初三中考数学平面直角坐标系

合集下载

中考数学专题:平面直角坐标系

中考数学专题:平面直角坐标系

中考数学专题:平面直角坐标系教学目标:1.学会在平面直角坐标系中求点的坐标,图形的面积,字母的取值范围。

2.解决平面直角坐标系中的综合问题1. 复习定义:为了用一对实数表示平面内的点,在平面内画两条互相垂直的数轴,组成平面直角坐标系。

水平的数轴叫做x 轴或横轴,铅直的数轴叫做y 轴或纵轴。

⎡⎤⎣⎦数轴平面直角坐标系 ,x x y x y ⎧⎪⎪⎧⎡⎤⎣⎦⎪⎪⎪→→⎨⎨⎪⎪→→⎡⎤⎣⎦⎩⎪⎪⎪⎩b 第一象限第二象限轴位置轴垂直于y 轴且原点重合第三象限第四象限轴平面轴把平面分成六个部分x 轴y 轴⎡⎤⎣⎦点数轴→点平面直角坐标系→点→点的坐标 ⎧⎪→⎨⎪⎩b 已知点确定坐标+-已知坐标确定点点的坐标→点到点的距离[]∍直线()()()[]|a-h||b-m|x y x h y m ⎧⎧⎪⎪⎨⎪⎪⎩⎪=⎧⎪⎪⎪⎨=⎨⎪⎩⎪⎪⎪⎪⎪⎩轴:P(a,b)到x 轴的距离为|b|坐标轴轴:P(a,b)到y 轴的距离为|a|点p a,b 到的距离为[与坐标轴平行的直线]点p a,b 到的距离为[任意直线]点p a,b 到直线Ax+By+C=0的距离为|Aa+Bb+C|[点]d =任意两点⊃1122121211221221(,0)(,0)||||(0,)(0,)||||P a P a PP a a P b P b PP b b ⎧→=-⎧⎪⎨→=-⎩⎨⎪⎩与在坐标轴上的两点与点到原点的距离:P(a,b)到原点的距离 点的坐标⊃[一点]特殊位置上的点的坐标⊃(,)0[](,)0[][](,)P a b x b P a b a P a b y =⎧⎨=⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩€€€€€€€€在轴上坐标轴在y 轴上P(a,b)在第一象限a>0,b>0P(a,b)在第二象限a<0,b>0[象限]P(a,b)在第三象限a<0,b<0P(a,b)在第四象限a>0,b<0象限角平分线一三象限角平分线上点P(a,b)a=b 二四象限角平分线上点P(a,b)a=-b 与坐标轴平行的直线在与轴平行的直(,)x h a h P a b k b k⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪==⎧⎪⎨⎪==⎩⎩€€线在与x 轴平行的直线y 点的坐标 →[]对称点的坐标直线(,)[](,)x P a b x P a b ⎧⎪⎪⎨⎪⎪⎩轴:关于轴对称点的坐标为(a,-b)坐标轴y 轴:关于y 轴对称点的坐标为(-a,b) ''[](,)(2,)(,)(,2)P a b x h P h a b P a b y m P a m b =⎧⎪-⎪⎨=⎪⎪-⎩与坐标轴平行的直线关于对称的点的坐标为关于对称的点的坐标为 (,)(,)b a b a ⎧⎪⎪⎨⎪⎪-⎩''P(a,b)关于y=x 对称的点坐标为P [角平分线]P(a,b)关于y=-x 对称的点坐标为P[点]'(,)(,)(2,2)P a b x y P x a y b --关于点对称的点坐标为'00(,)P a b ⊃--关于(,)对称的点的坐标为 点的坐标→平移后的点的坐标()()()()()()()()'''',,,,,,,,p a b mp a b m p a b mp a b m p a b mp a m b p a b mp a m b ⎧⎧+⎡⎤⎪⎣⎦⎪⎨-⎪⎡⎤⎪⎣⎦⎪⎩⎨⎧-⎡⎤⎪⎪⎣⎦⎨⎪+⎡⎤⎪⎪⎣⎦⎩⎩u u u u u u r u u u u u u r u u u u u u r u u u u u u r 向上平移点向上上下平移后点的坐标向下平移点向下向左平移点向左左右平移后点的坐标向右平移点向右[对应]平面直角坐标系的点与有序实数对一一对应[点] 平面直角坐标系←⎧⎨⎩定义画法→确定平面内点的位置(点表示出无理数)二.综合题(一)求点的坐标∨点的位置A 、(1)位置,距离直接求点的坐标点的坐标⎧←⎧→→⎪⎨←⎪⎩→⎨←⎧⎪→→⎨⎪←⎩⎩符号点在直角坐标系的位置横坐标实数绝对值点到坐标轴(y 轴)的距离符号点在直角坐标系的位置纵坐标实数绝对值点到坐标轴(x 轴)的距离 例1.已知点p 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点p 的坐标为_______小结:首先确定点p 所在位置(象限)来确定横纵坐标的符号,再确定点到坐标轴距离确定横纵坐标的绝对值→p 点的坐标用所学知识点:1.坐标所在象限位置2.点到直线的距离练习:1.一个点在x 轴上,距离原点2个单位长度,这个点是_____2.点N 在y 轴左侧,且到x 轴,y 轴的距离依次是4,3.则点N 的坐标为_______,ON=_______3.已知点A 在x 轴的下方及y 轴的的右侧,且点A 到x 轴的距离为23,到y 轴的距离为4,则点A 的坐标为_________例2. 已知直线AB 平行于x 轴,且A 点坐标为(-3) 则B 点坐标为_______,条件是_______小结:利用与坐标轴平行直线点的特征直线的判定练习:①已知A(a,3),B(5,b),且AB//x 轴,则a= ,b= .A 点的坐标为 ,B 点的坐标为 。

第一节 平面直角坐标系及函数 【九年级 中考数学复习】

第一节  平面直角坐标系及函数  【九年级 中考数学复习】

返回思维导图
三种表示方法:列表法、 图象法 、表达式法 函数的表示及图象 画函数图象的步骤:一般概括为列表、描点、连线三步,
即描点法
函数
明确“两轴”所表示的意义
分析判断 明确图象上的点所表示的意义 函数图象 的方法 弄清图象上的转折点,最高(低)点所表示的意义
弄清上升线和下降线所表示的意义
返回思维导图
点P(a,b)到x轴的距离为___|_b_| ___, 点P(a,b)到y轴的距离为____|a_|___, 点P(a,b)到原点的距离为__a_2_+__b_2_)
1.在x轴或平行于x轴的直线上的两点P,A⇒点
平面内任意 两点间的距
P与点A的纵坐标相等,则PA=|x-x1|
离,如图④ 2.在y轴或平行于y轴的直线上的两点P,B⇒点
图②
称谁不变,关于 【满分技法】两点到y轴的距离相等,这两点横坐标的绝
原点对称都变号 对值相等;两点到x轴的距离相等,这两点纵坐标的绝对
值相等
返回思维导图
【知识拓展】点P1(x,y)关于直线x=m对称的点的坐标为(2m-a,b), 关于直线y=n对称的点的坐标为(a,2n-b)
平面直
坐标
平移方式
角坐标 系中点 点平移的
对称点的 坐标特征 点平移的坐标特征
平面直角坐 标系及点的
特征
坐标系中的距离公式
定义
平面直角坐标 系及函数
函数
函数的表示方法
函数图象的画法 函数自变量的
取值范围
平面直 角坐标 系中点 的坐标 特征
(-,+) 各象限内点的坐标特征:
(+,-)
第一象限:x>0,y>0 第二象限:x<0,y>0 第三象限:x<0,y<0 第四象限:x>0,y<0

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析

中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。

5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。

【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。

2025年广州市中考数学一轮复习:平面直角坐标系(附答案解析)

2025年广州市中考数学一轮复习:平面直角坐标系(附答案解析)

第1页(共18页)2025年广州市中考数学一轮复习:平面直角坐标系一.选择题(共10小题)1.已知点M (3,2)与点N (a ,b )在同一条平行于x 轴的直线上,且点N 到y 轴的距离为4,那么点N 的坐标是()A .(4,﹣2)或(﹣5,2)B .(4,﹣2)或(﹣4,﹣2)C .(4,2)或(﹣4,2)D .(4,2)或(﹣1,2)2.已知点A 的坐标为(2,3),直线AB ∥y 轴,且AB =5,则点B 的坐标为()A .(2,8)B .(2,8)或(2,﹣2)C .(7,3)D .(7,3)或(﹣3,3)3.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A .3排5号B .5排3号C .4排3号D .3排4号4.在平面直角坐标系中,点P (﹣2,1)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限5.点(3,﹣5)到y 轴的距离是()A .3B .5C .﹣5D .﹣36.在平面直角坐标系中,点A (6,﹣5)所在象限为()A .第一象限B .第二象限C .第三象限D .第四象限7.如图,矩形ABCD 的对角线交于坐标原点O ,已知点D 的坐标为(﹣4,3),则点B 的坐标为()A .(4,﹣3)B .(﹣4,3)C .(3,﹣4)D .(4,3)8.在平面直角坐标系中,第一象限内的点P (a +3,a )到y 轴的距离是5,则a 的值为()A .﹣8B .2或﹣8C .2D .89.如图.已知小华的坐标为(﹣2.﹣1).小亮的坐标为(﹣1,0),那么小东的坐标应该是()。

平面直角坐标系篇(解析版)--中考数学必考考点总结+题型专训

平面直角坐标系篇(解析版)--中考数学必考考点总结+题型专训

知识回顾微专题专题12平面直角坐标系考点一:平面直角坐标系之坐标特点1.有序数对:有顺序的两个数a 与b 组成的数对叫做有序数对。

表示为()b a ,,可以用来表示位置。

2.平面直角坐标系各部分的坐标特点:①x 轴上的所有点的坐标可表示为()0 ,x 。

②y 轴上的所有点的坐标可表示为()y ,0。

③第一象限内的所有点的坐标横纵坐标都是正数。

即(﹢,﹢)。

④第二象限内的所有点的坐标横坐标是负数,纵坐标是正数。

即(﹣,﹢)。

⑤第三象限内的所有点的坐标横纵坐标都是负数。

即(﹣,﹣)。

⑥第四象限内的所有点的坐标横坐标是正数,纵坐标是负数。

即(﹢,﹣)。

3.点到坐标轴的距离:点()b a ,到横坐标的距离等于纵坐标的绝对值。

即b 。

点()b a ,到纵坐标的距离等于横坐标的绝对值。

即a 。

1.(2022•六盘水)两个小伙伴拿着如图的密码表玩听声音猜动物的游戏,若听到“咚咚﹣咚咚,咚﹣咚,咚咚咚﹣咚”表示的动物是“狗”,则听到“咚咚﹣咚,咚咚咚﹣咚咚,咚﹣咚咚咚”时,表示的动物是()A .狐狸B .猫C .蜜蜂D .牛【分析】根据点的坐标解决此题.【解答】解:由题意知,咚咚﹣咚咚对应(2,2),咚﹣咚对应(1,1),咚咚咚﹣咚对应(3,1).∴咚咚﹣咚对应(2,1),表示C;咚咚咚﹣咚咚对应(3,2),表示A;咚﹣咚咚咚对应(1,3),表示T.∴此时,表示的动物是猫.故选:B.2.(2022•柳州)如图,这是一个利用平面直角坐标系画出的某学校的示意图,如果这个坐标系分别以正东、正北方向为x轴、y轴的正方向,并且综合楼和食堂的坐标分别是(4,1)和(5,4),则教学楼的坐标是()A.(1,1)B.(1,2)C.(2,1)D.(2,2)【分析】根据综合楼和食堂的坐标分别是(4,1)和(5,4),建立适当的平面直角坐标系,即可解答.【解答】解:建立如图所示的平面直角坐标系:∴教学楼的坐标是(2,2),故选:D.3.(2022•铜仁市)如图,在矩形ABCD中,A(﹣3,2),B(3,2),C(3,﹣1),则D的坐标为()A.(﹣2,﹣1)B.(4,﹣1)C.(﹣3,﹣2)D.(﹣3,﹣1)【分析】先根据A、B的坐标求出AB的长,则CD=AB=6,并证明AB∥CD∥x轴,同理可得AD∥BC ∥y轴,由此即可得到答案.【解答】解:∵A(﹣3,2),B(3,2),∴AB=6,AB∥x轴,∵四边形ABCD是矩形,∴CD=AB=6,AB∥CD∥x轴,同理可得AD∥BC∥y轴,∵点C(3,﹣1),∴点D的坐标为(﹣3,﹣1),故选:D.4.(2022•宜昌)如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为(1,3).若小丽的座位为(3,2),以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是()A.(1,3)B.(3,4)C.(4,2)D.(2,4)【分析】直接利用点的坐标特点得出与小丽相邻且能比较方便地讨论交流的同学的座位位置.【解答】解:如图所示:与小丽相邻且能比较方便地讨论交流的同学的座位是(4,2).故选:C.5.(2022•扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据平方数非负数判断出点P的纵坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵a2≥0,∴a2+1≥1,∴点P(﹣3,a2+1)所在的象限是第二象限.故选:B.6.(2022•乐山)点P(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标符号直接判断的判断即可.【解答】解:∵P(﹣1,2),横坐标为﹣1,纵坐标为:2,∴P点在第二象限.故选:B.7.(2022•攀枝花)若点A(﹣a,b)在第一象限,则点B(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用第一象限内点的坐标特点得出a、b的符号,进而得出答案.【解答】解:∵点A(﹣a,b)在第一象限内,∴﹣a>0,b>0,∴a<0,∴点B(a,b)所在的象限是:第二象限.故选:B.8.(2022•衢州)在平面直角坐标系中,点A(﹣1,﹣2)落在()A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据第三象限中点的坐标特征:横坐标为负数,纵坐标为负数,由此可确定A 点位置.【解答】解:∵﹣1<0,﹣2<0,∴点A (﹣1,﹣2)在第三象限,故选:C .9.(2022•河池)如果点P (m ,1+2m )在第三象限内,那么m 的取值范围是()A .﹣21<m <0B .m >﹣21C .m <0D .m <﹣21【分析】根据点P 在第三象限,即横纵坐标都是负数,据此即可列不等式组求得m 的范围.【解答】解:根据题意得,解①得m <0,解②得m <.则不等式组的解集是m <﹣.故选:D .10.(2022•兰州)如图,小刚在兰州市平面地图的部分区域建立了平面直角坐标系,如果白塔山公园的坐标是(2,2),中山桥的坐标是(3,0),那么黄河母亲像的坐标是.【分析】根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系,然后根据点的坐标的表示方法写出黄河母亲像的坐标;【解答】解:如图,根据白塔山公园的坐标是(2,2),中山桥的坐标是(3,0)画出直角坐标系,∴黄河母亲像的坐标是(﹣4,1).故答案为:(﹣4,1).11.(2022•广安)若点P(m+1,m)在第四象限,则点Q(﹣3,m+2)在第象限.【分析】根据点P(m+1,m)在第四象限,求出m的取值范围,得到1<m+2<2,进而得到点Q所在的象限.【解答】解:∵点P(m+1,m)在第四象限,∴,∴﹣1<m<0,∴1<m+2<2,∴点Q(﹣3,m+2)在第二象限,故答案为:二.12.(2022•鄂州)中国象棋文化历史久远.某校开展了以“纵横之间有智慧攻防转换有乐趣”为主题的中国象棋文化节.如图所示是某次对弈的残局图,如果建立平面直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),那么“兵”在同一坐标系下的坐标是.【分析】应用平面内点的平移规律进行计算即可得出答案.【解答】解:根据平面内点的平移规律可得,把“帅”向左平移两个单位,向上平移3个单位得到“兵”的位置,∴(﹣1﹣2,﹣2+3),即(﹣3,1).故答案为:(﹣3,1).13.(2022•烟台)观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为.【分析】直接利用已知点坐标得出原点位置进而得出答案.【解答】解:如图所示:“帅”所在的位置:(4,1),故答案为:(4,1).考点二:平面直角坐标系之坐标变换知识回顾微专题1.平行于x 轴(垂直于y 轴)的直线上的点的坐标:纵坐标相等。

2023九年级中考数学专题七平面直角坐标系单元达标测试卷

2023九年级中考数学专题七平面直角坐标系单元达标测试卷

2023九年级中考数学专题七平面直角坐标系单元达标测试卷(试卷满分120分,答题时间120分钟)一、选择题(共10小题,每题3分,共30分)1.在平面直角坐标系中,将点()3,2P -向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标为( )A. ()0,2-B. ()0,2C. ()6,2-D. ()6,2--2. 点P (4,3)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知点A (a ,1)与点A ′(5,b )关于坐标原点对称,则实数a 、b 的值是( )A .a =5,b =1B .a =-5,b =1C .a =5,b =-1D .a =-5,b =-1 4. (2022广西河池)如果点P (m ,1+2m )在第三象限内,那么m 的取值范围是( ) A. 102m -<< B. 12m >- C. 0m < D. 12m <- 5. (2022浙江嘉兴)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm 的正方形ABCD 沿对角线BD 方向平移1cm 得到正方形A B C D '''',形成一个“方胜”图案,则点D ,B ′之间的距离为( )A. 1cmB. 2cmC. -1)cmD.-1)cm6. (2022广西百色)如图,在△ABC中,点A(3,1),B(1,2),将△ABC 向左平移2个单位,再向上平移1个单位,则点B的对应点B′的坐标为()A. (3,-3)B. (3,3)C. (-1,1)D. (-1,3)7.(2022广西柳州)如图,这是一个利用平面直角坐标系画出的某学校的示意图,如果这个坐标系分别以正东、正北方向为x轴、y轴的正方向,并且综合楼和食堂的坐标分别是(4,1)和(5,4),则教学楼的坐标是()A. (1,1)B. (1,2)C. (2,1)D. (2,2) 8.(2022山东青岛)如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''',则点A 的对应点A '的坐标是( )A. (2,0)B. (2,3)--C. (1,3)--D.(3,1)-- 9.(2022广东)在平面直角坐标系中,将点()1,1向右平移2个单位后,得到的点的坐标是( )A. ()3,1B. ()1,1-C. ()1,3D. ()1,1-10.如图,将△PQR 向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是( )A .(﹣2,﹣4)B .(﹣2,4)C .(2,﹣3)D .(﹣1,﹣3)二、填空题(共10小题,每空3分,共30分)1.(2021大连)在平面直角坐标系中,将点P (﹣2,3)向右平移4个单位长度,得到点P ′,则点P ′的坐标是 .2. (2022浙江金华)如图,在Rt ABC 中,90,30,2cm ACB A BC ∠=︒∠=︒=.把ABC 沿AB 方向平移1cm ,得到A B C ''',连结CC ',则四边形AB C C ''的周长为_____cm .3. (2022济南)规定:在平面直角坐标系中,一个点作“0”变换表示将它向右平移一个单位,一个点作“1”变换表示将它绕原点顺时针旋转90°,由数字0和1组成的序列表示一个点按照上面描述依次连续变换.例如:如图,点()0,0O 按序列“011…”作变换,表示点O 先向右平移一个单位得到()11,0O ,再将()11,0O 绕原点顺时针旋转90°得到()20,1O -,再将()20,1O -绕原点顺时针旋转90°得到()31,0O -…依次类推.点0,1经过“011011011”变换后得到点的坐标为______.4. (2022浙江台州)如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .5.(2022贵州毕节)如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点1(1,1)A ;把点1A 向上平移2个单位,再向左平移2个单位,得到点2(1,3)A -;把点2A 向下平移3个单位,再向左平移3个单位,得到点3(4,0)A -;把点3A 向下平移4个单位,再向右平移4个单位,得到点4(0,4)A -;…;按此做法进行下去,则点10A 的坐标为_________.6.(2022云南) 点A (1,-5)关于原点的对称点为点B ,则点B 的坐标为______.7.(2022甘肃兰州)如图,小刚在兰州市平面地图的部分区域建立了平面直角坐标系,如果白塔山公园的坐标是(2,2),中山桥的坐标是(3,0),那么黄河母亲像的坐标是______.8.点P(m,2)在第二象限内,则m的值可以是(写出一个即可).9.已知m为整数,且点(12-4m,19-3m)在第二象限,则m2+2005的值为______.10. (2022大连)如图,在平面直角坐标系中,点A的坐标是1,2,将线段OA 向右平移4个单位长度,得到线段BC,点A的对应点C的坐标是_______.三、解答题(本大题有6道小题,共60分)1.(8分)如图,点P(﹣2,1)与点Q(a,b)关于直线1(y=﹣1)对称,求a+b的值.2.(8分)已知点P到x轴的距离为2,到y轴的距离为1.如果过点P作两坐标轴的垂线,垂足分别在x轴的正半轴上和y轴的负半轴上,求点P的坐标。

中考数学第10课时 平面直角坐标系与函数

中考数学第10课时  平面直角坐标系与函数
2.图象的画法:已知函数的解析式,一般用描点法按下 列步骤画出函数的图象.
(1)取值:根据函数解析式,取一些自变量的值,得出函 数的对应值,按这些对应值列表.
(2)画点:根据自变量和函数值的表格,在直角坐标系中 描点.
(3)连线:用平滑的曲线将这些点连接起来,即得函数的 图象.
(二) 中考考点梳理
B.(2,-3)
C.(-3,2)
Байду номын сангаас
D.(3,-2)
(三) 中考题型突破
3. (中考银川模拟)在平面直角坐标系中,将点(2,
3)向上平移1个单位长度,所得到的点的坐标是( C )
A.(1,3)
B.(2,2)
C.(2,4)
D.(3,3)
4. (中考贵阳一模)在平面直角坐标系中,将点A向左
平移5个单位长度,再向上平移3个单位长度后与
原路匀速返回时,汽车的速度v千米/小时与时间t
小时的函数关系式是( B )
A.v=320t C.v=20t
B.v= 320 t
D.v=
20 t
(三) 中考题型突破
2.(中考太原二模)如果两个变量x,y之间的函数关系 如图所示,则函数值y的取值范围是( D ) A.-3≤y≤3 B.0≤y≤2 C.1≤y≤3 D.0≤y≤3
图3.10-9
(三) 中考题型突破
采用特殊值法和排除法求解. ①当点P与点O重合时,x=0,y=2.故可排除C选项; ②当点Q与点O重合时,x=6.5,y=3.故可排除A选项; ③当x=2,即AP∥y轴时,∵AH⊥PQ,
∴AH<AQ=2,即y<2.故可排除B选项. 故选D.
(三) 中考题型突破
方法点拨
第一部分 教材知识梳理

中考数学第一轮复习 第章第讲 平面直角坐标系ppt(共20张PPT)

中考数学第一轮复习 第章第讲 平面直角坐标系ppt(共20张PPT)
A.(2011,0) B.(2011,1) (2)用方向和距离表示.
技法点拨►在平面直角坐标系中,解决点所处的象限与坐标符号之间的关系问题,综合各象限的坐标特征,经常利用不等式(组)解答.
技法点拨C►.应(用2函0数1图1,象解2题)的三D步.骤:(2(10)找1:0,找清0图)象的横、纵坐标各自具有的含义;
典型例题运用 类型1 平面直角坐标系中点的坐标
(【3)思点路P(分x,析y【A】)到.根原例据点第每1的一】一距A段离函象等数若于图限⑤象点_的__A倾_(B斜a.程+度第,1反,二映b象了-水限面1上)升在速第度的二快慢象,限再观,察则容器点的粗B(细-,作a出,判断b.+2)在(
)
.第三象限 .第四象限 C D (2)点P(x,y)在第二、四象限角平分线上⇔x+y=0
提示
确定位置常用的方法一般有两种:(1)用有序实数对(a,b)表示;(2)用方向和 距离表示.
考点2 点的坐标特征
象限内的点 第一象限:x>0,y>0; 第二象限:x<0,y>0;
第三象限:x<0,y<0; 第四象限:x>0,y<0
(1)点P(x,y)在x轴上⇔y=0,x为任意实数;
坐标轴上的点
(2)点P(x,y)在y轴上⇔x=0,y为任意实数; (3)点P(x,y)既在x轴上,又在y轴上⇔x=y=0,即点
B 以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1), P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n +1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).∵2017= 504×4+1,∴第2017秒时,点P的坐标为(2017,1).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学复习十——平面直角坐标系
一、中考要求:
1.理解平面直角坐标系的有关概念,理解坐标平面内点的坐标特征并达到初步掌握,了解不同位置点的坐标特征,并达到初步应用;
2.了解函数的概念,理解自变量取值范围和函数值意义,会确定自变量的取值范围和求函数值;
3.了解函数的三种表示法,会用描点法画出函数图像。

二、知识要点:
1. 平面上有____且互相__的2条数轴构成平面直角坐标系.水平方向的数轴称为___,竖直方向的数轴称为___,公共原点称为___.写出某点的坐标时,___应写在____的前面.
2. 各象限点的符号特征:
x0
3. 点的坐标特征:
(1)平行于坐标轴的直线上的点:平行于x轴的直线上不同的两个点的__坐标相同,__坐标不同;平行于y轴的直线上不同的两个点的__坐标相同,__坐标不同.
(2)象限角平分线上的点:第一、三象限角平分线上的点的横、纵坐标___,可表示为(x,x);第二、四象限角平分线上的点的横、纵坐标_____,可表示为().(3)对称的点P(a,b)
关于x轴对称的点的坐标为(,),
关于y轴对称的点的坐标为(,),关于原点对称的点的坐标为(,)
4. 图形变换后点的坐标特征:
图形左右平移,对应点的__坐标变化,__坐标不变;图形上下平移,对应点的__坐标变化,__坐标不变
三、典例剖析:
[例题1]已知平面直角坐标系中两点A(x,1)、B(-5,y)
(1)若点A、B关于x轴对称,则x=____,y=____;
(2)若点A、B关于y轴对称,则x=____,y=_____;
(3)若点A、B关于原点对称,则x=____,y=_____.
[例题2]已知点P (2m 一5,m 一1),当m 为何值时:
(1)点P 在二、四象限的角平分线上; (2)点P 在一、三象限的角平分线上.
[例题3]在边长为1的正方形网格中,将ABC △向右平移两个单位长
度得到A B C '''△,则与点B '关于x 轴对称的点的坐标是
[例题4]如图所示,在直角坐标系中,图(1)中的图案“A ”经过变换分别变成图(2)至图(6)中的相应图案(虚线对应于原图案).
试写出图(2)至图(6)中各顶点的坐标,探索每次变换前后图案发生了什么变化,对应点的坐标之间有什么关系?
[例题5] 求下列函数中自变量的取值范围
(1)3672+-=x x y ⑵x
y -=11 ⑶211--+=x x y
⑷03)3(5-++=x x y ⑸2
312+++=x x x y
[例题6] 已知:点A (6,2)、B (2,-4),求S △AOB (O 为坐标原点).
随堂演练:
1. 在直角坐标系中,点A (2,0),点B (0,2),则线段AB 的中点到原点的距离是( )
A .
B . 1
C .
D . 2
2. 在直角坐标系中,点A (2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为( )
A . (4,3)
B . (-2,-1)
C . (4,-1)
D . (-2,3)
3. 若点P 在第四象限,且到两条坐标轴的距离都是4,则点P 的坐标为( )
A . (-4,4)
B . (-4,-4)
C . (4,-4)
D . (4,4)
4. 在直角坐标系中,点M (sin 50°,-cos 70°)所在的象限是( )
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
5. 点A (-2,-3)和点B (2,3)在直角坐标系中( )
A . 关于x 轴对称
B . 关于y 轴对称
C . 关于原点对称
D . 不关于坐标轴和原点对称
6. 一辆汽车行驶的路程与行驶时间的关系如图所示.下列说法正确的是( )
A .前3h 中汽车的速度越来越快
B . 3h 后汽车静止不动
C . 3h 后汽车以相同的速度行驶
D . 前3h 汽车以相同速度行驶
7.如图,直角坐标系中,正方形ABCD 的面积是( )
A . 1
B . 2
C . 4
D . 21 8. 等腰三角形的周长为4,腰长为x ,底边为y ,y 是x 的函数,则x 的
取值范围是( )
A .x >0
B .0<x <2
C .1<x <2
D .0<x <1
9.函数3x y -=-的自变量x 的取值范围是( ) A .3x > B .3x ≤且0x ≠
C .3x ≤
D .3x <且0x ≠ 10.在直角坐标系中,点A (-3,m )与点B (n ,1)关于x 轴对称,则m =________,n =________.
11.点P (a +1,a -1)在直角坐标系的y 轴上,则点P 坐标为_____.
12.在直角坐标系中,点A (x ,y ),且2-=xy .试写出两个满足这些条件的点:________.
13.在直角坐标系中,点A (-1,1),将线段OA (O 为坐标原点)绕点O 逆时针旋转得线段OB ,则点B 的坐标是______.
14.点P (a ,3)到y 轴的距离为4,则a 的值为________.
15.在直角坐标系中,点A (0,2),点P (x ,0)为x 轴上的一个动点,当x =________时,线段PA 的长得到最小值,最小值是________.
16.已知点M (3,2)与点N (x ,y )在同一条平行于x 轴的直线上,且点N 到y 轴的距离为5.试求点N 的坐标.
17. 在平面直角坐标系中,分别描出点A (-1,0),B (0,2),C (1,0),D (0,-2).
(1)试判断四边形ABCD 的形状;
(2)若B 、D 两点不动,你能通过变动点A 、C 的位置使四边形ABCD 成为正方形吗?若能,请写出变动后的点A 、C 的坐标.
18. Rt △ABC 中,∠C =90°,AC =BC ,AB =4,试建立适当的直角坐标系,写出各顶点的坐标.
19.如图,□ABCD 在平面直角坐标系中,6AD =,若OA 、OB 的长是关于x 的一元二次方程27120x x -+=的两个根,且OA OB >.
(1)求sin ABC ∠的值.
(2)若E 为x 轴上的点,且
163AOE S =△,求经过D 、E 两点的直线的解析式,并判断AOE △与DAO △是否相似?
(3)若点M 在平面直角坐标系内,则在直线AB 上是否存在点F ,使以A 、C 、F 、M 为顶点的四边形为菱形?若存在,请直接写出F 点的坐标;若不存在,请说明理由.
x
y A D B O C
20.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过203m 时,按2元/3m 计费;月用水量超过203m 时,其中的203m 仍按2元/3m 收费,超过部分按2.6元/3m 计费.设每户家庭用用水量为3
m x 时,应交水费y 元. (1)分别求出020x ≤≤和20x 时y 与x 的函数表达式;
(2)小明家第二季度交纳水费的情况如下:
小明家这个季度共用水多少立方米?。

相关文档
最新文档