大学物理复习第四章知识点总结

合集下载

物理笔记第四章知识点总结

物理笔记第四章知识点总结

物理笔记第四章知识点总结一、牛顿第一定律:惯性定律1. 一切物体都具有惯性2. 惯性是物体存在并保持其状态的一种性质。

物体不受外力作用时,静止的物体将始终保持静止,而匀速直线运动的物体将保持匀速直线运动。

二、牛顿第二定律:运动定律1. 物体所受的合外力与物体的质量成正比2. 物体所受的合外力的方向与物体所受的加速度方向相同3. 物体所受的合外力与物体的质量和加速度成正比的关系可用公式表示为F=ma,其中F 为物体所受的合外力,m为物体的质量,a为物体的加速度。

三、牛顿第三定律:作用-反作用定律1. 任何两个物体之间的相互作用都会产生两个大小相等、方向相反的作用力。

其中,这两个作用力分别作用在两个物体上。

2. 例如,当一个人站在地面上,他对地面施加一个向下的作用力,地面对他则产生一个向上的反作用力。

这就是作用-反作用定律的典型例子。

四、质量及其测量1. 质量是物体所固有的一种性质,它是反映物体惯性大小的物理量。

2. 质量的国际单位是千克(kg)。

3. 质量的测量可通过天平等仪器进行,常用的天平就是用来测量物体的质量。

五、力及其分类1. 力是使物体改变速度、形状和方向的作用。

2. 根据力的性质和作用对象的不同,力可分为接触力和非接触力。

其中,摩擦力、张力、弹力等为接触力,万有引力、静电力、磁力等为非接触力。

六、质量的重力作用1. 质量的重力作用是质量所受的万有引力,其大小与质量成正比,与所在地的重力加速度成正比。

2. 质量的重力作用公式为F=mg,其中F为质量所受的重力,m为质量,g为重力加速度。

在地球表面,重力加速度约为9.8m/s^2。

七、牛顿运动定律的应用1. 通过牛顿第二定律的公式F=ma,可求解物体所受合外力的大小;物体所受合外力作用的时间;物体所受的合外力对物体所产生加速度的影响等问题。

2. 通过牛顿第三定律,可求解物体之间的作用-反作用力的大小,方向及影响范围等问题。

八、力对物体的作用1. 力对物体的作用可使物体发生变形、改变速度、产生加速度等。

大学物理复习第四章知识点总结

大学物理复习第四章知识点总结

大学物理复习第四章知识点总结大学物理复习第四章知识点总结一.静电场:1.真空中的静电场库仑定律→电场强度→电场线→电通量→真空中的高斯定理qq⑴库仑定律公式:Fk122err适用范围:真空中静止的两个点电荷F⑵电场强度定义式:Eqo⑶电场线:是引入描述电场强度分布的曲线。

曲线上任一点的切线方向表示该点的场强方向,曲线疏密表示场强的大小。

静电场电场线性质:电场线起于正电荷或无穷远,止于负电荷或无穷远,不闭合,在没有电荷的地方不中断,任意两条电场线不相交。

⑷电通量:通过任一闭合曲面S的电通量为eSdS方向为外法线方向1EdS⑸真空中的高斯定理:eSoEdSqi1int只能适用于高度对称性的问题:球对称、轴对称、面对称应用举例:球对称:0均匀带电的球面EQ4r20(rR)(rR)均匀带电的球体Qr40R3EQ240r(rR)(rR)轴对称:无限长均匀带电线E2or0(rR)无限长均匀带电圆柱面E(rR)20r面对称:无限大均匀带电平面EE⑹安培环路定理:dl0l2o★重点:电场强度、电势的计算电场强度的计算方法:①点电荷场强公式+场强叠加原理②高斯定理电势的计算方法:①电势的定义式②点电荷电势公式+电势叠加原理电势的定义式:UAAPEdl(UP0)B电势差的定义式:UABUAUBA电势能:WpqoPP0EdlEdl(WP00)2.有导体存在时的静电场导体静电平衡条件→导体静电平衡时电荷分布→空腔导体静电平衡时电荷分布⑴导体静电平衡条件:Ⅰ.导体内部处处场强为零,即为等势体。

Ⅱ.导体表面紧邻处的电场强度垂直于导体表面,即导体表面是等势面⑵导体静电平衡时电荷分布:在导体的表面⑶空腔导体静电平衡时电荷分布:Ⅰ.空腔无电荷时的分布:只分布在导体外表面上。

Ⅱ.空腔有电荷时的分布(空腔本身不带电,内部放一个带电量为q的点电荷):静电平衡时,空腔内表面带-q电荷,空腔外表面带+q。

3.有电介质存在时的静电场⑴电场中放入相对介电常量为r电介质,电介质中的场强为:E⑵有电介质存在时的高斯定理:SDdSq0,intE0r各项同性的均匀介质D0rE⑶电容器内充满相对介电常量为r的电介质后,电容为CrC0★重点:静电场的能量计算①电容:②孤立导体的电容C4R电容器的电容公式C0QQUUU举例:平行板电容器C圆柱形电容器C4oR1R2os球形电容器CR2R1d2oLR2ln()R1Q211QUC(U)2③电容器储能公式We2C22④静电场的能量公式WewedVE2dVVV12二.静磁场:1.真空中的静磁场磁感应强度→磁感应线→磁通量→磁场的高斯定理⑴磁感应强度:大小BF方向:小磁针的N极指向的方向qvsin⑵磁感应线:是引入描述磁感应强度分布的曲线。

大学物理四章知识点归纳

大学物理四章知识点归纳

大学物理四章知识点归纳大学物理是理工科学生必修的一门课程,它涵盖了广泛的物理知识。

在大学物理课程中,我们通常会学习四个主要章节:力学、热学、电磁学和光学。

本文将通过逐步思考的方式,归纳总结这四个章节的主要知识点。

力学力学是物理学的基础,它研究物体在力的作用下的运动规律。

力学主要包括牛顿运动定律、动量和能量守恒等内容。

1.牛顿第一定律:一个物体如果没有外力作用在它上面,它将保持静止或匀速直线运动。

2.牛顿第二定律:一个物体所受到的合力等于物体的质量乘以加速度,即F=ma。

3.牛顿第三定律:任何两个物体之间的相互作用力大小相等、方向相反。

4.动量守恒定律:在一个封闭系统中,物体的总动量保持不变。

5.能量守恒定律:在一个封闭系统中,物体的总能量保持不变。

热学热学是研究热力学和热传导的学科,它与能量转化和热平衡有关。

热学主要包括温度、热传导、热容和热机等内容。

1.温度:物体的温度是物体分子平均运动速度的度量。

2.热传导:热传导是指热能从热源传递到冷源的过程。

3.热容:物体的热容是指单位质量物体升高或降低1摄氏度所需要的热量。

4.热机:热机是将热能转化为机械能的装置,如蒸汽机、内燃机等。

电磁学电磁学是研究电场和磁场相互作用的学科,它涉及电荷、电流和电磁波等内容。

1.库伦定律:两个电荷之间的电力与它们之间的距离成反比,与它们的电荷量成正比。

2.电流:电流是电荷在单位时间内通过导体截面的数量。

3.安培定律:电流所产生的磁场的大小与电流强度成正比。

4.法拉第电磁感应定律:变化的磁场会在导体中产生感应电动势。

5.麦克斯韦方程组:描述电磁场的基本方程。

光学光学是研究光的传播和光的性质的学科,它涉及光的干涉、衍射和偏振等内容。

1.光的干涉:当两束或多束光波相遇时,它们的干涉会产生明暗相间的干涉条纹。

2.光的衍射:光通过一个小孔或尺寸相近的障碍物时,会发生衍射现象。

3.光的偏振:只有在某个方向上振动的光称为偏振光。

4.杨氏实验:通过干涉的方法测量光的波长。

大学物理知识点汇总

大学物理知识点汇总

大学物理知识点汇总一、质点运动学1、描述质点运动的物理量位置、速度、加速度、动量、动能、角速度、角动量2、直线运动与曲线运动的分类直线运动:加速度与速度在同一直线上;曲线运动:加速度与速度不在同一直线上。

3、速度与加速度的关系速度与加速度方向相同,物体做加速运动;速度与加速度方向相反,物体做减速运动。

二、牛顿运动定律1、牛顿第一定律:力是改变物体运动状态的原因。

2、牛顿第二定律:物体的加速度与所受合外力成正比,与物体的质量成反比。

3、牛顿第三定律:作用力与反作用力大小相等,方向相反,作用在同一条直线上。

三、动量1、动量的定义:物体的质量和速度的乘积。

2、动量的计算公式:p = mv。

3、动量守恒定律:在不受外力作用的系统中,动量守恒。

四、能量1、动能:物体由于运动而具有的能量。

表达式:1/2mv²。

2、重力势能:物体由于被举高而具有的能量。

表达式:mgh。

3、动能定理:合外力对物体做的功等于物体动能的改变量。

表达式:W = 1/2mv² - 1/2mv0²。

4、机械能守恒定律:在只有重力或弹力对物体做功的系统中,物体的动能和势能相互转化,机械能总量保持不变。

表达式:mgh + 1/2mv ² = EK0 + EKt。

五、刚体与流体1、刚体的定义:不发生形变的物体。

2、刚体的转动惯量:转动惯量是表示刚体转动时惯性大小的物理量,它与刚体的质量、形状和转动轴的位置有关。

大学物理电磁学知识点汇总一、电荷和静电场1、电荷:电荷是带电的基本粒子,有正电荷和负电荷两种,电荷守恒。

2、静电场:由静止电荷在其周围空间产生的电场,称为静电场。

3、电场强度:描述静电场中某点电场强弱的物理量,称为电场强度。

4、高斯定理:在真空中,通过任意闭合曲面的电场强度通量等于该闭合曲面内电荷的代数和除以真空介电常数。

5、静电场中的导体和电介质:导体是指电阻率为无穷大的物质,在静电场中会感应出电荷;电介质是指电阻率不为零的物质,在静电场中会发生极化现象。

大学物理四章知识点总结

大学物理四章知识点总结

大学物理四章知识点总结1. 电磁学电磁学是物理学的一个重要分支,它研究电荷和电流产生的电场和磁场以及它们之间的相互作用。

电磁学的基础概念包括库伦定律、高斯定律、安培定律和法拉第定律,这些定律描述了电荷和电流之间如何产生电场和磁场,并且它们的变化如何产生彼此的变化。

另外,电磁学还研究了电磁波的传播和辐射现象,电磁波是电场和磁场相互耦合而形成的一种波动现象,它的传播速度是光速,常见的电磁波有射频、微波、红外线、可见光和紫外线等。

电磁学是理论物理和应用物理领域的重要理论基础,它对电子学、光学、电动力学等领域有着深远的影响。

2. 光学光学是研究光的传播、反射、折射和干涉等现象的科学,它的基础概念包括光的波动理论和光的粒子理论。

光的波动理论认为光是一种电磁波,它的传播遵循波动方程,并且能够产生干涉、衍射、偏振等现象;光的粒子理论认为光是由光子组成的,光子具有能量、动量和波粒二象性。

光学的主要应用领域包括透镜成像、干涉仪测量、激光技术、光纤通信等,光学的发展对光电子学、激光技术、光纤通信等领域有着深远的影响。

3. 相对论相对论是物理学的一个重要分支,它研究时间、空间和质量等物理量在不同参考系中的变换规律。

相对论包括狭义相对论和广义相对论,狭义相对论研究了运动状态下的物体在时间和空间中的变换规律,引入了相对论性的动量、能量和质量的概念,提出了著名的爱因斯坦质能关系和洛伦兹变换等概念;广义相对论研究了引力场中的物体运动规律,提出了广义相对论的场方程、黑洞和宇宙膨胀等理论。

相对论对宇宙学、引力理论、基本粒子物理等领域有着深远的影响,是现代理论物理的重要基础。

4. 原子物理原子物理是研究原子结构、原子核结构和原子核反应等现象的科学,它的基础概念包括玻尔原子模型、波尔-索末菲理论、量子力学和量子场论。

玻尔原子模型提出了原子结构的量子化假设,认为电子在原子内围绕原子核作匀速圆周运动,并且在不同能级上的能量是量子化的;波尔-索末菲理论将玻尔原子模型推广到多电子原子中,提出了多电子原子结构和光谱的理论;量子力学是描述微观世界的理论,它介绍了波动方程、波函数、不确定性原理等概念,解决了原子结构、光谱和原子核反应等基本问题;量子场论将量子力学推广到场的理论,描述了基本粒子和相互作用的基本规律。

物理学第四章知识点总结

物理学第四章知识点总结

物理学第四章知识点总结第四章主要内容是力和压力第一节力1、力的概念力是一种相互作用,是一种可以改变物体形态或状态的物理量,是物体之间的相互作用。

2、力的性质(1) 力的作用是相互的。

(2) 力有大小和方向。

(3) 力可以使物体产生变化,而且是物理量。

(4) 力是矢量,有大小和方向。

3、力的计算力的大小和方向都是有实际意义的,力是矢量,有大小和方向。

力的计算要按照力的平行四边形法则来计算。

4、万有引力任何两个物体之间都有万有引力。

万有引力的大小与质量有关系。

5、弹力当物体受到变形时,产生弹性形变所产生的力叫做弹力。

6、弹性力和非弹性力(1) 弹性力:弹性形变所产生的力。

弹性形变是指在物体内部弹性变形,而不改变其形状的变形。

(2) 非弹性力:非弹性形变所产生的力。

非弹性形变是指在物体内部非弹性变形,而改变其形状的变形。

7、摩擦力摩擦力是两个物体相互接触时,在相互接触面上出现的一个与运动方向相反的力。

8、力的平行四边形法则如果一个物体受到一组几个共静力的作用,那么它受到的合外力等于这些力合成的结果。

第二节压力1、压力的概念压力是单位面积上的力。

形象地说:压力是对物体的作用力,是单位面积上的力。

2、压力的计算压力=力/面积3、万有引力产生的压力任何两个物体间都有万有引力,所以产生了压力。

4、液体的压力液体中任一点受到来自各个方向的压力,是由于这点上液体分子对这点的作用力的结果。

5、压强压强是单位面积上的压力。

在常见的情况下,常常用单位面积上的力叫做压力,叫做单位面积上的压力,叫做压强。

6、静液压当液体被加在容器中,液体将充分自动的塞满整个容器,液体在容器的作用是将容器的每个部分都用均能。

这种现象叫做静液压。

7、动液压动液压装置是用被通向,有较大压力的流体来传送运动能。

第三节力的组合1、力的平行或反向关系共静力----平行关系缠绕力----交叉关系対立力----反向关系2、单握条件的合外力如果所有的合外力平行,并且在同一线上,那么力的合成为这些力的代数和。

《大学物理教程》郭振平主编第四章 光的衍射

《大学物理教程》郭振平主编第四章 光的衍射

第四章 光的衍射一、基本知识点光的衍射:当光遇到小孔、狭缝或其他的很小障碍物时,传播方向将发生偏转,而绕过障碍物继续前行,并在光屏上形成明暗相间的圆环或条纹。

光波的这种现象称为光的衍射。

菲涅耳衍射:光源、观察屏(或者是两者之一)到衍射屏的距离是有限的,这类衍射又称为近场衍射。

夫琅禾费衍射:光源、观察屏到衍射屏的距离均为无限远,这类衍射也称为远场衍射。

惠更斯-菲涅耳原理:光波在空间传播到的各点,都可以看作一个子波源,发出新的子波,在传播到空间某一点时,各个子波之间可以相互叠加。

这称为惠更斯-菲涅耳原理。

菲涅耳半波带法:将宽度为a 的缝AB 沿着与狭缝平行方向分成一系列宽度相等的窄条,1AA ,12A A ,…,k A B ,对于衍射角为θ的各条光线,相邻窄条对应点发出的光线到达观察屏的光程差为半个波长,这样等宽的窄条称为半波带。

这种分析方法称为菲涅耳半波带法。

单缝夫琅禾费衍射明纹条件:sin (21)(1,2,...)2a k k λθ=±+=单缝夫琅禾费衍射暗纹条件:sin (1,2,...)a k k θλ=±=在近轴条件下,θ很小,sin θθ≈, 则第一级暗纹的衍射角为 1aλθ±=±第一级暗纹离开中心轴的距离为 11x f faλθ±±==±, 式中f 为透镜的焦距。

中央明纹的角宽度为 112aλθθθ-∆=-=中央明纹的线宽度为 002tan 2l f f faλθθ=≈∆=衍射图样的特征:① 中央明纹的宽度是各级明纹的宽度的两倍,且绝大部分光能都落在中央明纹上。

② 暗条纹是等间隔的。

③ 当入射光为白光时,除中央明区为白色条纹外,两侧为由紫到红排列的彩色的衍射光谱。

④ 当波长一定时,狭缝的宽度愈小,衍射愈显著。

光栅: 具有周期性空间结构或光学性能(透射率,反射率和折射率等)的衍射屏,统称为光栅。

光栅常数: 每两条狭缝间距离d a b =+称为光栅常数。

大学物理大一知识点总结

大学物理大一知识点总结

大学物理大一知识点总结导引:大学物理是一门重要的基础课程,为学习其他专业课程奠定了坚实的基础。

大一学期,我们接触到了很多物理学的基本概念和理论,本文将对大一物理课程的主要知识点进行总结和回顾,帮助我们巩固学习成果,为未来的学习打下坚实基础。

第一章:力学力学是物理学的基础,它研究物体的运动和相互作用。

在大一学期,我们主要学习了以下几个重要的力学知识点:1. 牛顿定律牛顿第一定律:物体保持匀速直线运动或静止,除非有外力作用。

牛顿第二定律:物体的加速度与作用力成正比,与物体质量成反比。

牛顿第三定律:作用力和反作用力大小相等、方向相反、作用在不同的物体上。

2. 物体的运动匀速直线运动:速度恒定,位移与时间成正比。

匀加速直线运动:速度随时间变化,位移与时间平方成正比。

3. 力的作用和分解力的作用:力可以改变物体的形状、大小、方向和速度。

力的分解:一个力可以分解为多个力的合力,通过正余弦定理可以计算各个分力的大小和方向。

第二章:热学热学是研究热量和热能转化的物理学科。

在大一学期,我们学习了以下热学知识点:1. 温度和热量温度:物体的热平衡状态,是物体内部微观粒子的平均动能。

热量:热能的传递方式,由高温物体传递给低温物体。

2. 理想气体状态方程理想气体状态方程:PV = nRT ,P为压强,V为体积,n为物质的物质的量,R为气体常数,T为温度。

3. 热力学定律第一热力学定律:能量守恒定律,热量传递和功对环境的变化之和恒为零。

第二热力学定律:热气流传递的方向是高温到低温的。

第三章:光学光学是研究光和光与物质相互作用的学科。

在大一学期,我们学习了以下光学知识点:1. 光的传播和成像光的传播方式:直线传播、反射和折射。

成像原理:反射成像和透镜成像,可用于解释镜子和凸透镜的成像原理。

2. 光的干涉和衍射干涉:光的波动性质在相遇时会干涉或加强。

衍射:光的波动性质在绕过障碍物时发生弯曲和扩散。

3. 光的色散和偏振色散:光在通过介质时,不同波长的光具有不同的折射率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.静电场: 1. 真空中的静电场
库仑定律→电场强度→电场线→电通量→真空中的高斯定理 ⑴库仑定律公式:12
2
r q q F k
e r = 适用范围:真空中静止的两个点电荷 ⑵电场强度定义式:o
F E q =
⑶电场线:是引入描述电场强度分布的曲线。

曲线上任一点的切线方向表示该点的场强方向,曲线疏密表示场强的大小。

静电场电场线性质:电场线起于正电荷或无穷远,止于负电荷或无穷远,不闭合,在没有电荷的地方不中断,任意两条电场线不相交。

⑷电通量:通过任一闭合曲面S 的电通量为 e S
E dS Φ=
•⎰
dS 方向为外法线方向
⑸真空中的高斯定理:1
int
1e S i
o
E dS q
Φ=•=
ε∑⎰
只能适用于高度对称性的问题:球对称、轴对称、面对称 应用举例: 球对称:
均匀带电的球面 2
00
()()
4r R E Q
r R r <⎧⎪=⎨>⎪πε⎩
均匀带电的球体
⎪⎪⎩⎪⎪⎨
⎧>πε<πε=)
(4)
(42030R r r
Q R r R Qr E
轴对称:无限长均匀带电线 2o E r
λ=
πε
无限长均匀带电圆柱面 ⎪⎩⎪
⎨⎧>πελ<=)(2)(00R r r
R r E
面对称:
无限大均匀带电平面 2o
E σ
=
ε ⑹安培环路定理:0l E dl •=⎰ ★重点:电场强度、电势的计算
电场强度的计算方法:①点电荷场强公式+场强叠加原理②高斯定理 电势的计算方法:①电势的定义式②点电荷电势公式+电势叠加原理 电势的定义式:(0)P
A P A U E dl
U =•=⎰
电势差的定义式:B
AB A B A U U U E dl =-=•⎰ 电势能:0
0(0)P p o P P W q E dl W =•=⎰
2. 有导体存在时的静电场
导体静电平衡条件→导体静电平衡时电荷分布→空腔导体静电平衡时电荷分布
⑴导体静电平衡条件:
Ⅰ.导体内部处处场强为零,即为等势体。

Ⅱ.导体表面紧邻处的电场强度垂直于导体表面,即导体表面是等
势面
⑵导体静电平衡时电荷分布:在导体的表面 ⑶空腔导体静电平衡时电荷分布:
Ⅰ.空腔无电荷时的分布:只分布在导体外表面上。

Ⅱ.空腔有电荷时的分布(空腔本身不带电,内部放一个带电量为q 的点电荷):静电平衡时,空腔内表面带-q 电荷,空腔外表面带+q 。

3. 有电介质存在时的静电场
⑴电场中放入相对介电常量为r ε电介质,电介质中的场强为:0
r
E E =ε ⑵有电介质存在时的高斯定理:0,int S D dS q •=∑⎰
各项同性的均匀介质 0r D E =εε
⑶电容器内充满相对介电常量为r ε的电介质后,电容为 0r C C =ε ★ 重点:静电场的能量计算 ① 电容:
② 孤立导体的电容 0
4C R =πε 电容器的电容公式 Q Q C U U U +-
=
=∆- 举例:平行板电容器 o s
C d
ε=
球形电容器 12214o R R C R R πε=-
圆柱形电容器 21
2ln()
o L
C R R πε=
③ 电容器储能公式 2211
()222
e Q W Q U C U C =
=∆=∆ ④ 静电场的能量公式 21
2
e e V
V
W w dV E dV ==ε⎰⎰
二. 静磁场: 1. 真空中的静磁场
磁感应强度→磁感应线→磁通量→磁场的高斯定理
⑴磁感应强度:大小 sin F
B qv =
θ
方向:小磁针的N 极指向的方向 ⑵磁感应线:是引入描述磁感应强度分布的曲线。

曲线上任一点的切线方向表示该点的磁感应强度方向,曲线的疏密反映磁感应强度的大小。

磁感应线是没有起点和终点的闭合曲线。

任意两条曲线不相交。

⑶磁通量:m S B dS Φ=•⎰ ⑷磁场中的高斯定理:0m S
B dS Φ=
•=⎰
磁场的安培环路定理:int l
B dl I ο•=μ∑⎰ 应用举例:
磁场对运动电荷的作用: 洛伦兹力公式 F qv B =⨯ 磁场对电流的作用:安培力公式 L
F Idl B =⨯⎰
★重点:磁感应强度的计算
磁感应强度的计算方法:①毕--萨定律+场强叠加原理②磁场的安培环路定理
2. 有磁介质存在时的静磁场
⑴相对磁导率为r μ的磁介质放入磁场中磁介质内部一点的场强为:
0r B B =μ
⑵有磁介质存在时的安培环路定理:,c in c l S i
H dl I j dS •==•∑⎰⎰
各项同性的均匀介质 0r B H H =μ=μμ ⑶磁场的能量:2211
22m m V V V B W w dV dV H dV ===μμ
⎰⎰⎰ 三、电磁感应与电磁波 1. 法拉第电磁感应定律:d dt
Φ
ε=-
2. 动生电动势 ()l v B dl ε=⨯•⎰
3. 麦克斯韦方程组:
电场的性质 S
V
D dS dV •=ρ⎰⎰
磁场的性质 0S
B dS •=⎰
变化的磁场和电场的关系 l
S B
E dl dS t
∂•=-•∂⎰⎰
变化的电场和磁场的关系 ()c l
S
D
H dl j dS t
∂•=+
•∂⎰
⎰ ★重点:动生电动势的计算。

相关文档
最新文档