的运动、火山活动、地震预警等。

农业遥感技术在农业领域的应用主要体现在农作物管理和精准农业方面。

通过遥感图像,农民和农业专家可以获得农田植被的生长状态、病虫害的发生情况,从而及时采取措施进行管理。

遥感技术还可以用于农田的土壤质量评估、水分监测等,实现农业生产的精准化管理。

环境保护遥感技术在环境保护领域的应用广泛而深入。

通过遥感技术,可以监测大气污染、水体污染、森林砍伐等环境问题。

遥感技术还可以用于监测和预测自然灾害,如洪水、干旱和森林火灾等,从而提前做出应对措施。

城市规划遥感技术在城市规划中有着重要的应用价值。

通过遥感技术,可以获取城市的土地利用情况、道路网络、建筑物分布等信息,为城市规划和管理部门提供决策支持。

遥感技术还可以用于监测城市的扩张和发展,预测城市的未来发展趋势,从而帮助规划师做出科学合理的城市规划方案。

遥感的原理与应用

遥感的原理与应用

遥感的原理与应用1. 遥感的定义遥感是通过对地球表面进行远距离观测与感知的技术,利用传感器获取地球表面物体的信息并进行分析和解释。

遥感技术利用电磁波辐射与物体相互作用的特性,通过记录、测量和解释该辐射,可以获取地表和大气的信息。

2. 遥感原理遥感的基本原理是通过感知和测量地球表面物体物理特性与光辐射之间的相互关系。

当遥感器传播出电磁波辐射时,其与物体相互作用后会发生散射、吸收或反射。

这些辐射回到传感器被接收和记录,并通过数据处理进行解释和分析。

3. 遥感的应用领域3.1 地球科学遥感技术在地球科学领域有着广泛的应用。

通过遥感技术,可以监测地球表面的变化,如环境变化、土地覆盖变化、通量变化等。

通过长期的遥感监测,可以对地球环境进行评估和预测。

3.2 城市规划和土地利用遥感技术在城市规划和土地利用方面的应用也十分重要。

通过遥感技术可以获取到城市的地形、道路、建筑、绿化等信息,进而为城市规划和土地利用提供数据支持。

3.3 农业和林业遥感技术在农业和林业领域也有着广泛的应用。

通过遥感技术可以对农作物的生长状况、土壤质量、水资源利用等进行监测和评估,能够为农业生产提供技术支持。

同时,遥感技术也可以用于林业资源的监测和保护。

3.4 海洋科学遥感技术在海洋科学研究中也发挥着重要作用。

通过遥感技术可以获取海洋的温度、盐度、色素含量等信息,能够对海洋生态环境进行监测和评估,为海洋研究提供数据支持。

3.5 灾害监测与防范遥感技术在灾害监测和防范方面也有着重要的应用。

通过遥感技术可以对洪水、干旱、地震、火灾等自然灾害进行实时监测和预警,提供及时的灾害信息,帮助相关部门进行灾害应对和救援工作。

3.6 环境监测与保护遥感技术在环境监测和保护方面扮演着重要的角色。

通过遥感技术可以监测大气污染、水体污染、土壤污染等环境问题,为环境保护提供数据支持。

4. 遥感的发展趋势随着科技的不断发展,遥感技术也在不断创新和进步。

以下是遥感技术的一些发展趋势:•高分辨率遥感技术的发展,可以获取更精准的地表信息。

遥感原理与应用

一.绪论1.遥感的定义:遥感即遥远感知,是在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术。

2.遥感的过程:地物发射或反射电磁波通过介质(大气)被传感器接受,通过传感器获取数据,再经计算机对数据处理后,我们提取有用的信息,最后应用于实践。

(地物发射或反射电磁波→介质(大气)→传感器数据获取→计算机数据处理→信息提取→应用)二.电磁波及物理遥感基础1.电磁波的定义:变化的电场和磁场交替产生,以有限的速度由近及远在空间内传播的过程称为电磁波。

2.电磁波的特性:波动性(干涉、衍射、偏振)粒子性(光电转换)3.电磁波谱的定义:按电磁波在真空中传播的波长或频率递增或递减顺序排列,就能得到电磁波谱。

4.(1)地物发射电磁波:①绝对黑体的定义:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。

黑体辐射1.绝对黑体:吸收率α(λ,T)≡1 反射率ρ(λ,T)≡02.绝对白体:吸收率α(λ,T)≡0 反射率ρ(λ,T)≡1 绝对黑体与绝对白体与温度和波长无关。

②遥感的两种形式:被动遥感,主动遥感。

其中太阳是被动遥感最主要的辐射源。

⒈太阳辐射的特点:与黑体特性一致;能量集中在可见光和红外波段。

⒉一般物体的发射辐射:自然界中实际物体的发射和吸收的辐射量都比相同条件下绝对黑体的低。

发射率ε:实际物体与同温度的黑体在相同条件下辐射功率之比。

ε= W′/ W(ε是一个介于0和1的数)►绝对黑体ελ=ε=1►灰体ελ=ε但0<ε<1►选择性辐射体ε=f(λ)►理想反射体(绝对白体)ελ=ε=0大多数物体可以视为灰体:W'=εW=εσT4(2)地物反射电磁波:①光谱反射率:物体的反射辐射通量与入射辐射通量之比。

②反射波谱特征曲线:反射波谱是某物体的反射率(或反射辐射能)随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线即为该物体的反射波谱特性曲线。

同一地物时间效应:地物的光谱特性一般随时间季节变化。

简述遥感的基本原理及应用

简述遥感的基本原理及应用1. 遥感的基本原理遥感是指通过从远处获取地球地表物体的信息,通常是利用航空器或卫星等平台搭载的遥感传感器对地球表面进行观测和记录,然后利用这些观测数据进行分析和解译。

遥感的基本原理可以概括为以下几点:•电磁波辐射:遥感利用的是地球表面物体自然辐射或人工辐射的电磁波,包括可见光、红外线、微波等不同波长的电磁波。

•传感器接收:遥感传感器可以接收和记录电磁波辐射的能量,不同传感器对不同波段的电磁波有不同的灵敏度。

•光谱特征:每种物质对电磁波有不同的吸收、辐射和散射特性,形成物质的光谱特征,这些特征可以用于遥感图像的解译。

•数字图像处理:遥感图像一般是数字图像,利用数字图像处理方法可以提取出图像中的有用信息,如物体的位置、形状、光谱等特征。

2. 遥感的应用领域遥感技术在各个领域都得到广泛应用,下面列举了几个常见的应用领域:2.1 农业•土地利用监测:利用遥感技术可以对农田进行监测和分析,包括农作物类型、覆盖程度、生长状态等信息,以便农业管理和规划。

•病虫害监测:通过遥感图像可以判断植被的健康状况,及时发现和监测农作物的病虫害情况,实现精细化农业管理。

2.2 城市规划•地形测量:利用遥感技术可以获取地表地形信息,包括高程、坡度、坡向等,为城市规划和土地开发提供数据支持。

•城市扩张监测:通过遥感图像可以观测和记录城市的扩张情况,包括新建楼房、道路等基础设施,为城市规划和管理提供依据。

2.3 环境保护•水资源监测:利用遥感技术可以对水体进行监测,包括河流、湖泊、水库等,以便及时发现水质问题和水体的变化。

•森林火灾监测:通过遥感图像可以监测森林火灾的发生和蔓延情况,及时采取措施进行应对和救援。

2.4 自然资源调查•矿产资源调查:利用遥感技术可以进行矿产资源的调查和探测,包括矿山的开采状况、矿物质的分布等,为资源开发提供数据支持。

•土地评估:通过遥感图像可以评估土地的质量、适宜程度等,为土地的合理利用和管理提供参考。

遥感原理与应用 最终总结篇

第一篇名词解释1、遥感技术:在遥感平台的支持下,不与探测目标接触,从远处吧目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

2、遥感器:遥感器又称为传感器,是接收、记录目标电磁波特性的仪器。

常见的传感器有摄影机、扫描仪、雷达、辐射计、散射计等。

3、电磁波谱:将电磁波在真空中传播的波长或频率、递增或递减依次排列为一个序谱,将此序谱称为电磁波谱。

4、黑体:对任何波长的电磁辐射都全吸收的假想的辐射体。

5、大气散射:辐射在传播过程中遇到小微粒(气体分子或悬浮微粒等)而使传播方向改变,并向各个方向散开,从而减弱了原方向的辐射强度、增加了其他方向的辐射强度的现象。

6、大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段。

7、地物波谱:地物的电磁波响应特性随电磁波长改变而变化的规律,称为地表物体波谱,简称地物波谱。

地物波谱特性是电磁辐射与地物相互作用的一种表现。

8、地物反射率:地物的反射能量与入射总能量的比,即ρ=(Pρ/P0 )×100%。

表征物体对电磁波谱的反射能力。

9、地物反射波谱:是研究可见光至近红外波段上地物反射率随波长的变化规律。

表示方法:一般采用二维几何空间内的曲线表示(地物反射波谱曲线),横坐标表示波长,纵坐标表示反射率。

10、摄影成像:依靠光学镜头及放置在焦平面的感光记录介质(胶片or CCD)来记录物体的影像的成像方式11、扫描成像:依靠探测元件和扫描镜对目标地物以瞬时视场为单位进行逐点、逐行取样,以得到目标地物电磁波特性信息,形成一定谱段图像的成像方式。

12、微波遥感:通过微波传感器,获取目标地物在1mm—1m光谱范围内发射或反射的电磁辐射,以此为依据,通过判读处理来识别地物的技术。

13、像点位移:中心投影的影像上,地形的起伏除引起相片比例尺变化外,还会引起平面上的点位在相片位置上的移动,这种现象称为像点位移,其位移量就是中心投影与垂直投影在统一水平面上的投影误差。

遥感原理与应用

遥感原理与应用红绿蓝1. 遥感:遥远感知,是在不接触的情况下,对目标或自然现象远距离探测和感知的一种技术。

空间中的电磁场。

声场、势场等由于物体的存在而发生变化,测量这些场的变化就可以获取物体的信息,因而电磁波、机械波、重力场、地磁场等都可以用作遥感。

2. 光的波动性形成了光的干涉,衍射,偏振等现象。

干涉是波的叠加原理,衍射,光线偏离直线路径的现象。

【偏振,如果光矢量E在一个固定平面内只沿一个固定方向作振动。

3. 重采样:就是根据一类象元的信息内插出另一类象元信息的过程。

4. 在遥感中,重采样是从高分辨率遥感影像中提取出低分辨率影像的过程。

5. 绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,6. 太阳辐射,包括了整个电磁波波谱范围。

7. 大气窗口:有些波段的电磁辐射通过大气后衰减较小,透过率较高,对遥感十分有利的电磁波波段。

8. 物体对电磁波的反射形式:镜面反射指(物体的反射满足反射定律)、漫反射(入射的电磁波波长a 不变,表面粗糙程度h 逐渐增加,知道h 与a 同数量级,整个表面均匀反射入射电磁波入射到此表面的电磁辐射按照朗伯余弦定律反射)、方向反射(实际地物表面由于地形起伏,在某个方向上反射最强烈。

分类的依据:粗糙程度。

9. 反射率是物体的反射辐射通量与入射辐射通量之比, 这个反射率是在理想漫反射体的情况下,整个电磁波长的反射率。

10. 反射波谱是某物体的反射率(或反射辐射能)随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线即称为该物体的反射波谱特性曲线。

11. 植被的反射波谱特性曲线,由于植被的光合作用相似的反射波谱特性,叶绿素对蓝光和红光吸收作用很强,对绿色反射作用很强。

蓝、红波段为吸收带,绿波段为弱反射带,近红外波段有强反射带,但含水量造成反射吸收12. 测量地物的反射波谱特性曲线主要作用:它是选择遥感波谱段、设计遥感仪器的依据;在外业测量中,它是选择合适的飞行时间的基础资料;它是有效地进行遥感图像数字处理的前提之一,是用户判读、识别、分析遥感影像的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.电磁波:变化的电场和磁场交替产生,以有限的速度由近及远在空间内传播的过程。

2.干涉:由两个(或两个以上)频率、振动方向相同、相位相同或相位差恒定的电磁波在空间叠加时,合成波振幅为各个波的振幅的矢量和。

因此会出现交叠区某些地方振动加强,某些地方振动减弱或完全抵消的现象。

3.衍射:光通过有限大小的障碍物时偏离直线路径的现象。

4偏振:指电磁波传播的方向性。

5电磁波谱:按电磁波在真空中传播的波长或频率递增或递减顺序排列。

6绝对黑体:对任何波长的电磁辐射都全部吸收的物体,称为绝对黑体。

绝对白体则能反射所有的入射光。

与温度无关。

7等效温度:为了便于分析,常常用一个最接近灰体辐射曲线的黑体辐射曲线作为参照,这时的黑体辐射温度称为等效黑体辐射温度(或称等效辐射温度)。

8大气窗口:通过大气后衰减较小,透过率较高,对遥感十分有利的电磁辐射波段通常称为大气窗口。

而透过率很小甚至完全无法透过的电磁波称为“大气屏障”。

9遥感:即遥远的感知,是在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术。

10光谱发射率:实际物体与同温度的黑体在相同条件下辐射功率之比。

11光谱反射率:物体的反射辐射通量与入射辐射通量之比,它是波长的函数。

12波谱特性:指各种地物各自所具有的电磁波特性(发射辐射或反射辐射)。

13反射波谱特性:物体反射率(或反射辐射能)随波长变化而改变的特性。

14方向反射:具有明显方向性的反射。

15漫反射:入射能量在所有方向均匀反射。

16镜面反射:当入射能量全部或几乎全部按相反方向反射,且反射角等于入射角。

17波谱特性曲线:以波长为横坐标,反射率为纵坐标所得的曲线。

18散射:电磁波在传播过程中遇到小微粒而使传播方向发生改变,并向各个方向散开。

1近极地轨道:卫星从南向北或从北向南通过两极运行。

2太阳同步轨道:指卫星轨道面与太阳地球连线之间在黄道面内的夹角不随地球绕太阳公转而改变。

3.赤道轨道:i=0度,轨道平面与赤道平面重合。

4.地球静止轨道:i=0度且卫星运行方向与地球自转方向一致,运行周期相等。

5重复周期:指卫星从某地上空开始,经过若干时间的运行后,回到该地上空时所需要的时间。

6星下点:卫星质心与地心连线同地球表面的交点。

7春分点:黄道面与赤道面在天球上的交点。

8升交点:卫星由南向北运行时与赤道面的交点。

9降交点:卫星由北向南运行时与赤道面的交点。

10近地点:卫星轨道离地球最近的点。

11远地点:卫星轨道离地球最远的点。

12轨道周期:指卫星绕地一圈所需要的时间,即从升交点开始运行到下次过升交点的时间间隔。

13地球静止卫星:卫星与地球绕地轴作同步运转,卫星看起来似乎悬在空中不变。

14地球同步卫星:卫星运行与地球自转周期相同,轨道面可与地球赤道面相交,也可重合,若重合,即为地球静止轨道。

15升交点赤径:卫星轨道的升交点与春分点之间的角距。

16近地点角距:卫星轨道的近地点与升交点的角距。

17轨道倾角i:卫星轨道面与地球赤道面之间的二面角。

18卫星轨道的长半轴a:轨道椭圆的长半径。

19卫星轨道的偏心率e:轨道椭圆的偏心率。

20卫星过近地点时刻T:卫星与近地点间的角距。

21伪距法定位:在某一瞬间利用GPS接收机至少测定四颗卫星的伪距,根据已知的GPS卫星位置和伪距观测值,采用距离交会法即可求得接收机的二维坐标和时钟改正数。

22小卫星:指目前设计质量小于500kg的小型近地轨道卫星。

1.瞬时视场(IFOV):instantaneous field of view , the viewing angle of the system . β=d(探测器尺寸直径或宽度)/f(扫描仪焦距)2视场:field of view,the total angle that is scanned.3全景畸变:地面分辨率随扫描角发生变化而使红外扫描影像产生的畸变。

其形成的原因是像距保持不变,总在焦面上,而物距随θ角发生变化而致。

4温度分辨率:是指热红外传感器分辨地表热辐射(温度)最小差异的能力。

5空间分辨率:是指遥感图像上能够详细区分的最小单元的尺寸或大小,是用来表征影响分辨率地面目标细节能力的指标,通常用像元大小、像解率或视场角来表示。

6地面分辨率:影像能够详细区分的最小单元(像元)所代表的地面实际尺寸的大小。

7雷达图像的分辨率:在图像上一个像元大小对应于水平地面的大小。

由于一个像元的长和宽对应的地面长度和宽度距离常常不相等。

因此分成以下二种。

8距离向分辨率:在脉冲发射的方向上,能分辨两个目标的最小距离。

9方位向分辨率:在雷达飞行方向上,能分辨两个目标的最小距离。

10地距分辨率:距离向分辨率在地面上的水平投影。

11光谱分辨率:指传感器在接收目标辐射的波谱时,能分辨的最小波长间隔,即传感器的工作波段数目、波长及波长间隔(波带宽度)。

12时间分辨率:对同一目标进行重复探测时,为分析、识别目标所必须具有的最小时间间隔。

13.辐射分辨率:指传感器能区分两种辐射强度最小差别的能力。

13CCD:电荷耦合器件,是一种由硅等半导体材料制成的固体器件,受光或电激发产生的电荷靠电子或空穴运载,在固体内移动,达到一路时序输出信号。

14波瓣角:波瓣角β在意义上与光学上的最小分辨角相近,与波长λ成正比,与天线孔径D成反比。

15.SAR:合成孔径雷达,用一个小天线作为单个辐射单元,将此单元沿一直线不断移动,在移动中选择若干位置,在每个位置上发射一个信号,接收相应发射位置的回波信号储存记录下来,存储时必须同时保存接收信号的幅度和相位。

当移动一段距离Ls后,存贮的信号和实际天线阵列诸单元所接收的信号非常相似。

16.INSAR:相干雷达,利用SAR在平行轨道上对同一地区获取两幅(或两幅以上)的单视复数图像来形成干涉,进而得到该地区的三维地表信息。

1.遥感图像的构像方程是指地物点在图像上的图像坐标(x,y)和其在地面对应点的大地坐标(X,Y,Z)之间的数学关系。

2.遥感图像的几何变形:指图像上像元在图像坐标系中的坐标与其在地图坐标系等参考坐标系统中的对应坐标之间的差异。

3.静态误差是在成像过程中,传感器相对于地球表面呈静止状态时所具有的各种变形误差。

4.动态误差是在成像过程中由于地球的旋转等因素所造成的图像变形误差。

5.内部误差主要是由于传感器自身的性能技术指标偏移标称数值所造成的。

6.外部误差是在传感器本身处在正常工作的条件下,由传感器以外的各种因素所造成的误差。

7. 投影误差:由地面起伏引起的像点位移,当地形有起伏时,对于高于或低于某一基准面的地面点,其在像片上的像点与其在基准面上垂直投影点在像片上的构像点之间有直线位移。

8.纠正后图像的边界范围,指的是在计算机存贮器中为输出图像所开出的贮存空间大小,以及该空间边界(首行,首列,末行和末列)的地图(或地面)坐标定义值。

9.直接法方案:是从原始图像阵列出发,按行列的顺序依次对每个原始像素点位求其在地面坐标系(也是输出图像坐标系)中的正确位置,同时把该像素的亮度值移置到算得的输出图像中的相应点位上去。

10.间接法方案:是从空白的输出图像阵列出发,按行列的顺序依次对每个输出像素点位反求原始图像坐标中的位置,然后把算得的原始图像点位上的亮度值取出填回到空白图像点阵中相应的像素点位上去。

11.图像配准的实质就是遥感图像的几何纠正,根据图像的几何畸变特点,采用一种几何变换将图像归化到统一的坐标系中。

12.图像相关:利用两个信号的相关函数,评价它们的相似性以确定同名点。

13.数字图像镶嵌:当感兴趣的研究区域在不同的图像文件时,需要将不同的图像文件合在一起形成一幅完整的包含感兴趣区域的图像。

1.辐射(传感器)定标:是指建立传感器每个探测元所输出信号的数值量化值与该探测器对应像元内的实际地物辐射亮度值之间的定量关系。

2.辐射校正:是指消除或改正遥感图像成像过程中附加在传感器输出的辐射能量中的各种噪声的过程。

3绝对定标:建立传感器测量的数字信号与对应的辐射能量之间的数量关系。

需要对目标做定量的描述,即要得到目标的辐射绝对值。

4相对定标:(传感器探测元件归一化):是为了校正传感器各个探测元件响应度差异而对卫星传感器测量到的原始数字计数值进行归一化的一种处理过程。

5遥感图像增强:是为特定目的,突出遥感图像中的某些信息,削弱或除去某些不需要的信息,使图像更易判读。

图像增强的实质是增强感兴趣目标和周围背景图像间的反差。

6数字图像:是能被计算机存储、处理和使用的用数字表示的图像。

以矩阵函数表示。

7.数字化:将连续的图像变化,作等间距的抽样和量化。

通常是以像元的亮度值表示。

8数字图像直方图:以每个像元为单位,表示图像中各亮度值或亮度值区间像元出现的频率的分布图。

9影像融合:将多源遥感图像按照一定的算法,在规定的地理坐标系,将不同传感器获取的遥感影像中所提供的各种信息进行综合,生成新的图像的过程。

目的:为提高对影像进行分析的能力(通过融合既提高多光谱空间分辨率,又保留其多光谱特性)。

10归一化差分植被指数:NDVI=(红外-红)/(红外+红),也称为生物量指标变化,可使植被从水和土中分离出来。

11直方图均衡:将随机分布的图像直方图修改成均匀分布的直方图,其实质是对图像进行非线性拉伸,重新分配图像像元值,使一定灰度范围内的像元的数量大致相等。

12直方图正态化:将随机分布的原图像直方图修改成高斯分布,修改直方图的方法与直方图均衡类似,采用累加方法。

13灰度反转:指图像灰度范围进行线性或非线性取反,产生一幅与输入图像灰度相反的图像,其结果是原来亮度的地方变暗,原来暗的地方变亮。

14线性变换:在改善图像对比度时,如果采用线性或分段线性的函数关系,那么这种变换就是线性变换。

15直方图匹配:通过查找表使得一个图像的直方图与另一个图像直方图类似,亦属于非线性变换。

对在不同时间获取的统一地区或邻接地区的图像,或者由于太阳高度角或大气影响引起差异的图像匹配很有用。

特别是对图像镶嵌或变化监测有用。

16定量遥感:利用遥感数据来定量地获取地表生物、物理、化学参数的方法。

1“判读”(Interpretation)是对遥感图像上的各种特征进行综合分析、比较、推理和判断,最后提取出感兴趣的信息。

2景物特征:光谱特征、空间特征和时间特征3判读标志:地物在图像上的各种特有的表现形式。

可以概括为颜色、形状、位置等。

4直接判读标志:指能够直接反映和表现目标地物信息的遥感影像的各种特征。

5间接解译标志:指能够间接反映和表现目标地物信息的遥感影像的各种特征,6借助它可以判断与某地物属性相关的其他现象。

7色调:全色遥感图像中从白到黑的密度比例。

8阴影:由于地物高度的变化,阻挡太阳光照射而产生的阴影。

9纹理:图像上细部结构以一定频率重复出现,是单一特征的集合。

相关文档
最新文档