高等数学(同济大学第五版) 第十二章答案

合集下载

同济大学《高等数学》第五版上册答案(详解)

同济大学《高等数学》第五版上册答案(详解)

解 (1)列方程,(2)解方程
练习 12-11
总习题十二
解 正弦级数展开, 余弦级数展开
总习题十一
练习 12-1
练习 12-2
练习 12-3
练习 12-4
练习 12-5
练习 12-6
练习 12-7
提示:
提示:
练习 12-8
练习 12-9
总习题六
练习 7-1
练习 7-2
练习 7-3
练习 7-4
练习 7-5
练习 7-6
总习题七
练习 8-1
练习 8-2
>
练习 8-3
练习 8-4
练习 8-5
练习 2-5
总习题二
练习 3-1
练习 3-2
练习 3-3
练习 3-4
练习 3-5
练习 3-6
x
( 2)
y

y
+
yf(x) ↘
2 0 +
17/5
(2 1) 1
练习 10-4
练习 10-5
练习 10-6
练习 10-7
总习题十
练习 111
练习 112
练习 113
练习 11-4
练习 11-5
练习 11-7
练习 11-8
解 正弦级数展开, 余弦级数展开
练习 8-6
练习 8-7
练习 8-8
总习题八
练习 9-1
练习 9-2
>>
<< >>
<<
练习 9-3
练习 9-4
总习题九
练习 10-1
练习 10-2
练习 10-3

高等数学(同济大学第五版)第十二章

高等数学(同济大学第五版)第十二章

习题12−11. 试说出下列各微分方程的阶数:(1)x (y ′)2−2yy ′+x =0;解 一阶.(2)x 2y ′−xy ′+y =0;解 一阶.(3)xy ′′′+2y ′+x 2y =0;解 三阶.(4)(7x −6y )dx +(x +y )dy =0;解 一阶.(5)022=++C Q dt dQ R dtQ d L ; 解 二阶.(6)θρθρ2sin =+d d . 解 一阶.2. 指出下列各题中的函数是否为所给微分方程的解:(1)xy ′=2y , y =5x 2;解 y ′=10x .因为xy ′=10x 2=2(5x 2)=2y , 所以y =5x 2是所给微分方程的解.(2)y ′+y =0, y =3sin x −4cos x ;解 y ′=3cos x +4sin x .因为y ′+y =3cos x +4sin x +3sin x −4cos x =7sin x −cos x ≠0,所以y =3sin x −4cos x 不是所给微分方程的解.(3)y ′′−2y ′+y =0, y =x 2e x ;解 y ′=2xe x +x 2e x , y ′′=2e x +2xe x +2xe x +x 2e x =2e x +4xe x +x 2e x .因为y ′′−2y ′+y =2e x +4xe x +x 2e x −2(2xe x +x 2e x )+x 2e x =2e x ≠0,所以y =x 2e x 不是所给微分方程的解.(4)y ′′−(λ1+λ2)y ′+λ1λ2y =0, .x x e C e C y 2121λλ+= 解 , .x x e C e C y 212211λλλλ+=′x x e C e C y 21222211λλλλ+=′′因为y y y 2121)(λλλλ+′+−′′)())((2121212121221121222211x x x x x x e C e C e C e C e C e C λλλλλλλλλλλλλλ++++−+= =0,所以是所给微分方程的解.x x e C e C y 2121λλ+= 3. 在下列各题中, 验证所给二元方程所确定的函数为所给微分方程的解:(1)(x −2y )y ′=2x −y , x 2−xy +y 2=C ;解 将x 2−xy +y 2=C 的两边对x 求导得2x −y −xy ′+2y y ′=0,即 (x −2y )y ′=2x −y ,所以由x 2−xy +y 2=C 所确定的函数是所给微分方程的解.(2)(xy −x )y ′′+xy ′2+yy ′−2y ′=0, y =ln(xy ).解 将y =ln(xy )的两边对x 求导得y y x y ′+=′11, 即xxy y y −=′. 再次求导得 )(1)()()1()(2222y y y y y x x xy x xy y y y x x xy y x y y x xy y y ′+′−′−⋅−=−+−′−=−−′+−−′=′′. 注意到由y y x y ′+=′11可得1−′=′y x y yx , 所以 )2(1])1([12y y y y x xxy y y y y y x x xy y ′+′−′−⋅−=′+′−′−′−⋅−=′′, 从而 (xy −x )y ′′+xy ′2+yy ′−2y ′=0,即由y =ln(xy )所确定的函数是所给微分方程的解.4. 在下列各题中, 确定函数关系式中所含的参数, 使函数满足所给的初始条件:(1)x 2−y 2=C , y |x =0=5;解 由y |x =0=0得02−52=C , C =−25, 故x 2−y 2=−25.(2)y =(C 1+C 2x )e 2x , y |x =0=0, y ′|x =0=1;解 y ′=C 2e 2x +2(C 1+C 2x )e 2x .由y |x =0=0, y ′|x =0=1得, ⎩⎨⎧=+=10121C C C 解之得C 1=0, C 2=1, 故y =xe 2x .(3)y =C 1sin(x −C 2), y |x =π=1, y ′|x =π=0.解 y ′=C 1cos(x −C 2).由y |x =π=1, y ′|x =π=0得, 即, ⎩⎨⎧=−=−0)cos(1)sin(2121C C C C ππ⎩⎨⎧=−=0cos 1sin 2121C C C C 解之得C 1=1, 22π=C , 故2sin(π−=x y , 即y =−cos x . 5. 写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(x , y )处的切线的斜率等于该点横坐标的平方;解 设曲线为y =y (x ), 则曲线上点(x , y )处的切线斜率为y ′, 由条件y ′=x 2, 这便是所求微分方程.(2)曲线上点P (x , y )处的法线与x 轴的交点为Q , 且线段PQ 被y 轴平分.解 设曲线为y =y (x ), 则曲线上点P (x , y )处的法线斜率为y ′−1, 由条件第PQ 中点的横坐标为0, 所以Q 点的坐标为(−x , 0), 从而有y x x y ′−=+−10, 即yy ′+2x =0. 6. 用微分方程表示一物理命题: 某种气体的气压P 对于温度T 的变化率与气压成正比, 所温度的平方成反比.解2T P k dT dP =, 其中k 为比例系数.习题12−111. 试用幂级数求下列各微分方程的解:(1)y ′−xy −x =1;解 设方程的解为, 代入方程得 ∑∞=+=10n n n x a a y ,111011=−−−∑∑∞=+∞=−x x a x a x na n n n n n n 即 . 0])2[()12()1(112021=−++−−+−+∞=+∑n n n n x a a n x a a a 可见 a 1−1=0, 2a 2−a 0−1=0, (n +2)a n +2−a n =0(n =1, 2, ⋅ ⋅ ⋅),于是 , 11=a 2102a a +=, !!313=a , !!4104a a +=, ⋅ ⋅ ⋅ , !)!12(112−=−k a k , !)!2(102k a a k +=, ⋅ ⋅ ⋅. 所以 ]!)!2(1!)!12(1[120120∑∞=−++−+=k k k x k a x k a y ∑∑∞=∞=−++−+=12011202(!1)1(!)!12(1k k k k x k a xk a ∑∞=−−+++−=11220!)!12(1)1(12k k x x k e a , 即原方程的通解为∑∞=−−+−=1122!)!12(112k k x x k Ce y .(2)y ′′+xy ′+y =0;解 设方程的解为, 代入方程得 ∑∞==0n n n x a y ,0)1(01122=++−∑∑∑∞=∞=−∞=−n n n n n n n n n x a xna x x a n n即 , 0])1()1)(2[(21220=++++++∑∞=+n n n n x a n a n n a a 于是 0221a a −=,1331a a −=, ⋅ ⋅ ⋅,1112!)!12()1(a k a k k −−=−−,02!)!2()1(a k a k k −=, ⋅ ⋅ ⋅. 所以 ]!)!12()1(!)!2()1([12112010+∞=+−+−++=∑k k k k k x k a x k a x a a y ∑∑∞=−−∞=−−+−=11211020!)!12()1()2(!!1k k k k k x k a x k a ∑∞=−−−−−+=1121120!)!12()1(2k k k x x k a e a , 即原方程的通解为∑∞=−−−−−+=1121221!)!12()1(2k k k x x k C e C y . (3)xy ′′−(x +m )y ′+my =0(m 为自然数);解 设方程的解为, 代入方程得 ∑∞==0n n n x a y , 0)()1(01122=++−−∑∑∑∞=∞=−∞=−n n n n n n n n n x a m xna m x x a n n x 即 . 0])())(1[()(1110=−−−++−∑∞=+n n n n x a m n a m n n a a m 可见 (a 0−a 1)m =0, (n −m )[(n +1)a n +1−a n ]=0 (n ≠m ),于是 a 0=a 1,)2( )2()1(1+≥+⋅⋅⋅−=+m n m n n a a m n ,)( !11m n a n a n ≤=. 所以 ∑∑∞+=+++=+⋅⋅⋅−+++=2111100)2()1(!m n n m m m m n n x m n n a x a x n a a y∑∑∞+=+++=+++=211100!)!1(!m n n m n m mn n n x a m x a n x a ∑∑∞+=+=++=1100!)!1(!m n n m m n n n x a m n x a )!()!1(!0100∑∑=+=−++=m n n x m m n n n x e a m n x a∑=+++−++=m n n m x m n x a m a e a m 0101!])!1([)!1(, 即原方程的通解为∑=+=m n n x n x C e C y 021!(其中C 1, C 2为任意常数). (4)(1−x )y ′=x 2−y ;解 设方程的解为, 代入方程得 ∑∞==0n n n x a y ,∑∑∞=∞=−−=−0211)1(n n n n n n x a x x na x 即 . 0])1[()13(231223201=+−++−−+++∑∞=+n n n n n x a na a n x a a x a a a 可见 a 1+a 0=0, 2a 2=0, 3a 3−a 2−1=0, (n +1)a n +1−(n −1)a n =0(n ≥3),于是 a 1=−a 0, a 2=0, 313=a , )1(221−=−=−n n a n n a n n (n ≥4). 因此原方程的通解为∑∞=−++−=43)1(231)1(n n x n n x x C y (C =a 0为任意常数). . (5)(x +1)y ′=x 2−2x +y .解 设方程的解为, 代入方程得 ∑∞==0n n n x a y, ∑∑∞=∞=−+−=+02112)1(n n n n n n x a x x x na x 即 . 0])1()1[()13()1(231232210=++−+−+++++−∑∞=+n n n n x a n a n x a a x a a a 于是 a 1=a 0, a 2=−1,323=a ,)4()1(4)1( 231≥−−=−−=−−n n n a n n a n n n. 因此原方程的通解为 ∑∞=−−−++−+=4332)1(4)1(32)1(n n n x n n x x x C y (C =a 0为任意常数). 2. 试用幂级数求下列方程满足所给初始条件的解:(1)y ′=y 2+x 3, 21|0==x y ; 解 根据初始条件, 可设方程的解为∑∞=+=121n n n x a y , 代入方程得 32111)21(x x a x na n n n n n n ++=∑∑∞=∞=−, 即 ⋅⋅⋅+++++++=+∑∑∞=∞=− )2(2414312232122113211x a a a x a a x a x a x x na a n n n n n n . 比较两边同次幂的系数得411=a , 2a 2=a 1, 3a 3=a 2+a 12, 4a 4=a 3+2a 1a 2+1, ⋅ ⋅ ⋅, 于是 411=a , 812=a , 1613=a , 3294=a , ⋅ ⋅ ⋅. 因此所求特解为329161814121432⋅⋅⋅+++++=x x x x y . (2)(1−x )y ′+y =1+x , y |x =0=0;解 根据初始条件, 可设方程的解为, 代入方程得 ∑∞==1n n n x a y,x x a x na x n n n n n n +=+−∑∑∞=∞=−1)1(111即 . x x a n a n a n n n n +=−+−+∑∞=+1])1()1[(111比较系数得 , 11=a 212=a , )3( )1(121≥−=−=−n n n a n n a n n . 因此所求特解为∑∑∞=∞=−+=−++=232)1(1)1(121n n n n x n n x x n n x x y . 因为∑∞=−2)1(1n n x n n 的和函数为(1−x )ln(1−x )+x , 所以特解还可以写成 y =2x +(1−x )ln(1−x )+x .(3)0cos 22=+t x dt x d , x |t =0=a , 0|0==t dt dx . 解 根据初始条件, 可设方程的解为. ∑∞=+=2n n n t a a x 将, ∑∞=+=2n nn t a a x ∑∞=−−=2222)1(n n n t a n n dt x d 和∑∞=−=02)!2()1(cos n n n t n t 代 入方程得0)!2()1()()1(02222=−++−∑∑∑∞=∞=∞=−n n n n n n n n n t n t a a t a n n .将级数展开、整理合并同次项, 并比较系数得, a a =001=a , !22a a −=, , 03=a !424a a =, , 05=a !696a a −=, , 07=a !8558a a =, ⋅ ⋅ ⋅. 故所求特解为 !855!69!42!211(8642⋅⋅⋅++−+−=t t t t a x .习题12−21. 求下列微分方程的通解:(1)xy ′−y ln y =0;解 分离变量得dx xdy y y 1ln 1=, 两边积分得∫∫=dx x dy y y 1ln 1, 即 ln(ln y )=ln x +ln C ,故通解为y =e Cx .(2)3x 2+5x −5y ′=0;解 分离变量得5dy =(3x 2+5x )dx ,两边积分得, ∫∫+=dx x x dy )53(52即 123255C x x y ++=, 故通解为C x x y ++=232151, 其中151C =为任意常数.(3)2211y y x −=′−;解 分离变量得2211x dx y dy −=−, 两边积分得∫∫−=−2211x dx y dy 即 arcsin y =arcsin x +C ,故通解为y =sin(arcsin x +C ).(4)y ′−xy ′=a (y 2+y ′);解 方程变形为(1−x −a )y ′=ay 2, 分离变量得dx x a a dy y −−=112, 两边积分得∫∫−−=dx xa a dy y 112, 即 1)1ln(1C x a a y−−−−=−, 故通解为)1ln(1x a a C y −−+=, 其中C =aC 1为任意常数. (5)sec 2x tan ydx +sec 2y tan xdy =0; 解 分离变量得dx xx y y y tan sec tan sec 22−=, 两边积分得∫∫−=dx xx y y y tan sec tan sec 22, 即 ln(tan y )=−ln(tan x )+ln C , 故通解为tan x tan y =C .(6)y x dxdy +=10; 解 分离变量得10−y dy =10x dx ,两边积分得∫∫=−dx dy x y 1010, 即 10ln 10ln 1010ln 10C x y +=−−, 或 10−y =10x +C ,故通解为y =−lg(C −10x ).(7)(e x +y −e x )dx +(e x +y +e y )dy =0;解 方程变形为e y (e x +1)dy =e x (1−e y )dx , 分离变量得dx e e dy e e xx y y +=−11, 两边积分得∫∫+=−dx e e dy e e xx y y 11, 即 −ln(e y )=ln(e x +1)−ln C ,故通解为(e x +1)(e y −1)=C .(8)cos x sin ydx +sin x cos ydy =0;解 分离变量得dx xx dy y y sin cos sin cos −=, 两边积分得∫∫−=dx x x dy y y sin cos sin cos , 即 ln(sin y )=−ln(sin x )+ln C ,故通解为sin x sin y =C .(9)0)1(32=++x dxdy y ; 解 分离变量得(y +1)2dy =−x 3dx ,两边积分得∫∫−=+dx x dy y 32)1(, 即 14341)1(31C x y +−=+, 故通解为4(y +1)3+3x 4=C (C =12C 1).(10)ydx +(x 2−4x )dy =0.解 分离变量得dx xx dy y 411(4−+=, 两边积分得∫∫−+=dx x x dy y )411(4, 即 ln y 4=ln x −ln(4−x )+ln C ,故通解为y 4(4−x )=Cx .2. 求下列微分方程满足所给初始条件的特解:(1)y ′=e 2x −y , y |x =0=0;解 分离变量得e y dy =e 2x dx ,两边积分得, ∫∫=dx e dy e x y 2即 C e e x y +=221,或 )21ln(2C e y x +=.由y |x =0=0得0)21ln(=+C , 21=C , 所以特解2121ln(2+=x e y .(2)cos x sin ydy =cos y sin xdx , 4|0π==x y ; 解 分离变量得tan y dy =tan x dx ,两边积分得∫∫=xdx ydy tan tan ,即 −ln(cos y )=−ln(cos x )−ln C , 或 cos y =C cos x . 由4|0π==x y 得C C ==0cos 4cos π, 21=C , 所以特解为x y cos cos 2=.(3)y ′sin x =y ln y , e y x ==2π;解 分离变量得dx xdy y y sin 1ln 1=, 两边积分得∫∫=dx x dy y y sin 1ln 1,即 C xy ln 2ln(tan )ln(ln +=, 或2tan x C e y =. 由e y x ==π2得4tan πC e e =, C =1,所以特解为2tan x e y =.(4)cos ydx +(1+e −x )sin ydy =0, 4|0π==x y ; 解 分离变量得dx e e dy y y x x +=−1cos sin , 两边积分得∫∫+=−dx e e dy y y xx 1cos sin , 即 ln|cos y |=ln(e x +1)+ln |C |,或 cos y =C (e x +1).由4|0π==x y 得)1(4cos 4+=ππe C , 42=C , 所以特解为)1(42cos +=x e y . (5)xdy +2ydx =0, y |x =2=1.解 分离变量得dx xdy y 21−=, 两边积分得∫∫−=dx x dy y 21, 即 ln y =−2ln x +ln C ,或 y =Cx −2.由y |x =2=1得C ⋅2−2=1, C =4, 所以特解为24x y =.3. 有一盛满了水的圆锥形漏漏斗, 高为10cm , 顶角为60°, 漏斗下面有面积为0. 5cm 2的孔, 求水面高度变化的规律及流完所需的时间.解 设t 时该已流出的水的体积为V , 高度为x , 则由水力学有x dtdV )9802(5.062.0×××=, 即dt x dV )9802(5.062.0×××=. 又因为330tan x x r =°=,故 dx x dx r V 223ππ−=−=, 从而 dx x dt x 23)9802(5.062.0π−=×××, 即 x dt 2398025.062.03×××=π,因此 C x t +×××−=2598025.062.032π. 又因为当t =0时, x =10, 所以251098025.062.053××××=πC ,故水从小孔流出的规律为 645.90305.0)10(98025.062.0532252525+−=−××××=x x t π. 令x =0, 得水流完所需时间约为10s .4. 质量为1g (克)的质点受外力作用作直线运动, 这外力和时间成正比, 和质点运动的速度成反比. 在t =10s 时, 速度等于50cm/s , 外力为4g cm/s 2, 问从运动开始经过了一分钟后的速度是多少?解 已知v t k F =, 并且法t =10s 时, v =50cm/s , F =4g cm/s 2, 故50104k =, 从而k =20, 因此vt F 20=. 又由牛顿定律, F =ma , 即v t dt dv 201=⋅, 故v dv =20t d t . 这就是速度与时间应满足的微分方程. 解之得C t v +=221021, 即C t v 2202+=. 由初始条件有C +×=2210105021, C =250. 因此 500202+=t v .当t =60s 时, cm/s 3.26950060202=+×=v .5. 镭的衰变有如下的规律: 镭的衰变速度与它的现存量R 成正比. 由经验材料得知, 镭经过1600年后, 只余原始量R 0的一半. 试求镭的量R 与时间t 的函数关系.解 由题设知,R dt dR λ−=, 即dt RdR λ−=, 两边积分得ln R =−λt +C 1,从而 .)( 1C t e C Ce R ==−λ 因为当t =0时, R =R 0, 故R 0=Ce 0=C , 即R =R 0e −λt .又由于当t =1600时, 021R R =, 故λ16000021−=e R R , 从而16002ln =λ. 因此 t t e R e R R 000433.0010002ln 0−−==.6. 一曲线通过点(2, 3), 它在两坐标轴间的任一切线线段均被切点所平分, 求这曲线方程.解 设切点为P (x , y ), 则切线在x 轴, y 轴的截距分别为2x , 2y , 切线斜率为 xy x y −=−−2002, 故曲线满足微分方程:x y dx dy −=, 即dx x dy y 11−=, 从而 ln y +ln x =ln C , xy =C .因为曲线经过点(2, 3), 所以C =2×3=6, 曲线方程为xy =6.7. 小船从河边点O 处出发驶向对岸(两岸为平行直线). 设船速为a , 船行方向始终与河岸垂直, 又设河宽为h , 河中任一点处的水流速度与该点到两岸距离的乘积成正比(比例系数为k ). 求小船的航行路线.解 建立坐标系如图. 设t 时刻船的位置为(x , y ), 此时水速为)(y h ky dt dx v −==, 故dx =ky (h −y )dt .又由已知, y =at , 代入上式得dx =kat (h −at )dt ,积分得C t ka kaht x +−=3223121.由初始条件x |t =0=0, 得C =0, 故3223121t ka kaht x −=. 因此船运动路线的函数方程为⎪⎩⎪⎨⎧=−=ayy t ka kaht x 3223121, 从而一般方程为)312(32y y h a k x −=.习题12−31. 求下列齐次方程的通解:(1)022=−−−′x y y y x ;解 原方程变为1)(2−−=x y x y dx dy . 令xy u =, 则原方程化为 12−+=+u u dx du x u , 即dx x du u 1112=−, 两边积分得C x u u ln ln )1ln(2+=−+, 即Cx u u =−+12, 将xy u =代入上式得原方程的通解Cx x y x y =−+1)(2, 即222Cx x y y =−+. (2)xy y dx dy xln =; 解 原方程变为xy x y dx dy ln =. 令xy u =, 则原方程化为 u u dx du x u ln =+, 即dx x du u u 1)1(ln 1=−, 两边积分得ln(ln u −1)=ln x +ln C , 即u =e Cx +1, 将xy u =代入上式得原方程的通解 y =xe Cx +1.(3)(x 2+y 2)dx −xydy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+x 2u 2)dx −x 2u (udx +xdu )=0, 即dx x udu 1=,两边积分得u 2=ln x 2+C , 将xy u =代入上式得原方程的通解 y 2=x 2(ln x 2+C ).(4)(x 3+y 3)dx −3xy 2dy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 3+x 3u 3)dx −3x 3u 2(udx +xdu )=0, 即dx x du u u 121332=−, 两边积分得C x u ln ln )21ln(213+=−−, 即2312x C u −=, 将xy u =代入上式得原方程的通解 x 3−2y 3=Cx .(5)0ch 3)ch 3sh2(=−+dy xy x dx x y y x y x ; 解 原方程变为xy x y dx dy +=th 32. 令xy u =, 则原方程化为 u u dx du x u +=+th 32, 即dx x du u u 2sh ch 3=, 两边积分得3ln(sh u )=2ln x +ln C , 即sh 3u =Cx 2, 将xy u =代入上式得原方程的通解 22sh Cx xy =. (6)0)1(2)21(=−++dy yx e dx e y x y x . 解 原方程变为y xy xe e y x dy dx 21)1(2+−=.令yx u =, 则原方程化为 u u e e u dy du y u 21)1(2+−=+, 即u u ee u dy du y 212++−=, 分离变量得dy y du e u e uu 1221−=++, 两边积分得ln(u +2e u )=−ln y +ln C , 即y (u +2e u )=C , 将yx u =代入上式得原方程的通解 C e yx y y x =+)2(, 即C ye x y x =+2. 2. 求下列齐次方程满足所给初始条件的特解:(1)(y 2−3x 2)dy +2xydx =0, y |x =0=1;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2u 2−3x 2)(udx +xdu )+2x 2udx =0,即 dx x du u u u 1332=−−, 或dx x du u u u 1)11113(=−+++− 两边积分得−3ln |u |+ln|u +1|+ln|u −1|=ln|x |+ln|C |, 即u 2−1=Cxu 3, 将xy u =代入上式得原方程的通解 y 2−x 2=Cy 3.由y |x =0=1得C =1, 故所求特解为y 2−x 2=y 3.(2)xy y x y +=′, y |x =1=2; 解 令xy u =, 则原方程化为 u u dx du x u +=+1, 即dx xudu 1=, 两边积分得C x u +=ln 212,将xy u =代入上式得原方程的通解 y 2=2x 2(ln x +C ).由y |x =1=2得C =2, 故所求特解为y 2=2x 2(ln x +2).(3)(x 2+2xy −y 2)dx +(y 2+2xy −x 2)dy =0, y |x =1=1.解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+2x 2u −x 2u 2)dx +(x 2u 2+2x 2u −x 2)(udx +xdu )=0,即dx x du u u u u u 1112232−=+++−+, 或 dx x du u u u 1)1211(2=+−+, 两边积分得ln|u +1|−ln(u 2+1)=ln|x |+ln|C |, 即u +1=Cx (u 2+1), 将xy u =代入上式得原方程的通解 x +y =C (x 2+y 2).由y |x =1=1得C =1, 故所求特解为x +y =(x 2+y 2).3. 设有连结点O (0, 0)和A (1, 1)的一段向上凸的曲线弧A O , 对于A O 上任一点P (x , y ), 曲线弧P O 与直线段所围图形的面积为x 2, 求曲线弧A O 的方程. 解 设曲线弧A O 的方程为y =y (x ). 由题意得 20)(21)(x x xy dx x y x =−∫,两边求导得 x x y x x y x y 2)(21)(21)(=′−−, 即 4−=′x y y . 令xy u =, 则有 4−=+u dx du x u , 即dx xdu u 41−=, 两边积分得u =−4ln x +C . 将xy u =代入上式得方程的通解 y =−4x ln x +Cx .由于A (1, 1)在曲线上, 即y (1)=1, 因而C =1, 从则所求方程为y =−4x ln x +x .习题12−41. 求下列微分方程的通解:(1)x e y dxdy −=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+⋅=+∫⋅∫=−−−−−∫∫. (2)xy ′+y =x 2+3x +2;解 原方程变为x x y x y 231++=+′.])23([11C dx e x x e y x x +∫⋅++∫=∫−])23(1])23([12C dx x x x C xdx x x x +++=+++=∫∫x Cx x C x x x x +++=+++=22331)22331(1223.(3)y ′+y cos x =e −sin x ;解 )(cos sin cos C dx e e e y xdx x dx +∫⋅∫=∫−−)()(sin sin sin sin C x e C dx e e e x x x x +=+⋅=−−−∫.(4)y ′+y tan x =sin 2x ;解 )2sin (tan tan C dx e x e y xdx xdx +∫⋅∫=∫−)2sin (cos ln cos ln C dx e x e x x +⋅=∫−∫+⋅=)cos 1cos sin 2(cos C dx x x x x=cos x (−2cos x +C )=C cos x −2cos 2x .(5)(x 2−1)y ′+2xy −cos x =0;解 原方程变形为1cos 1222−=−+′x xy x xy .)1cos(1221222C dx e x x e y x xdx x x +∫⋅−∫=∫−−−)(sin 11])1(1cos [112222C x x C dx x x xx +−=+−⋅−−=∫.(6)23=+ρθρd d ; 解 )2(33C d e e d d +∫⋅∫=∫−θρθθ )2(33C d e e +=∫−θθθ θθθ33332)32(−−+=+=Ce C e e . (7)x xy dxdy 42=+; 解 )4(22C dx e x e y xdx xdx +∫⋅∫=∫− )4(22C dx e x e x x +⋅=∫− .2222)2(x x x Ce C e e −−+=+= (8)y ln ydx +(x −ln y )dy =0;解 原方程变形为y x y y dy dx 1ln 1=+. )1(ln 1ln 1C dy e ye x y y dy y y +∫⋅∫=∫− )ln 1(ln 1C ydy yy +⋅=∫ yC y C y y ln ln 21)ln 21(ln 12+=+=. (9)3)2(2)2(−+=−x y dxdy x ; 解 原方程变形为2)2(221−=−−x y x dx dy . ])2(2[21221C dx e x e y dx x dx x +∫⋅−∫=∫−−− ∫+−⋅−−=]21)2(2)[2(2C dx x x x =(x −2)[(x −2)2+C ]=(x −2)3+C (x −2).(10)02)6(2=+−y dxdy x y .解 原方程变形为y x y dy dx 213−=−. ])21([33C dy e y e x y dy y +∫⋅−∫=∫− )121(33C dy y y y +⋅−=∫ 32321)21(Cy y C y y +=+=. 2. 求下列微分方程满足所给初始条件的特解:(1)x x y dxdy sec tan =−, y |x =0=0; 解 )sec (tan tan C dx e x e y xdx xdx +∫⋅∫=∫− )(cos 1)cos sec (cos 1C x xC xdx x x +=+⋅=∫. 由y |x =0=0, 得C =0, 故所求特解为y =x sec x .(2)xx x y dx dy sin =+, y |x =π=1; 解 )sin (11C dx e x x e y dx x x +∫∫=∫− )cos (1)sin (1C x xC xdx x x x +−=+⋅=∫. 由y |x =π=1, 得C =π−1, 故所求特解为)cos 1(1x x y −−=π. (3)x e x y dx dy cos 5cot =+, 4|−==πx y ; 解 )5(cot cos cot C dx e e e y xdx x xdx +∫⋅∫=∫− )5(sin 1)sin 5(sin 1cos cos C e xC xdx e x x x +−=+⋅=∫. 由4|2−==πx y , 得C =1, 故所求特解为)15(sin 1cos +−=x e x y . (4)83=+y dxdy , y |x =0=2;解 )8(33C dx e e y dx dx +∫⋅∫=∫− x x x x x Ce C e e C dx e e 3333338)38()8(−−−+=+=+=∫. 由y |x =0=2, 得32−=C , 故所求特解为)4(323x e y −−=. (5)13232=−+y x x dx dy , y |x =1=0. 解 )1(223232C dx e e y dx x x dx x x +∫⋅∫=∫−−− )21()1(22221131313C e e x C dx e x e x x x x x +=+=−−∫. 由y |x =1=0, 得e C 21−=, 故所求特解为)1(211132−−=x e x y . 3. 求一曲线的方程, 这曲线通过原点, 并且它在点(x , y )处的切线斜率等于2x +y . 解 由题意知y ′=2x +y , 并且y |x =0=0.由通解公式得)2()2(C dx xe e C dx xe e y x x dx dx +=+∫∫=∫∫−− =e x (−2xe −x −2e −x +C )=Ce x −2x −2.由y |x =0=0, 得C =2, 故所求曲线的方程为y =2(e x −x −1).4. 设有一质量为m 的质点作直线运动, 从速度等于零的时刻起, 有一个与运动方向一至、大小与时间成正比(比例系数为k 1)的力作用于它, 此外还受一与速度成正比(比例系数为k 2)的阻力作用. 求质点运动的速度与时间的函数关系.解 由牛顿定律F =ma , 得v k t k dt dv m21−=, 即t m k v m k dt dv 12=+. 由通解公式得)()(222211C dt e t m k e C dt e t m k e v t m k t m k dt m km k +⋅=+∫⋅∫=∫∫−− )(22222121C e k m k te k k e t m kt m k t m k +−=−.由题意, 当t =0时v =0, 于是得221k m k C =. 因此 )(22122121222k m k e k m k te k k e v t m k t m k m k +−=− 即 )1(22121t m k e k m k t k k v −−−=. 5. 设有一个由电阻R =10Ω、电感L =2h(亨)和电源电压E =20sin5t V (伏)串联组成的电路. 开关K 合上后, 电路中有电源通过. 求电流i 与时间t 的函数关系.解 由回路电压定律知01025sin 20=−−i dt di t , 即t i dt di 5sin 105=+. 由通解公式得t dt dt Ce t t C dt e t e i 5555cos 5sin )5sin 10(−−+−=+∫⋅∫=∫. 因为当t =0时i =0, 所以C =1. 因此)45sin(25cos 5sin 55π−+=+−=−−t e e t t i t t (A).6. 设曲在右半平面(x >0)内与路径无关, 其中f (x )可导, 且f (1)=1, 求f (x ).dy x x xf dx x yf L ])(2[)(2−+∫ 解 因为当x >0时, 所给积分与路径无关, 所以])(2)]([2x x xf xx yf y −∂∂=∂∂, 即 f (x )=2f (x )+2xf ′(x )−2x , 或 1)(21)(=+′x f xx f . 因此 x C x C dx x x C dx e e x f dx x dx x +=+=+∫⋅∫=∫∫−32)(1)1()(2121. 由f (1)=1可得31=C , 故xx x f 3132)(+=. 7. 求下列伯努利方程的通解:(1))sin (cos 2x x y y dxdy −=+;解 原方程可变形为x x ydx dy y sin cos 11−=+, 即x x y dx y d cos sin )(11−=−−−. ])cos sin ([1C dx e x x e y dx dx +∫⋅−∫=−−∫x Ce C dx e x x e x x x sin ])sin (cos [−=+−=∫−, 原方程的通解为x Ce y x sin 1−=. (2)23xy xy dxdy =−; 解 原方程可变形为x y x dxdy y =−1312, 即x xy dx y d −=+−−113)(. ])([331C dx e x e y xdx xdx +∫⋅−∫=∫−−)(222323C dx xe e x x +−=∫− 31)31(222232323−=+−=−−x x x Ce C e e , 原方程的通解为311223−=−x Ce y . (3)4)21(3131y x y dx dy −=+; 解 原方程可变形为)21(31131134x y dx dy y −=+, 即12)(33−=−−−x y dx y d . ])12([3C dx e x e y dx dx +∫⋅−∫=−−∫x x x Ce x C dx e x e +−−=+−=∫−12])12([, 原方程的通解为1213−−=x Ce y x .(4)5xy y dxdy =−; 解 原方程可变形为x ydx dy y =−4511, 即x y dx y d 44)(44−=+−−. ])4([444C dx e x e y dx dx +∫⋅−∫=∫−− )4(44C dx xe e x +−=∫− x Ce x 441−++−=, 原方程的通解为x Ce x y 44411−++−=.(5)xdy −[y +xy 3(1+ln x )]dx =0.解 原方程可变形为 )ln 1(11123x yx dx dy y +=⋅−⋅, 即)ln 1(22)(22x y x dx y d +−=+−−. ])ln 1(2[222C dx e x e y x dx x +∫⋅+−∫=∫−− ])ln 1(2122C dx x x x ++−=∫ x x x x C 94ln 322−−=, 原方程的通解为x x x x C y 94ln 32122−−=. 8. 验证形如yf (xy )dx +xg (xy )dy =0的微分方程, 可经变量代换v =xy 化为可分离变量的方程, 并求其通解.解 原方程可变形为)()(xy xg xy yf dx dy −=. 在代换v =xy 下原方程化为)()(22v g x v vf x v dx dv x −=−,即dx xdu v f v g v v g 1)]()([)(=−, 积分得 C x du v f v g v v g +=−∫ln )]()([)(, 对上式求出积分后, 将v =xy 代回, 即得通解.9. 用适当的变量代换将下列方程化为可分离变量的方程, 然 后求出通解:(1)2)(y x dxdy +=; 解 令u =x +y , 则原方程化为21u dx du =−, 即21u du dx +=. 两边积分得x =arctan u +C .将u =x +y 代入上式得原方程的通解x =arctan(x +y )+C , 即y =−x +tan(x −C ).(2)11+−=yx dx dy ; 解 令u =x −y , 则原方程化为 111+=−udx du , 即dx =−udu . 两边积分得 1221C u x +−=.将u =x +y 代入上式得原方程的通解12)(21C y x x +−−=, 即(x −y )2=−2x +C (C =2C 1).(3)xy ′+y =y (ln x +ln y );解 令u =xy , 则原方程化为u x u x u x u dx du x x ln )1(2=+−, 即du uu dx x ln 11=. 两边积分得ln x +ln C =lnln u , 即u =e Cx .将u =xy 代入上式得原方程的通解xy =e Cx , 即Cx e xy 1=. (4)y ′=y 2+2(sin x −1)y +sin 2x −2sin x −cos x +1;解 原方程变形为y ′=(y +sin x −1)2−cos x .令u =y +sin x −1, 则原方程化为x u x dx du cos cos 2−=−, 即dx du u =21. 两边积分得 C x u +=−1. 将u =y +sin x −1代入上式得原方程的通解 C x x y +=−+−1sin 1, 即C x x y +−−=1sin 1.(5)y (xy +1)dx +x (1+xy +x 2y 2)dy =0 . 解 原方程变形为)1()1(22y x xy x xy y dx dy +++−=. 令u =xy , 则原方程化为)1()1(1222u u x u u x u dx du x +++−=−, 即)1(1223u u x u dx du x ++=. 分离变量得du uu u dx x )111(123++=. 两边积分得 u uu C x ln 121ln 21+−−=+. 将u =xy 代入上式得原方程的通解 xy xy y x C x ln 121ln 221+−−=+, 即 2x 2y 2ln y −2xy −1=Cx 2y 2(C =2C 1).习题12−51. 判别下列方程中哪些是全微分方程, 并求全微分方程的通解:(1)(3x 2+6xy 2)dx +(6x 2y +4y 2)dy =0;解 这里P =3x 2+6xy 2, Q =6x 2y +4y 2. 因为x Q xy yP ∂∂==∂∂12, 所以此方程是全微分方程, 其通解为 , C dy y y x dx x y x =++∫∫02202)46(3即 C y y x x =++3223343. (2)(a 2−2xy −y 2)dx −(x +y )2dy =0;解 这里P =a 2−2xy −y 2, Q =−(x +y )2. 因为xQ y x y P ∂∂=−−=∂∂22, 所以此方程是全微分方程, 其通解为 , C dy y x dx a y x =+−∫∫0202)(即 a 2x −x 2y −xy 2=C .(3)e y dx +(xe y −2y )dy =0;解 这里P =e y , Q =xe y −2y . 因为x Q e yP y ∂∂==∂∂, 所以此方程是全微分方程, 其通解为 , C dy y xe dx e y y x =−+∫∫000)2(即 xe y −y 2=C .(4)(x cos y +cos x )y ′−y sin x +sin y =0;解 原方程变形为(x cos y +cos x )dy −(y sin x +sin y )dx =0. 这里P =−(y sin x +sin y ), Q =x cos y +cos x . 因为xQ x y y P ∂∂=−=∂∂sin cos ,所以此方程是全微分方程, 其通解为, C dy x y x dx yx =++∫∫00)cos cos (0即 x sin y +y cos x =C .解(5)(x 2−y )dx −xdy =0;解 这里P =x 2−y , Q =−x . 因为x Q yP ∂∂=−=∂∂1, 所以此方程是全微分方程, 其通解为, C xdy dx x y x =−∫∫002即 C xy x =−331. (6)y (x −2y )dx −x 2dy =0;解 这里P =y (x −2y ), Q =−x 2. 因为y x yP 4−=∂∂, x x Q 2−=∂∂, 所以此方程不是全微分方程.(7)(1+e 2θ)d ρ+2ρe 2θd θ=0;解 这里P =1+e 2θ, Q =2ρe 2θ. 因为xQ e y P ∂∂==∂∂θ22, 所以此方程是全微分方程, 其通解为 , C d e d =+∫∫θθρθρρ02022即 ρ(e 2θ+1)=C .(8)(x 2+y 2)dx +xydy =0.解 这里P =x 2+y 2, Q =xy . 因为y yP 2=∂∂, y x Q =∂∂, 所以此方程不是全微分方程.2. 利用观察法求出下列方程的积分因子, 并求其通解:(1)(x +y )(dx −dy )=dx +dy ;解 方程两边同时乘以y x +1得 y x dy dx dy dx ++=−, 即d (x −y )=d ln(x +y ), 所以yx +1为原方程的一个积分因子, 并且原方程的通解为 x −y =ln(x +y )+C .(2)ydx −xdy +y 2xdx =0;解 方程两边同时乘以21y 得 02=+−xdx y xdy ydx , 即02()(2=+x d y x d , 所以21y 为原方程的一个积分因子, 并且原方程的通解为 C x y x =+22. (3)y 2(x −3y )dx +(1−3y 2x )dy =0;解 原方程变形为xy 2dx −3y 3dx +dy −3x 2dy =0, 两边同时乘以21y 并整理得 0)33(2=+−+xdy ydx ydy xdx , 即0)(3)1()2(2=−−xy d y d x d , 所以21y 为原方程的一个积分因子, 并且原方程的通解为 C xy yx =−−3122. (4)xdx +ydy =(x 2+y 2)dx ;解 方程两边同时乘以221y x +得 022=−++dx yx ydy xdx , 即0)]ln(21[22=−+dx y x d , 所以221y x +为原方程的一个积分因子, 并且原方程的通解为 x 2+y 2=Ce 2x .(5)(x −y 2)dx +2xydy =0;解 原方程变形为xdx −y 2dx +2xydy =0, 两边同时乘以21x 得 0222=−+x dx y xydy x dx , 即0)()(ln 2=+x y d x d , 所以21x为原方程的一个积分因子, 并且原方程的通解为 C x y x =+2ln , 即x ln x +y 2=Cx . (6)2ydx −3xy 2dx −xdy =0.解 方程两边同时乘以x 得2xydx −x 2dy −3x 2y 2dx =0, 即yd (x 2)−x 2dy −3x 2y 2dx =0, 再除以y 2得03)(2222=−−dx x ydy x x yd , 即0)(32=−x y x d 所以2y x 为原方程的一个积分因子, 并且原方程的通解为 032=−x yx . 3. 验证)]()([1xy g xy f xy −是微分方程yf (xy )dx +xg (xy )dy =0的积分因子, 并求下列方程的通解:解 方程两边乘以)]()([1xy g xy f xy −得 0])()()]()([1=+−dy xy xg dx xy yf xy g xy f xy , 这里)]()([)(xy g xy f x xy f P −=, )]()([)(xy g xy f y xy g Q −=. 因为x Q xy g xy f xy g xy f xy g xy f y P ∂∂=−′−′=∂∂2)]()([)()()()(, 所以)]()([1xy g xy f xy −是原方程的一个积分因子. (1)y (x 2y 2+2)dx +x (2−2x 2y 2)dy =0;解 这里f (xy )=x 2y 2+2, g (xy )=2−2x 2y 2 , 所以 31)]()([1y x xy g xy f xy =− 是方程的一个积分因子. 方程两边同乘以3331y x 得全微分方程 032323222232=−++dy y x y x dx y x x , 其通解为C dy y x y x dx x x y x =−++∫∫122123232, 即C y x y x =−+−)11ln (ln 31222, 或2212y x e Cy x =.(2)y (2xy +1)dx +x (1+2xy −x 3y 3)dy =0.解 这里f (x y )=2x y +1, g (x y )=1+2x y −x 3 y 3 , 所以 441)]()([1yx xy g xy f xy =− 是方程的一个积分因子. 方程两边同乘以1y x 得全微分方程 02112433334=−+++dy y x y x xy dx yx xy ,其通解为C dy y x y x xy dx x x y x =−+++∫∫14333142112, 即 C y y x y x =++||ln 3113322. 4. 用积分因子法解下列一阶线性方程:(1)xy ′+2y =4ln x ;解 原方程变为x x y x y ln 42=+′, 其积分因子为 22)(x e x x =∫=μ, 在方程x xy x y ln 42=+′的两边乘以x 2得 x 2y ′+2xy =4x ln x , 即(x 2y )′=4x ln x ,两边积分得, C x x x xdx x y x +−==∫222ln 2ln 4原方程的通解为21ln 2x C x y +−=. (2)y ′−tan x ⋅y =x . 解 积分因子为,x e x xdx cos )(tan =∫=−μ在方程的两边乘以cos x 得cos x ⋅y ′−sin x ⋅y =x cos x , 即(cos x ⋅y )′=x cos x , 两边积分得C x x x xdx x y x ++==⋅∫cos sin cos cos , 方程的通解为xC x x y cos 1tan ++=.习题12−61. 求下列各微分方程的通解:(1)y ′′=x +sin x ;解 12cos 21)sin (C x x dx x x y +−=+=′∫, 21312sin 61)cos 21(C x C x x dx C x x y ++−=+−=∫, 原方程的通解为213sin 61C x C x x y ++−=. (2)y ′′′=xe x ;解 , 12C e xe dx xe y x x x +−==′′∫, 21122)2(C x C e xe dx C e xe y x x x x ++−=+−=′∫, 3221213)22(C x C x C e xe dx C x C e xe y x x x x +++−=++−=∫原方程的通解为.32213C x C x C e xe y x x +++−= (3)211x y +=′′; 解 12arctan 11C x dx x y +=+=′∫ x C dx x x x x dx C x y 1211arctan )(arctan ++−=+=∫∫ 212)1ln(21arctan C x C x x x +++−=, 原方程的通解为2121ln arctan C x C x x x y +++−=.(4)y ′′=1+y ′2;解 令p =y ′, 则原方程化为p ′=1+p 2, 即dx dp p =+211, 两边积分得arctan p =x +C 1, 即y ′=p =tan(x +C 1),, 211|)cos(|ln )tan(C C x dx C x y ++−=+=∫原方程的通解为21|)cos(|ln C C x y ++−=.(5)y ′′=y ′+x ;解 令p =y ′, 则原方程化为p ′−p =x ,由一阶线性非齐次方程的通解公式得, 1)()(111−−=+=+∫⋅∫=∫∫−−x e C C dx xe e C dx e x e p x x x dx dx 即 y ′=C 1e x −x −1,于是 221121)1(C x x e C dx x e C y x x +−−=−−=∫, 原方程的通解为22121C x x e C y x +−−=.(6)xy ′′+y ′=0;解 令p =y ′, 则原方程化为 x p ′+p =0, 即01=+′p xp , 由一阶线性齐次方程的通解公式得xC e C e C p x x 1ln 111==∫=−−, 即 xC y 1=′, 于是 211ln C x C dx xC y +==∫, 原方程的通解为y =C 1ln x +C 2 .(7)yy ′′+′=y ′2;解 令p =y ′, 则dy dp p dx dy dy dp y =⋅=′′, 原方程化为 21p dy dp yp =+, 即dy y dp p p 112=−, 两边积分得||ln ||ln |1|ln 2112C y p +=−, 即. 22121y C p ±− 当|y ′|=|p |>1时, 方程变为2211y C y +±=′, 即dx dy y C ±=+21)(11, 两边积分得arcsh(C 1y )=±C 1x +C 2,即原方程的通解为)(sh 1121x C C C y ±=. 当|y ′|=|p |<1时, 方程变为 2211y C y −±=′, 即dx dy y C ±=−21)(11, 两边积分得arcsin(C 1y )=±C 1x +C 2,即原方程的通解为)(sin 1121x C C C y ±=.(8)y 3y ′′−1=0;解 令p =y ′, 则dy dp py =′′, 原方程化为 013=−dy dp py , 即pdp =y −3dy , 两边积分得122212121C y p +−=−, 即p 2=−y −2+C 1, 故 21−−±=′y C y , 即dx dy y C ±=−−211, 两边积分得)(12121C x C y C +±=−,即原方程的通解为C 1y 2=(C 1x +C 2)2 .(9)yy 1=′′; 解 令p =y ′, 则dy dp py =′′, 原方程化为 y dy dp p 1=, 即dy ypdp 1=, 两边积分得122221C y p +=, 即1244C y p +=, 故 12C y y +±=′, 即dx dy C y ±=+11, 两边积分得原方程的通211231]2)(32[C C y C C y x ++−+±=.(10)y ′′=y ′3+y ′. 解 令p =y ′, 则dydp py =′′, 原方程化为 p p dy dp p +=3, 即0)]1([2=+−p dy dp p . 由p =0得y =C , 这是原方程的一个解. 由0)1(2=+−p dydp 得 arctan p =y −C 1, 即y ′=p =tan(y −C 1),从而 )sin(ln )tan(1112C y dy C y C x −=−=+∫, 故原方程的通解为.12arcsin C e y C x +=+ 2. 求下列各微分方程满足所给初始条件的特解:(1)y 3 y ′′+1=0, y |x =1=1, y ′|x =1=0;解 令p =y ′, 则dy dp p y =′′, 原方程化为013=+dy dp p y , 即dy ypdp 31−=, 两边积分得1221C y p +=, 即y y C y 211+±=′. 由y |x =1=1, y ′|x =1=0得C 1=−1, 从而yy y 21−±=′, 分离变量得dx dy yy =−±21, 两边积分得221C x y +=−±, 即22)(1C x y +−±=.由y |x =1=1得C 2=−1, 2)1(1−−=x y , 从而原方程的通解为22x x y −=.(2)y ′′−ay ′2=0, y |x =0=0, y ′|x =0=−1;解 令p =y ′, 则原方程化为02=−ap dx dp , 即adx dp p=21, 两边积分得 11C ax p +=−, 即11C ax y +−=′. 由y ′|x =0=−1得C 1=1, 11+−=′ax y , 两边积分得 2)1ln(1C ax a y ++−=.由y |x =0=0得C 2=0, 故所求特解为)1ln(1+−=ax a y .(3)y ′′′=e ax , y |x =1=y ′|x =1=y ′′|x =1=0;解 11C e adx e y ax ax +==′′∫.。

同济大学第五版高等数学下D12_4一阶线性1 2

同济大学第五版高等数学下D12_4一阶线性1 2
版高等
数学下
第十二章
D12_4一一阶线性微分方程
阶线性1
2
一、一阶线性微分方程
二、伯努利方程
机动 目录 上页 下页 返回 结束
同济大学第五版高等数
学下D12_4一阶线性1 2
一阶线性微分方程标准形式:
dyP(x)yQ(x)
dx
若 Q(x) 0, 称为齐次方程 ;
若 Q(x) 0, 称为非齐次方程 .
y u (x 1 )2 2 u (x 1 )
1
代入非齐次方程得 u(x1) 2
解得
u2(x1)32C
3
故原方程通解为 y(x1)2 3 2(x1)32C
机动 目录 上页 下页 返回 结束
同济大学第
五版高等数 学下D12_4
dxxy2y
x y3
dy0的通解
.
一解阶: 注线意性x1,
2 y
同号,
令uy1n, 化为线性方程求解.
机动 目录 上页 下页 返回 结束
五版高等数
学下D12_4 判一别阶下线列方性程1 类2 型:
(1) xdyyxydy
dx
dx提示:ຫໍສະໝຸດ y 1dy dxy
x
可分离 变量方程
(2) xdyy(lnylnx)
dy y ln y
齐次方程
dx
dx x x
(3 )(y x 3 )d x 2 xd y 0 dy 1 y x2 线性方程
ueP(x)dxP(x)ueP(x)dxP(x) ueP(x)dxQ(x)

duQ(x)eP(x)dx
两端积分得对应齐dux次方Q 程(x通)e解P (x)yd xd C xe C P(x)dx

高数第五版答案(同济)12-7

高数第五版答案(同济)12-7

GAGGAGAGGAFFFFAFAF习题1271下列函数组在其定义区间内哪些是线性无关的?(1)x x2解 因为x xx =2不恒为常数 所以xx 2是线性无关的(2)x2x解 因为22=xx 所以x 2x 是线性相关的(3)e2x3e2x解 因为332=xxee 所以e 2x3e 2x是线性相关的(4)exex解 因为x x x e ee 2=-不恒为常数 所以exe x是线性无关的(5)cos2x sin2x解 因为x xx 2tan 2cos 2sin =不恒为常数所以cos2xsin2x是线性无关的GAGGAGAGGAFFFFAFAF(6) 2xe 22xxe解 因为x exe x x 2222=不恒为常数 所以2xe 22x xe 是线性无关的(7)sin2x cos x ×sin x解 因为2sin cos 2sin =xx x 所以sin2xcos x ×sin x 是线性相关的(8)e xcos2x e xsin2x解 因为x xe x e x x 2tan 2cos 2sin =不恒为常数所以e xcos2xe x sin2x 是线性无关的(9)ln xx ln x解 因为x xx x =ln ln 不恒为常数 所以ln xx ln x 是线性无关的(10)eaxe bx(ab )GAGGAGAGGAFFFFAFAF解 因为x a b ax bx e ee )(-=不恒为常数 所以eaxe bx是线性无关的2验证y 1cos x 及y 2sin x 都是方程y 2y 0的解 并写GAGGAGAGGAFFFFAFAF出该方程的通解解 因为 y 12y 12cos x 2cos x 0 y 22y 22sinx2sinx 0并且x y y ωcot 21=不恒为常数 所以y 1cos x 与y 2sin x是方程的线性无关解从而方程的通解为y C 1cos x C 2sin x提示 y 1 sin x y 12cos xy 2cos x y 12sin x3验证21xe y =及22xxe y =都是方程y 4xy (4x22)y 0的解并写出该方程的通解GAGGAGAGGAFFFFAFAF解 因为)24(2442)24(42222221211=⋅-+⋅-+=-+'-''x x x xe x xe x e x e y x y x y)24()2(446)24(4222222232222=⋅-++⋅-+=-+'-''x x x x x xe x e x e x e x xe y x y x y并且x y y =12不恒为常数所以21x e y =与222x xe y =是方程的线性无关解从而方程的通解为22221x x xe C e C y +=提示221xxe y =' 222142xxe x e y +=''22222xx e x e y +=' 223246xx e x xe y +=''4 验证(1)x x x e e C e C y 5221121++=(C 1、C 2是任意常数)是方程 y 3y2ye 5x的通解GAGGAGAGGAFFFFAFAF解 令y 1e x y 2e 2x xe y 5121*= 因为y 13y 12y 1e x 3e x 2e x 0y 23y 22y 24e2x3(2e2x2e2x且xe y y =12不恒为常数 所以y 1与y 2是齐次方程y 3y2y 0的线性无关解从而YC 1e x C 2e 2x 是齐次方程的通解又因为xx x x e e e e y y y 5555121212531225*2*3*=⋅+⋅-=+'-''所以y *是方程y3y 2y e 5x 的特解因此x x x e e C e C y 5221121++=是方程y 3y2ye 5x 的通解(2))sin cos 4(3213sin 3cos 21x x x x C x C y +++=(C 1、C 2是任意常 数)是方程y 9y x cos x 的通解解 令y 1cos3xy 2sin3x)sin cos 4(321*x x x y +=因GAGGAGAGGAFFFFAFAF为y 19y 19cos3x 9cos3x 0y 29y 29sin3x9sin3x且x y y 3tan 12=不恒为常数 所以y 1与y 2是齐次方程y 9y0的线 性无关解从而YC 1e x C 2e 2x 是齐次方程的通解又因为 x x x x x x x x y y cos )sin cos 4(3219)cos 4sin 9(321*9*=+⋅+--=+''所以y *是方程y 9y x cos x 的特解因此)sin cos 4(3213sin 3cos 21x x x x C x C y +++=是方程y9y x cos x的通解(3)y C 1x 2C 2x 2ln x (C 1、C 2是任意常数)是方程x2y3xy4y0GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF的通解解 令y 1x 2 y 2x 2ln x 因为x 2y 13xy 14y 1x 2×23x ×2x 4×x 20x 2y 23xy 24y 2x 2×(2lnx 3)3x ×(2x ln x x )4×x 2ln x 0且x y y ln 12=不恒为常数 所以y 1与y 2是方程x 2y3xy4y0的线性无关解从而yC 1x 2C 2x 2ln x 是方程的通解(4)x x x C x C y ln 92251-+=(C 1、C 2是任意常数)是方程x 2y 3xy 5y x 2ln x的通解解 令y 1x5x y 12= x x y ln 9*2-= 因为GAGGAGAGGAFFFFAFAFx 2y 13xy 15y 1x 2×20x 33x ×5x 45×x 50015)1(32532322222=⋅--⋅-⋅=-'-''xxx xx y y x y x且621x y y =不恒为常数 所以y 1与y 2是齐次方程x 2y3xy5y0的线性无关解 从而xC x C Y 251+=是齐次方程的通解又因为*5*3*2y xy y x -'-''x x x x x x x x x x ln )ln 9(5)9ln 92(3)31ln 92(222=-⋅---⋅---⋅=所以y *是方程x 2y3xy 5y x 2ln x 的特解因此x x x C x C y ln 92251-+=是方程x 2y3xy5yx 2lnx 的通解(5)2)(121xx x e e C e C x y ++=-(C 1、C 2是任意常数)是方程xy2yxy e x的通解GAGGAGAGGAFFFFAFAF解 令xe xy 11= xe xy -=12 2*x e y = 因为GAGGAGAGGAFFFFAFAF0)(2)22(2223111=⋅-+-⋅++-⋅=-'+''x e x x e xe x e x e x e x xy y y x x x x x x x)(2)22(2223222=⋅---⋅+++⋅=-'+''------x e x x e xe x e x e x e x xy y y x xx x x x x且xe y y 221=不恒为常数 所以y 1与y 2是齐次方程xy 2yxy 0的线性无关解 从而)(121x x e C e C xY -+=是齐次方程的通解又因为x x x x e e x e e x xy y xy =⋅-⋅+⋅=-'+''2222**2*所以y *是方程xy 2y xy e x 的特解因此2)(121xx x e e C e C x y ++=-是方程xy 2yxy e x 的通解(6)y C 1e x C 2exC 3cos x C 4sin x x 2(C 1、C 2、C 3、C 4是任意常数)是方程y(4)y x 2的通解 解 令y 1e x y 2exy 3cos x y 4sin xGAGGAGAGGAFFFFAFAFy *x 2 因为y 1(4)y 1e x e x 0 y 2(4)y 2exexy 3(4)y 3cos x cos x 0 y 4(4)y 4sin x sin x 0并且04cos sin sin cos cos sin sin cos ≠=---------xx e e x x e e x x e exx e e x x x x x xx x所以y 1e x y 2e xy 3cos x y 4sin x 是方程y (4)y 0的线性无关解从而YC 1e x C 2exC 3cos x C 4sin x 是方程的通解又因为y *(4)y *0(x 2)x 2所以y *x 2是方程y (4)y x 2的特解因此y C 1e x C 2exC 3cos x C 4sin x x 2是方程y (4)y x2的通解提示GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF令k 1e xk 2e xk 3cos x k 4sin x 0 则 k 1ex k 2exk 3sin x k 4cos x 0 k 1e x k 2e xk 3cos x k 4sin x 0k 1e x k 2exk 3sin x k 4cos x 0上术等式构成的齐次线性方程组的系数行列式为04cos sin sin cos cos sin sin cos ≠=---------xxe e x x e e x x e e xx e e xxx x x x x x所以方程组只有零解 即y 1e x y 2exy 3cos xy 4sin x 线性无关如有侵权请联系告知删除,感谢你们的配合!26829 68CD 棍40863 9F9F 龟39162 98FA 飺40501 9E35 鸵31656 7BA8 箨25851 64FB 擻30763 782B 砫O36482 8E82 躂a22364 575C 坜36929 9041 遁20408 4FB8 侸22279 5707 圇$。

同济第五版高数答案(高等数学课后习题解答)

同济第五版高数答案(高等数学课后习题解答)

习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式. 解 A ⋃B =(-∞, 3)⋃(5, +∞), A ⋂B =[-10, -5), A \B =(-∞, -10)⋃(5, +∞), A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明 (1)f (A ⋃B )=f (A )⋃f (B ); (2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ⇔ y ∈ f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒ ∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ), 所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2) ⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2. 因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明: (1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A . (2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x xy --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1); 解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3). (9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞). (10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞). 7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g . (4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, 4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形. 解 216sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ.9. 试证下列函数在指定区间内的单调性:(1)x xy -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xxy -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有 0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), - f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数? (1)y =x 2(1-x 2); (2)y =3x 2-x 3; (3)2211xx y +-=;(4)y =x (x -1)(x +1); (5)y =sin x -cos x +1;(6)2xx a a y -+=.解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数. (2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数.(4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数. (5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数. (6)因为)(22)()()(x f a a a ax f xx x x =+=+=-----, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2); (2)y =cos 4x ; (3)y =1+sin πx ; (4)y =x cos x ; (5)y =sin 2 x .解 (1)是周期函数, 周期为l =2π. (2)是周期函数, 周期为2π=l .(3)是周期函数, 周期为l =2. (4)不是周期函数. (5)是周期函数, 周期为l =π. 14. 求下列函数的反函数: (1)31+=x y ; (2)xx y +-=11;(3)d cx b ax y ++=(ad -bc ≠0);(4) y =2sin3x ; (5) y =1+ln(x +2);(6)122+=xxy . 解 (1)由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1. (2)由x x y +-=11得y yx +-=11, 所以x x y +-=11的反函数为x x y +-=11.(3)由d cx b ax y ++=得a cy bdy x -+-=, 所以d cx b ax y ++=的反函数为acx b dx y -+-=. (4)由y =2sin 3x 得2arcsin 31yx =, 所以y =2sin 3x 的反函数为2arcsin 31x y =.(5)由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为xx y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M , 即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ;(2) y =sin u , u =2x , ,81π=x ,42π=x ; (3)u y =, u =1+x 2, x 1=1, x 2= 2; (4) y =e u , u =x 2, x 1 =0, x 2=1;(5) y =u 2 , u =e x , x 1=1, x 2=-1.解 (1)y =sin 2x , 4121(6sin 221===πy ,4323(3sin 222===πy .(2)y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy .(3)21x y +=, 21121=+=y , 52122=+=y . (4)2x e y =, 1201==e y , e e y ==212.(5)y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域:(1) f (x 2); (2) f (sin x ); (3) f (x +a )(a >0);(4)f (x +a )+f (x -a )(a >0).解 (1)由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1].(2)由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为 [2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) .(3)由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ].(4)由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义.18. 设⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形.解 ⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 00 1)]([x x x x g f . ()⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| ][101)(x e x x e e x f g x f , 即()⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| ][1x e x x e x f g .19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AC +CD +DB)与水深h 之间的函数关系式, 并说明定义域. 图1-37 解40sin h DC Ab ==, 又从)]40cot 2([21Sh BC BC h =⋅++ 得h hS BC ⋅-=40cot 0, 所以 h h S L40sin 40cos 20-+=.自变量h 的取值范围应由不等式组h >0,040cot 0>⋅-h hS 确定, 定义域为 40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元. (1)将每台的实际售价p 表示为订购量x 的函数; (2)将厂方所获的利润P 表示成订购量x 的函数; (3)某一商行订购了1000台, 厂方可获利润多少? 解 (1)当0≤x ≤100时, p =90.令0. 01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75. 当100<x <1600时,p =90-(x -100)⨯0. 01=91-0. 01x . 综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 751600100 01.0911000 90x x x x p.(2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P .(3) P =31⨯1000-0. 01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)n n x 21=;(2)n x n n 1)1(-=;(3)212n x n +=;(4)11+-=n n x n ; (5) x n =n (-1)n . 解 (1)当n →∞时, nn x 21=→0, 021lim=∞→nn .(2)当n →∞时, n x nn 1)1(-=→0, 01)1(lim =-∞→nn n .(3)当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→nn .(4)当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n . (5)当n →∞时, x n =n (-1)n 没有极限. 2. 设数列{x n }的一般项n n x n 2cos π=. 问nn x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N . 解 0lim =∞→n n x .n n n x n 12cos ||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, 1[ε=N =1000.3. 根据数列极限的定义证明:(1)01lim 2=∞→nn ;(2)231213lim=++∞→n n n ;(3)1lim 22=+∞→na n n(4)19 999.0lim =⋅⋅⋅∞→个n n . (1)分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim 2=∞→n n .(2)分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n .证明 因为∀ε>0, ∃41[ε=N , 当n >N 时, 有ε<-++231213|n n , 所以231213lim =++∞→n n n .(3)分析 要使ε<<++=-+=-+n a n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >.证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n .(4)分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n .证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→.数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x .证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M . 又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有My n ε<||. 从而当n >N 时, 有εε=⋅<≤=-M M y M y x y x n n n n n |||||0|, 所以0lim =∞→n n n y x .6. 对于数列{x n }若x 2k →a (k →∞), x 2k +1→a (k →∞), 证明: x n →a (n →∞). 证明 因为x 2k →a (k →∞), x 2k +1→a (k →∞), 所以∀ε>0, ∃K 1, 当2k >2K 1时, 有| x 2k -a |<ε ;∃K 2, 当2k +1>2K 2+1时, 有| x 2k +1-a |<ε..取N =max{2K 1, 2K 2+1}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞).习题1-31. 根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;(2)12)25(lim 2=+→x x ;(3)424lim22-=+--→x x x ; (4)21241lim 321=+--→x x x .证明 (1)分析 |(3x -1)-8|=|3x -9|=3|x -3|, 要使|(3x -1)-8|<ε , 只须ε31|3|<-x .证明 因为∀ε >0, ∃εδ31=, 当0<|x -3|<δ时, 有|(3x -1)-8|<ε , 所以8)13(lim 3=-→x x .(2)分析 |(5x +2)-12|=|5x -10|=5|x -2|, 要使|(5x +2)-12|<ε , 只须ε51|2|<-x .证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有|(5x +2)-12|<ε , 所以12)25(lim 2=+→x x .(3)分析 |)2(||2|244)4(2422--=+=+++=--+-x x x x x x x , 要使ε<--+-)4(242x x , 只须ε<--|)2(|x .证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x . (4)分析|21(|2|221|212413--=--=-+-x x x x , 要使ε<-+-212413x x , 只须ε21|)21(|<--x . 证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim 321=+--→x x x .2. 根据函数极限的定义证明: (1)2121lim33=+∞→x x x ; (2)0sin lim=+∞→xxx .证明 (1)分析 333333||21212121x x x x x x =-+=-+, 要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x .证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有ε<-+212133x x , 所以2121lim 33=+∞→x x x .(2)分析 xxx xx 1|sin |0sin ≤=-, 要使ε<-0sin x x, 只须ε<x1, 即21ε>x .证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0sin x x, 所以0sin lim=+∞→xxx .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0. 001?解 由于x →2, |x -2|→0, 不妨设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0. 001, 只要0002.05001.0|2|=<-x , 取δ=0. 0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001. 4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只397301.04||=->x , 397=X . 5. 证明函数f (x )=|x | 当x →0时极限为零.6. 求,)(x x x f = xx x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在.证明 因为11lim lim )(lim 000===---→→→x x x x xx f ,11lim lim )(lim 000===+++→→→x x x x xx f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 00-=-==---→→→x xx x x x x x ϕ, 1lim ||lim )(lim 00===+++→→→xx x x x x x x ϕ, )(lim )(lim 0x x x x ϕϕ+→→≠-, 所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0,∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε; ∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有|f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有|f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有| f (x )-A |<ε ,即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )-A |<ε =1. 所以|f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |.习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim 0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x x y 当x →3时为无穷小;(2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε >0, ∃δ=ε , 当0<|x -3|<δ时, 有εδ=<-=+-=|3|39||2x x x y ,所以当x →3时392+-=x x y 为无穷小.(2)当x ≠0时|0|1sin |||||-≤=x xx y . 因为∀ε >0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时x x y 1sin =为无穷小.3. 根据定义证明: 函数xxy 21+=为当x →0时的无穷大. 问x 应满足什么条件, 能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x . 证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M xx >+21, 所以当x →0时, 函数x xy 21+=是无穷大. 取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104. 4. 求下列极限并说明理由:(1)xx n 12lim+∞→;(2)xx x --→11lim20.解 (1)因为x x x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→xx n .(2)因为x xx +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=--→x x x . 5. 根据函数极限或无穷大定义, 填写下表:6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如022cos()22(22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数x x y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数x x y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅), 当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .习题1-51. 计算下列极限: (1)35lim 22-+→x x x ;解 9325235lim 222-=-+=-+→x x x .(2)13lim 223+-→x x x ;解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim121221==+-=+--=-+-→→→x x x x x x x x x x x .(4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x .(5)hx h x h 220)(lim-+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim02220220=+=-++=-+→→→.(6))112(lim 2xx x +-∞→; 解 21lim 1lim 2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim22---∞→x x x x ; 解 2111211lim 121lim 2222=---=---∞→∞→x x x x x x x x . (8)13lim242--+∞→x x x x x ; 解 013lim242=--+∞→x x x x x (分子次数低于分母次数, 极限为零)或 012111lim13lim 4232242=--+=--+∞→∞→xx x x x x xx x x . (9)4586lim 224+-+-→x x x x x ;解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2xx x -+∞→; 解 22112(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→; 解 2211)21(1lim)21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31xx x ---→; 解 112lim )1)(1()2)(1(lim)1)(1(31lim 1311(lim 212122131-=+++-=++-+--=++--++=---→→→→x x x x x x x x x x x x x x x x x x x . 2. 计算下列极限: (1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x .(2)12lim 2+∞→x x x ;解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限: (1)xx x 1sin lim 20→;解 01sin lim 20=→x x x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量). (2)xx x arctan lim ∞→. 解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小, 而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题1-61. 计算下列极限: (1)xx x ωsin lim 0→;解 ωωωωω==→→x x x x x x sin lim sin lim 00. (2)xx x 3tan lim 0→; 解 33cos 133sin lim 33tan lim 00=⋅=→→x x x x x x x . (3)xx x 5sin 2sin lim 0→; 解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x .(4)x x x cot lim 0→;解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x . (5)xx x x sin 2cos 1lim 0-→; 解法一 ()2sin lim 2sin 2lim 2cos1lim sin 2cos 1lim 20220200===-=-→→→→xx x x x x x x x x x x x .解法二 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===-→→→xx x x x x x x x x x .(6)n n n x2sin2lim ∞→(x 为不等于零的常数). 解 x x xxx nn n n n n ==∞→∞→22sinlim2sin 2lim . 2. 计算下列极限:(1)xx x 1)1(lim -→;解{}11)(10)1)(101)](1[lim )](1[lim )1(lim ---→--→→=-+=-+=-e x x x x x x x x x .(2)x x x 1)21(lim +→;解[]22210221010)21(lim )21(lim )21(lim e x x x x x x x x x =+=+=+→⋅→→.(3)x x xx 21(lim +∞→;解 []222)11(lim )1(lim e x x x xx x x =+=+∞→∞→.(4)kx x x)11(lim -∞→(k 为正整数). 解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim . 3. 根据函数极限的定义, 证明极限存在的准则I '. 解4. 利用极限存在准则证明: (1)111lim =+∞→nn ;证明 因为nn 11111+<+<,而 11lim =∞→n 且1)11(lim =+∞→n n ,由极限存在准则I, 111lim =+∞→nn .(2)()11 211lim 222=++⋅⋅⋅++++∞→πππn n n n n n ; 证明 因为()πππππ+<++⋅⋅⋅++++<+22222221 211n n n n n n n n n n , 而 1lim22=+∞→πn n n n , 1lim 22=+∞→πn n n ,所以 ()11 211lim 222=++⋅⋅⋅++++∞→πππn n n n n n . (3)数列2, 22+,222++, ⋅ ⋅ ⋅ 的极限存在;证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅).先证明数列{x n }有界. 当n =1时221<=x , 假定n =k 时x k <2, 当n =k +1时,22221=+<+=+k k x x ,所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界.再证明数列单调增.nn n n n n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221,而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增.因为数列{x n }单调增加有上界, 所以此数列是有极限的. (4)11lim 0=+→n x x ;证明 当|x |≤1时, 则有 1+x ≤1+|x |≤(1+|x |)n , 1+x ≥1-|x |≥(1-|x |)n , 从而有 ||11||1x x x n +≤+≤-. 因为 1|)|1(lim |)|1(lim 0=+=-→→x x x x ,根据夹逼准则, 有11lim 0=+→n x x .(5)[]11lim 0=+→xx x . 证明 因为[]x x x 1111≤<-, 所以[]111≤<-x x x .又因为11lim )1(lim 0==-++→→x x x , 根据夹逼准则, 有[]11lim 0=+→xx x .习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小?解 因为02lim 2lim 202320=--=--→→xx x x x x x x x ,所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2). 2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价? 解 (1)因为3)1(lim 1)1)(1(lim 11lim212131=++=-++-=--→→→x x xx x x x x x x x , 所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小. (2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ; (2)2~1sec 2x x -. 证明 (1)因为1tan lim arctan lim00==→→y y xxy x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x .(2)因为()122sin2lim 22sin 2limcos cos 1lim 2211sec lim20222020===-=-→→→→x xxx x x xx x x x x x ,所以当x →0时, 2~1sec 2x x -. 4. 利用等价无穷小的性质, 求下列极限: (1)xxx 23tan lim0→;(2)mn x x x )(sin )sin(lim0→(n , m 为正整数);(3)xx x x 3sin sin tan lim-→;(4))1sin 1)(11(tan sin lim320-+-+-→x x x x x .解 (1)2323lim 23tan lim 00==→→x x x x x x .(2) ⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim 00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x x x x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x →0), 23232223231~11)1(11x x x x x ++++=-+(x →0),x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x →0),所以 33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→xx x x x xx x x .5. 证明无穷小的等价关系具有下列性质:(1)α ~α (自反性); (2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性). 证明 (1)1lim =αα, 所以α ~α ;(2) 若α ~β, 则1lim =βα, 从而1lim =αβ. 因此β~α ;(3) 若α ~β, β~γ, 1lim lim lim =⋅=βαγβγα. 因此α~γ.习题1-81. 研究下列函数的连续性, 并画出函数的图形: (1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 (1)已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x 所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数. (2)只需考察函数在x =-1和x =1处的连续性.在x =-1处, 因为f (-1)=-1, )1(11lim )(lim 11-≠==---→-→f x f x x , )1(1lim )(lim 11-=-==++-→-→f x x f x x , 所以函数在x =-1处间断, 但右连续.在x =1处, 因为f (1)=1, 1lim )(lim 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1), 所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续.2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2;(2)x xy tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅); (3),1cos 2x y = x =0;(4)⎩⎨⎧>-≤-=1 311x x x x y , x =1. 解 (1))1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处,令y =-2, 则函数在x =1处成为连续的.(2)函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点. 因∞=→x xk x tan limπ(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xxx ,0tan lim2=+→xxk x ππ(k ∈Z), 所以x =0和2 ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的. (3)因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点. 又因为xx 1cos lim 2→不存在, 所以x =0是函数的第二类间断点. (4)因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim)(+-=∞→的连续性, 若有间断点, 判别其类型. 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f nn n .在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理,存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n 1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点;(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;(3)f (x )在R 上处处有定义, 但仅在一点连续. 解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅处是间断的, 且这些点是函数的无穷间断点.解(2)函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续. 解(3)函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞).在函数的连续点x =0处, 21)0()(lim 0==→f x f x .在函数的间断点x =2和x =-3处,∞=-++-+=→→)2)(3()1)(1)(3(lim )(lim 22x x x x x x f x x , 582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x .2. 设函数f (x )与g (x )在点x 0连续, 证明函数 ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )}在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→. 可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()(21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()(21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限:(1)52lim 20+-→x x x ;(2)34)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→(4)xx x 11lim 0-+→; (5)145lim1---→x xx x ;(6)ax ax a x --→sin sin lim ;(7))(lim 22x x x x x --++∞→.解 (1)因为函数52)(2+-=x x x f 是初等函数, f (x )在点x =0有定义, 所以 55020)0(52lim 220=+⋅-==+-→f x x x .(2)因为函数f (x )=(sin 2x )3是初等函数, f (x )在点x =4π有定义, 所以1)42(sin )4()2(sin lim 334=⋅==→πππf x x .(3)因为函数f (x )=ln(2cos2x )是初等函数, f (x )在点x =6π有定义, 所以0)62cos 2ln(6()2cos 2ln(lim 6=⋅==→πππf x x . (4)211101111lim )11(lim )11()11)(11(lim 11lim0000=++=++=++=++++-+=-+→→→→x x x x x x x x x x x x x x . (5))45)(1(44lim )45)(1()45)(45(lim 145lim111x x x x x x x x x x x x x x x x x +---=+--+---=---→→→ 214154454lim1=+-⋅=+-=→xx x .(6)ax ax a x ax ax a x a x --+=--→→2sin 2cos2limsin sin lima a a a x ax ax ax ax cos 12cos 22sinlim 2coslim =+=--⋅+=→→. (7))())((lim)(lim 22222222x x x x x x x x x x x x x x x x x x -++-++--+=--++∞→+∞→1)1111(2lim)(2lim22=-++=-++=+∞→+∞→xx x x x x xx x .4. 求下列极限: (1)x x e 1lim ∞→;(2)xxx sin lnlim 0→; (3)2)11(lim xx x+∞→;(4)x x x 2cot 20)tan 31(lim +→;(5)21)63(lim -∞→++x x xx ; (6)xx x x x x -++-+→20sin 1sin 1tan 1lim.解 (1) 1lim 01lim1===∞→∞→e ee xxx x .(2) 01ln )sin lim ln(sin lnlim 00===→→x xxx x x .(3) []e e xx xx xx ==+=+∞→∞→21212)11(lim 11(lim .(4) []33tan312cot 222)tan 31(lim )tan 31(lim ex x xx xx =+=+→→.(5)21633621)631()63(-+-⋅-+-+-+=++x x x x xx x . 因为。

高等数学第12章课后习题答案(科学出版社).

高等数学第12章课后习题答案(科学出版社).

习题 12.11. 判断下列方程是几阶微分方程:;)1(2y x dxdy +=;042)2(2=+-⎪⎭⎫⎝⎛x dx dy dx dy x;052)3(322=+⎪⎭⎫⎝⎛-xy dx dy dx y d x 2334(4)2()1xy x y x y x '''++=+.解 (1)是一阶线性微分方程; (2)是一阶非线性微分方程; (3)是二阶非线性微分方程; (4)是二阶非线性微分方程.2. 指出下列各题中的函数是否为所给微分方程的解:(1)2xy y '=,25y x =; (2)0y y ''+=,3sin 4cos y x x =-; (3)20y y y '''-+=,2e x y x =; (4)2()0xy x y yy ''''++=,y x =. 解 (1)是; (2)是; (3)不是; (4)不是二阶非线性微分方程.3. 验证函数x C x y sin )(2+=(C 为任意常数)是方程0sin 2cot =--x x x y dxdy的通解, 并求满足初始条件0|2==πx y 的特解.解 要验证一个函数是否是方程的通解,只要将函数代入方程,看是否恒等,再看函数式中所含的独立的任意常数的个数是否与方程的阶数相同.将x C x y sin )(2+=求一阶导数,得dxdy,cos )(sin 22x C x x x ++= 把y 和dxdy代入方程左边得 x x x y dxdysin 2cot --x x x x C x x C x x x sin 2cot sin )(cos )(sin 222-+-++=.0≡ 因方程两边恒等,且y 中含有一个任意常数,故x C x y sin )(2+=是题设方程的通解. 将初始条件02==πx y 代入通解x C x y sin )(2+=中,得C +=402π .42π-=C 从而所求特解为 .s i n422x x y ⎪⎪⎭⎫⎝⎛-=π 4.写出由下列条件确定的曲线所满足的微分方程.(1) 一曲线通过原点,并且它在(,)x y 处的切线斜率等于2x y +; (2) 一曲线通过点(2,3),它在两坐标轴间的任一切线段均被切点所平分.解:由题意,2y x y '=+,00x y==解:设该曲线的方程为()y f x =,(,)x y 为其上任意一点,该点处的切线斜率为y ',过该点的切线方程为()Y y y X x '-=-。

高等数学 课后答案 - 高等教育出版社(同济大学数学系)

高等数学 课后答案 - 高等教育出版社(同济大学数学系)

高等数学 高等教育出版社--同济大学数学系习题一1、(4)⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-254876131210131311412 (5)原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++333232131323222121313212111321)(x a x a x a x a x a x a x a x a x a x x x233332323131322322222121311321122111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++= =j i ij j i x x a ∑=31,2、(1)T B A 23-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡165654111202022242363636333 (2)B AB T -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101012111101011121121212111 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101441300101012111202431211 (3)T BA A -2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡121211121101012111121212111121212111=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡414645233242031211656676444 3、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎪⎪⎪⎭⎫ ⎝⎛321321321220011112y y y B y y y z z z ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321111110011x x x A x x x y y y ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=552121023111110011230011112BA ⎪⎩⎪⎨⎧++=--=-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛∴32133212211321321321321552223552121023xx x z x x x z x x z x x x x x x BA y y y B z z z 或 4、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5.14.4251482041015620105B A 则4321414.118562.1515114355158A A A A AB ←←←←⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 即1A 工厂总收入158万元,利润55万元,其他类似. 5、设现有人口用矩阵表示为(单位:万人):)50,80(=A转移矩形⎪⎪⎭⎫ ⎝⎛=∆9.01.02.08.0B , 则三年后人口可表示为[]3)(AB B B AB = )09.74,91.55(781.0219.0438.0562.0)50,80(=⎪⎪⎭⎫⎝⎛= 即三年后市区,郊区人口分别为55.91,74.09万人.注:也可以先乘AB ,再计算(AB )B ,最后算[]B B AB )(.用AB 3计算时,B ,B 2,B 3的每行两数之和为1,最终结果两数之和为130,否则结果错误. 6、记⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=7.015.110506230157182010B A则 T AB )150,5.46,6.47(=即此人每天摄入蛋白质,脂肪,碳水化合物分别为47.6,46.5,150克. 7、⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------------⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------------=22222200002000020000240040000400004111111111*********11111111111111A⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==44442242222)(A A 猜想⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=nn nn nA 222222222 (*) 用数学归纳法证明①当1=n 时,显然由2A 的表达式知猜想成立. ②设k n =时成立,即{}K K K K k diag A 222222,2,2,2=.当1+=k n 时,22)1(2A A A k k ⋅=+={}k k k k diag 22222,2,2,2{}22222,2,2,2diag =diag{)1(2)1(2)1(2)1(22,2,2,2++++k k k k }. 因此,1+=k n 时,猜想也成立综上:(*)式成立,因此⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------------⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==+111111*********120000200002000022222212nn n n n n A A A ()A nn nnn n n n nn n n n n n n n 2222222222222222222222222222222222=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------------=. 注:简洁算法是()A A E A A n n n 22222==.8、 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=121557331233122A222200003003151551012155735)(x O E A A A f =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--=+-=∴ 9、(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+521123241302111120221032121T T B A 注:也可用T B A )(+,更易求! (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎪⎪⎪⎭⎫⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=54651360556410630201232121311012210)(TTT BA (3)B B A T )(-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=921116521031101221010334100110、设33)(⨯=ij a B ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000000100010000000100010333231232221333231232221131211323122211211333231232221131211a a a a a a a a a a a a a a a AB a a a a a a a a a a a a a a a BA由AB=BA 可得:,0,,,0,,0323133223221312312221121========a a a a a a a a a a a a⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=∴111211131211a a a a a a B 即任意形如),,(000R c b a a b a c b a∈∀⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡的矩阵都可以和A 相交换. 11、(1)T TT T A A A A A A +∴+=+)(对称T T T T T A A A A A A A A -∴--=-=-)()(反对称(2))(21)(21T T A A A A A -++=12、AB B B A B AB B T T T T T ==)(13、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=nn n n n a a a a a a A ΛΛΛ1221111,考虑T AA 的对角线上的元素,由nxn T AA 0=可得 0,,2,1,0),(0)2,2(0)1,1(0222212222222121212211=∴==∴∈⎪⎪⎩⎪⎪⎨⎧=+++=++=+++A nj i a Ra n n AA a a a AA a a a AA a a a ij ij T nn n n T n T n ΛΘΛΛΛΛΛ元的第元的第元的第14、注意到:n k n n E A A E A E =+++--))((1Λ及n n k n E A E A A E =-+++-))((1Λ(利用0=k A ).A E n -∴可逆,且11)(--+++=-k n n A A E A E Λ.15、0672=--n E A A⎪⎪⎩⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛+-+⇒-=-+=-⇒=-⇒nn n n n n n n n n E E A E A E E A E A E E A A E E A A 129121)2(12)9)(2()6761(6)7(再验证:nn n n n E E A E A E A E A =+⋅⎪⎭⎫⎝⎛+-=⋅⎪⎭⎫⎝⎛-)2(1291216761于是可说E A A 2,+均可逆,且 n n n E A E A E A A 43121)2(,676111+-=+-=-- 说明:对于数a而言,当0672=--a a 时,可以得到12)9)(2(,6)7(-=-+=-a a a a ,矩阵的乘法可类比.16、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==345123101)(ij b B ,易求出AB. 17、⎪⎪⎭⎫⎝⎛-=αααα2cos 2sin 2sin 2cos 2A猜想 ⎪⎪⎭⎫⎝⎛-=ααααn n n n A n cos sin sin cos (*)用数学归纳法证:① 1=n 时成立.② 设1-n 时成立,则n 时,⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-----=⋅=-ααααααααcos sin sin cos )1cos()1sin()1sin()1cos(1n n n n A AA n n ⎪⎪⎭⎫⎝⎛-=ααααn n n n cos sin sin cos 故(*)式成立19、(1)原式T T T T n u u u u uu uu E )(λμμλ+--= T T n uu u u E )(λμμλ-+-=(2)当1≠u u T λ时,由0=-+u u T λμμλ可解出,1uu T λλμ--=则由(1)结果可知此时n T n T n E uu E u E =--))((μμλ,从而T n uu E λ-可逆. 22、22))((B BA AB A B A B A -+-=-+.当BA=AB 即A 、B 可交换时,22))((B A B A B A -=-+. 23、设,),,(),(1T n ij x x x a A Λ==由0=Ax 得⎪⎪⎩⎪⎪⎨⎧=++=++=++)(0)2(0)1(01121211111m x a x a x a x a x a x a n mn m n n n n ΛM ΛΛΛΛ由于n R x ∈是任意的(x 是任意n 维列向量),分别取),,2,1(,)0,,1,,.0(n j e x T j ΛΛΛ===,则,0),,,(21==T mj j j j a a a Ae Λ得到),,,1.(0m i a ij Λ==又j 分别取n ,,2,1Λ时,可得 ),,1;,,1(,0n j m i a ij ΛΛ===,故 .0=A24、设T j ij i e y a A x )0,,1,,0(),(),0,,1,,0()(ΛΛΛΛ====则由⇒=0xAy ,0010)0,,1,,0(111111==⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ijnn nj n in ij i n j a a a aa a a a a a M M ΛΛM M M ΛΛM M MΛΛΛΛ).,,1;,,1(n j m i ΛΛ== 故 .0=A 25、(1) T ij x a A )1,,1,1(),(Λ==则 11111111111nx nn n n nn n n a a a a a a a a Ax ⎪⎪⎪⎭⎫ ⎝⎛++++=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=ΛΛΛΛM ΛΛΛΛ (2)A 的每行元素之和为常数a ,即是ax Ax =.,)()(111x aA x ax A Ax A ---=⇒=∴又0≠a (否则00=⇒=x Ax ,矛盾)x a x A 11=∴-,即A -1每行元素之和皆为a1.27、设),,(1n a a diag A Λ=,)(ij b B =,),(),(ij ij d BA c AB ==则 ,001ij i nj ij i j ij b a b b a b c =⋅+++⋅=ΛΛ(A c ij =Θ的第i 行元素与B 的第j 列对应元素乘积之和)j ij in j ij i ij a b b a b b d =⋅+++⋅=001ΛΛ,令BA AB =得ij ij d c =.即 j ij ij i a b b a =0)(=-⇒ij j i b a an a a ΛΘ1两两不等,即)(j i a a j i ≠≠ B j i b ij ∴≠=∴)(0为对角矩阵.习题二1、按第3行展开00000000051412524232115141311325242252423221514131231a a a a a a a a a a a a a a a a a a a a a a D -=25242315141341322524231514134231a a a a a a a a a a a a a a a a ⋅-⋅==0. 2、(1)第2列减去第3列,提出公因数100; (2)化阶梯形;(3)第一行展开,再化阶梯形;(4)第2,3,4列加到第1列提出公因数10.(5)yxx y x y x y y x yx yx x y x yx y x y yx D 111)22(222222+++=+++++= xy x y xx y y x ---+=001)22().(2)]([)22()22(332y x y x y x y x xy x yxy x +-=-+-⋅+=---⋅+=(7)原式 .0221222122212221252321252321252321252321222222222=++++=++++++++++++=d d c c b b a a d d d d c c c cb b b b a a a a3、(1)按第一行展开,再把第2个1-n 阶行列式按最后一行展开000)1(1⋅⋅⋅⋅-+⋅⋅⋅=+ΛΛy xx yxx xD n1121)1()1(-++--+=n n n y x xxO.22--=n n x y x(2)按第一行展开111)1(-+-⋅=n n n b b b D O )()1(11n n b b Λ+-=.(3)原式=.)1(!)1(!221)1)(1()1(121)1(2)2)(1(12)1(1111++++++++-++-=-==----=--n n n n n n n n n n n n n n ΛΛNN(4)第1,3至n 行分别减去第2行,再按第1列展开.)!.2(220000100222000012000010022220001--=--=--=n n n D ΛM M M M M ΛΛΛΛM M M M M ΛΛΛ(5)212---=n n n D D D ⇒211----=-n n n n D D D D12312=-=-D D⇒)2(11≥=--n D D n n∴1)2(2⋅-+=n D D n (等差数列)123+=-+=n n 4、(1)略(2)4阶范德蒙行列式的变形. 5、(1)用归纳法.当 2=n 时,,11112121212a a a a a a D ++=++=等式成立.设当k n =时等式成立,即k k k k k k a a a a a a a a a a a a a D ΛΛΛΛΛ3222112121++++=--.当1+=k n 时,1212112111101101111111111111101110111++++++++=+++++=k k k a a a a a a a a D ΛM M M M ΛΛΛM M M M ΛΛΛM M M M ΛΛ,1321121211211211211110000++-+++++++=+=+=k k k k k k k k k k k k a a a a a a a a a a a a a a a D a a a a D a a a ΛΛΛΛΛΛΛM O M M ΛΛ等式得证.(2)归纳法. 当3=n 时,,)()(11))((0011113132121132321122213123133313213123133313231131213332313213∏≤<≤-++=++++--=----=----==i j j ia aa a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a D结论成立.假设当1-n 时结论成立. 当n 时,n nn n n n nn n n n n a a a a a a a a a a a a D ΛΛM M M MΛΛ32122322213211111----=211231132211233331122111)()(---------+++--=n nn n n n n n n nn n n a a a a a a a a a a a a a a a a ΛΛMMMΛΛ)111111)(()(21231221333311312333311222------------+--=n nn n n n n n n nn n n n n n n aa aa a a aa a aaa a a a a a a a ΛΛM M M ΛΛΛM M M ΛΛ)111)(()(223223333111122-------+--=n nn n n n n n n n aaa a a a a D a a a a ΛΛM M MΛΛ))()())((()(2122112∏∏≤<≤≤<≤-+-++--=ni j j ini j j in n a aa a aa a a a a a ΛΛ.)()(121∏≤<≤-+++=ni j j in a aa a a Λ另一证法参见《 学习指导》.6、利用范德蒙行列式,可得∏-≤<≤---------==11111111111)()().(111)(n i j j i n n n n n n a a x a x a a a x a a xx D ΛΛM M M MΛΛ由于),11(,-≤<≤≠n i j a a j i 故上式为x 的1-n 次多项式,其根分别为.,,,121-n a a a Λ8、用初等变换化为阶梯形即可得秩.9、利用行初等变换化 )()(1-→→A E E A ΛΛ得到1-A .注:(2)E A 4442=⎪⎪⎪⎭⎫ ⎝⎛=O ⇒ 441AA E A A =⇒=⋅-.11、⇒+=⋅B A B A 2A B E A =-)2(⎪⎪⎪⎭⎫⎝⎛-----=-=⇒-9122692683)2(1A E A B 注意左、右乘的区别!12、设.)(1110--+++=n n x c x c c x f Λ由⇒=i i b a f )(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----n n O n n n n n b b c c c a a a a a a AC M M M ΛM M M M ΛΛ1111122111111由范德蒙行列式,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛⇒≠-=-≤<≤∏n n n i j j i b b A c c a a A M M 11010)(det即n c c ,,0Λ唯一存在,从而)(x f 唯一存在. 13、 当0det ≠A 时, 1)(det *-=A A A())det()(det )(det det *det 11--==⇒A A A A A n ⎪⎭⎫ ⎝⎛==⇒--A A A A n det 1det )(det *det 11Θ.当0det =A 时,0*=AA . 设r A rank =)(,则11000000--⎪⎪⎭⎫ ⎝⎛=⇒⎪⎪⎭⎫ ⎝⎛=Q Er P A Er PAQ *000*11A Q Er P AA --⎪⎪⎭⎫ ⎝⎛=⇒ 0000211=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-C C Er P ,(记)*211⎪⎪⎭⎫ ⎝⎛=-C C A Q000021=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⇒C C Er (1-P Θ可逆) O C O O C =⇒=⎪⎪⎭⎫ ⎝⎛⇒11⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=∴⎪⎪⎭⎫⎝⎛=∴-222100*0*QC C Q A C A Q0*det =∴A (*A Θ中至少有r 行为0行).14、(1) rank(A)=.)(0||||0||*1*n A rank A A A n n =⇒≠=⇒≠⇒-(2) ,1)(-<n A rank 则A 的1-n 阶子式全为0,从而*A 的任一元素为0,故.0)(*=A rank(3) 当,1)(-=n A rank 则A 中至少有一个1-n 阶子式不为0,即*A 至少有一个元素不为0,故.1)(*≥A rank 反之,.0||0||1)(*==⇒=⇒-=E A AA A n A rank 又存在n 阶可逆矩阵,,Q P 使.0001⎪⎪⎭⎫ ⎝⎛=-n E PAQ 又,0**1==-PAA A PAQQ 记⎪⎪⎭⎫ ⎝⎛=-21*1B B A Q ,其中2B 为*1A Q -的最后一行,则由,00.0001211=⇒=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-B B B E n 于是,10)()(2*1*≤⎪⎪⎭⎫ ⎝⎛==-B rank A Q rank A rank 故.1)(*=A rank15、由已知条件知,T A A )(*=,于是||||*A A =.0||||||||||**=⇒=⇒=A A A A E A AA n或.1||±=A 但∑=>=ni ij a A 12,0||(某个),0≠ij a 故.1||=A16、利用⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=---12111212212111112100A A A A A A E A A E A r n r 及例2.21的结论.习题四6、设313322211,,ααβααβααβ+=+=+=,321,,βββ线性无关3),,(321=⇔βββr ,而321,,ααα线性无关3),,(321=⇒αααr ,故只须证:),,(),,(321321αααβββr r =或:),,(),,(321321βββααα→列初等变换.事实上:),,(),,(322132121ααααααα+→+C C),,(),,()2,,()2,,(),,(3211332213213221332212332212313332βββααααααααααααααααααααααα=+++++++++++→→→→-++C C C C C C C3)(),,(321321==∴αααβββr r 321,,βββ∴线性无关.方法2 设 =+++++)()()(133322211ααααααx x x 0 (1) 下证 0321===x x x(1)式332221131)()()(αααx x x x x x +++++⇒=0由321,,ααα线性无关⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧=+=+=+∴000000321322131x x x x x x x x x 从而133221,,αααααα+++线性无关. 方法3:,110011101),,(),,(321133221⎪⎪⎪⎭⎫⎝⎛=+++ααααααααα 记 .110011101⎪⎪⎪⎭⎫ ⎝⎛=AA A ∴≠=02det Θ可逆线性无关321321133221,,3),,(),,(ααααααααααααΘ↑==+++∴r r7、(1)432,,αααΘ 线性无关32,αα∴ 线性无关(整体线性无关,则部分也是) 又321ααα,,Θ线性相关1α∴可由32αα,唯一线性表示(定理4.5) (2)反证法,设4α可由321,,ααα线性表示,则),,(),,,(3214321αααααααr r = ①又321,,αααΘ线性相关3),,(321<r ααα∴ ② 又432,,αααΘ线性无关,有 3),,(432=αααr3),,(),,,(4324321=≥∴αααααααr r ③由①②③知⎩⎨⎧<≥3),,,(3),,,(43214321ααααααααr r 矛盾.10、设),,(),,,(11n n B A ββααΛΛ== 则),,(11n n B A βαβα++=+Λ设r i i αα,,1Λ是A 的一个最大线性无关组,s j j ββ,,1Λ是B 的一个最大线性无关组则s B r r A r ==)(,)(,由于k α可由r i i αα,,1Λ线性表示,k β可由s j j ββ,,1Λ线性表示,)(n k ,,1⋯⋯=n n βαβα+⋯⋯+∴,11可由r i i αα,,1Λ,s j j ββ,,1Λ线性表示,从而),,,(),(1111s r n n r r ββααβαβα⋯⋯⋯⋯≤+⋯⋯+s r +≤ 即).()()(B r A r B A r +≤+12、假设r n -⋯⋯ξξξη,,,,21线性相关r n -⋯⋯ξξξ,,,21Θ线性无关η∴可由r n -⋯⋯ξξ,,1线性表示设 i i rn i k ξη∑-==1),,1(r n i i -=ΛΘξ是0=AX 的解 η∴也是0=AX 的解,从而0=ηA ,但η却是B AX =的解,从而0≠=B A η矛盾. 13、112211)1(+------++++=r n r n r n r n k k k k k x ηηηηΛΛ11122111)()()(+-+---+-+-+-++-+-=r n r n r n r n r n r n k k k ηηηηηηηΛ 令1122111,,+---+-+--=-=-=r n r n r n r n r n ηηαηηαηηαΛ 则0)(1=-=-=+-B B A A r n i i ηηαr n -⋯⋯∴αα,1是0=AX 的解 ①下证:r n -⋯⋯αα,1线性无关02211=+++--r n r n x x x αααΛ0)()(1111=-++-⇔+---+-r n r n r n r n x x ηηηηΛ 0)(1111=---+++⇔+----r n r n r n r n x x x x ηηηΛΛ 11,,,+--r n r n ηηηΛΘ线性无关, .021====∴-r n x x x Λr n -∴αααΛ,,21线性无关. ②由①,②知r n -αααΛ,,21是0=Ax 的基础解系.又1+-r n η是B Ax =的解(非齐次方程的一个特解!)∴111+---+++r n r n r n k k ηααΛ11)1(11+-------+++=r n r n r n r n k k k k ηηηΛΛ是=AX B 的通解.14、032321=+-x x x 的基础解系为,203,02121⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=ηη它们就是V 的一组基.注:分别取⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛20,0232x x 得1η,2η. 17、充分性:设),,(,),,(11n T m b b a a ⋯⋯=⋯⋯=βα αβ=A ,则1)()(≤≤αr A r ① 因0,≠βα,不妨设i a ,0≠j b 则A 的第i 行第j 列的元素为i a 0≠j b∴ 1)(≥A r (至少有一个一阶子式不为0) ② ∴ 1)(=A r (由①与②得)必要性:设),,,(21n A αααΛ=, ),,,()(121n r A r αααΛ==, 则n ααΛ1的最大线性无关组只含1个向量,设它为α,)0(≠αΘ α为n αα⋯⋯,1的最大线性无关组 ∴ n αα⋯⋯,1可由α线性表示设ααααααn n k k k ===,,,2211Λ,令),,,(21n k k k Λ=β 则0≠β (否则,由1)(021=====A r n 与αααΛ矛盾.)则),(1n A ααΛ=),,(1ααn k k ⋯=)(21n k ,,k k ⋯=ααβ=. 其中α为1⨯m 向量,β为n ⨯1向量. 18、令⎪⎪⎪⎭⎫⎝⎛=T m T A ααM 1, ,1⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=T T m T B βααM则0=Ax 的解都是0=Bx 的解(条件) 显然0=Bx 的解都是0=Ax 的解 (后者比前者少一个方程))()(B r A r =∴(结构定理4.11))()(T T B r A r =∴⇒),,(),,(11βααααm m r r ΛΛ= ∴β可由m αα,,1Λ线性表示19、令),,(),,,(11p n B A ββααΛΛ==,则矩阵方程B AX =有解∃⇔矩阵B AP P p n =⨯使得,∃⇔矩阵),(),(,11p n p n P a P ββαΛΛ=⨯使得⇔ 存在矩阵使得,)(p n ij p P ⨯=⎪⎩⎪⎨⎧++=++=n np p pn n p p p p ααβααβΛΛΛΛΛΛΛ1111111 p ββ,,1Λ⇔能由n ααΛ,1线性表示⇔ )()(A rank B A rank =M20、这里A 是实矩阵(否则未必成立,如⎪⎪⎭⎫⎝⎛=1i A )考虑0=AX 与0)(=X A A T 的解由===⇒=0)()(0T T T A AX A X A A AX 0知0=AX 的解一定是0)(=X A A T 的解.下证:0=AX A T 的解也是0=AX 的解,设0=AX A T 则0=AX A X T T .AX 是实向量,记⎪⎪⎪⎭⎫ ⎝⎛=n a a AX M 1,则0),,()()(22111=+=⎪⎪⎪⎭⎫ ⎝⎛=n n n T a a a a a a AX AX ΛM Λ.0),,(1==∴T n a a AX Λ,即X 是0=AX 的解,从而0)(=X A A T 的解也是0=AX 的解∴ 0)(=X A A T 与0=AX 同解 ∴ )()(A rank A A rank T =(定理4.11)21、有结论,对线性无关组k ββΛ,1,若k <n ,则可以从n αα,,1Λ中取一个向量j α,记作1+k β,使11,,+⋯⋯k k βββ线性无关(*),现用该结论证明本题:r Θ<n ,可以取{}n j αααΛ,1∈ 使j r αββ,1Λ,线性无关 记j r αβ=+1,如果n r =+1,则证毕!如果1+r <n ,上述结论(*),可再从n αα,,1Λ中找k α使11+r ββΛ,,k α线性无关,如此进行下去,直到得到n ββΛ,1线性无关,此时从n αα,,1Λ中取了r n -个向量n r ββΛ,1+加入r ββΛ,1,使得n ββΛ,1线性无关(作为n R 的一组基). P.S .证明结论(*)向量组n αα,,1Λ不能用r ββΛ,1线性表示,否则由于n r <导致n ααΛ,1线性相关,矛盾∴存在某个j α不能用r ββΛ,1线性表示而k ββΛ,1,j α线性无关,记1+=r j βα即可.22、A 可由1A 线性表示,又1A 可由A 线性表示,于是1A 与A 等价,从而r A rank A rank ==)()(1,由定理4.7 知1A 为A 的最大线性无关组.23.(1)取11,,-m ααΛ的一个最大无关组)(,1个r ir i ααΛ,则r r m m m ==--),,,(),,(1111αααααΛΛ从而ir i ααΛ,1也是m ααΛ,1的最大无关组,显然它不包含m α(ir i αα,1ΛΘ是从11,,-m ααΛ中取出的!)(2)假设结论不成立,则A 有一个最大线性无关组ir i αα,1Λ,不包含m α,则包含在11,,-m ααΛ中,从而m α能表示为ir i αα,1Λ的线性组合,也能表示为11,,-m ααΛ的线性组合,矛盾.习题五2、若λ为A 的特征值,X 为相应的特征向量,即X AX λ=,于是X AX X A 22λλ==,又E A =2,则0)1(22=-⇒=X X X λλ,由于0≠X ,则1012±=⇒=-λλ.5、(反证)若21X X +为A 的属于λ的特征向量,则212121)()(AX AX X X A X X +=+=+λ0)()(22112211=-+-⇒+=X X X X λλλλλλ,由于21,X X 线性无关,则21λλλ==,矛盾. 7、X AX A x A X AX i i λλ==⇒=Λ(i 为自然数).)()()(101010X f X a X a X a X A a AX a X a X A a A a E a X A f mm m m m m λλλ=++=++=++=⇒ΛΛΛ8、(1))5)(5)(1(34430241-+-=----=-λλλλλλλE A ,A 的特征值为5,5,1321-===λλλ.(1.1)若求)det(100A ,由上题知A 100的特征值为:1 , 5100, (-5)100,于是2001001001005)5(51)det(=-⨯⨯=A .(1.2)若求A 100,先将A 对角化:对11=λ,0)(0010011024440240=-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-X E A E A 的基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011X ; 对52=λ,0)5(0021101012404802445=-⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-X E A E A 的基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2122X ; 对53-=λ,0)5(00210101844202465=+⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+X E A E A 的基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213X .取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==120210121),,(321X X X P ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-120210505511P ,11110011551551551551500050001-----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⋅⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=P P P P P P A P P A AP P Λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=--100100100110010011005000501501551551P P P P .16、设n 阶正交阵A (n 为奇数)有特征值λ及相应特征向量X ,即X AX λ=,0)1()()(22=-⇒=⋅===X X X X X X AX AX AX A X X X T T T T T T T λλλλ,由于022221≠+++=n T x x x X X Λ,故,112±=⇒=λλ设A 的所有特征值为n λλλ,,,21Λ,则1det 21==A n λλλΛ,由于)1(1n i i ≤≤±=λ且n 为奇数,故必有某个,1=k λ又A E -的特征值为),,2,1(,1n i i Λ=-λ,从而0)1()1()1()det(1=---=-n k A E λλλΛΛ.17、设n n ββααΛΛ,,,11为n R 中两组单位正交基,从n αα,,1Λ到n ββ,,1Λ的过渡矩阵P=B A n n 1111),,(),,(--=记ββααΛΛ,由于A ,B 为正交阵,由正交阵性质知B A P 1-=为正交矩阵.20、(2)A 可逆,由AB BA AB BA BA A A A AB A ,~)()(11⇒==--与BA 有相同特征值.21、由16题证明知A 的特征值为1或-1,由于A 为上三角矩阵,其对角线上元素为特征值,即1±,再利用A 的任两列正交可得A 为对角阵. 另一证法可参见《学习指导》.22、存在正交矩阵Q ,使⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n T AQ Q λλλO 21,令QY X =,则:22111)(n n n T T T T y y Y Y Y AQ Q Y AX X λλλλ++=⎪⎪⎪⎭⎫⎝⎛==ΛO ,取{}n c λλ,,max 1Λ=,则X cX X Q X Q c Y cY y y c AX X T T T n T ===+≤--11221)()(Λ注:题目中)det(AX X T 应改为AX X T .24.由X AX ⋅==00知21,ξξ为A 的属于0的特征向量,且它们正交.由A 对称知A 的属于3的特征向量3ξ必与21,ξξ正交.现求3ξ.由于021222132132121=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛x x x x x x T T ξξ, ⎥⎦⎤⎢⎣⎡-→⎪⎪⎭⎫ ⎝⎛-210201212221得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎪⎪⎭⎫ ⎝⎛1223321x x x x ,取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1223ξ,则21,ξξ,3ξ为A 的两两正交的三个特征向量,单位化:⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=313232,323132,323231321ηηη,得正交阵[]321,,ηηη=Q , 且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=300AQ Q T ,于是 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=122244244313112221222130012221222131300T Q Q A . 26、设λ为A 的特征值,X 为相应特征向量,则X AX λ=,X AX A X A 22)(λ==,由A A =2得000)(22=⇒=-⇒=-λλλλλX 或1,即A 的特征值为0或1,E+A 的特征值为1或2,故E+A 的所有特征值之积不为0,即0≠+A E ,从而E+A 可逆,或由A E A E E A A E A E A E 21)(2121)21)((12-=+⇒=-+=-+- 27、若B 与A 相似,即存在可逆阵P ,使AP P B 1-=,从而P A P B k k 1-=,因而01==-P A P B m m ,但对角阵Λ不满足0=Λm ,故A 不与对角阵Λ相似. 28、记),,,(21n diag B λλλΛ=则存在可逆阵,P 使k k B P A P B AP P =⇒=--11.设n n A a A a E a A f Λ++=10)(,则))(),(()(111101110111011101n n n nn nn n n nn f f diag a a a a a a a a E a p A P a AP P a E a P A f P λλλλλλλλλλΛΛO ΛO ΛO Λ=⎪⎪⎪⎭⎫⎝⎛++++++=⎪⎪⎪⎭⎫⎝⎛++⎪⎪⎪⎭⎫ ⎝⎛+=+++=---)(A f ⇒相似于)(),((1n f f diag λλΛ.29、由已知条件,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0112011A ,⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1103110A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-300211002100111010303210230321021001110101A A30、由于A 为实对称阵,必与对角阵相似,要使A 与B 相似,只要A 与B 有相同特征值即可,B 的特征值为0,1,2,也为A 的特征值,A 的特征多项式为:λλλλλ---=-=11111)(yy x xE A f ,于是有0)2()1()0(===f f f ,即y x y x y y xx f =⇒=--==0)(11111)0(2 00201010)1(=⇒===x xy y y xx f 或0=y y x y x y y xx f -=⇒=+=---=0)(11111)2(2 31、用21,x x 分别表示市区,郊区居民数量,依题意有3:2:9.015.01.085.0212121=⇒⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡x x x x x x习题六3、存在正交矩阵Q ,变换QY X =将二次型f 化为标准型,即:2222211)(n n T T T y y y Y AQ Q Y AX X f λλλ+++===Λ,取),2,1(n i e Y i Λ==则0==i f λ ),2,1(n i Λ=,(即此时取i Qe X =).00011=⋅⋅=⇒=⎪⎪⎪⎭⎫⎝⎛=⇒-Q Q A AQ Q n T λλO6、二次型3231212322212245x x x x x x ax x x f --+++=的矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=a A 11112125,A 正定⇔A 的各阶顺序主子式).3,2,1(,0=>∆k k即,20211112125,011225,05321>⇒>-=----=∆>==∆>=∆a a a故当2>a 时,二次型f 正定.7、设n 阶实对称阵A 的n 个特征值为n λλλΛ,,21,则存在正交矩阵Q ,使T n n T Q Q A AQ Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=λλλλλλO O 2121 A正定⇒A 的n 个特征值nλλλ,,,21Λ全为正T n n Q Q A ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⇒λλλλλλO O 2121B B A T =⇒,其中Tn Q B ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=λλλO 21为满秩阵. 反之,若有n 阶满秩矩阵B ,使B B A T =.令BX Y =,则:22221)()())((n T T T T T y y y Y Y BX BX BX B X AX X f +++=====Λ,从而对任一0≠X ,有,00>⇒≠=f BX Y 所以f 正定.8、(1))0(,0≠>=X AX X f T 取i e X =,则).,21(0010)010()(11111,n i a a a a a a a a e f ii nn n in ii i n i ΛM M ΛΛΛΛΛΛΛΛΛΛ,=>=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=(2)与(1)类似可证.9、(1)对B A BX X AX X X B A X x f X T T T +⇒>+=+=≠0)()(,0正定(2)K K K T T K A A A A ⇒==)()(对称A 正定A ⇒的特征值n λλλΛΛ,,21全为正k A ⇒的特征值k n k k λλλΛΛ,,21全为正k A ⇒正定(3)设A 的n 个特征值为n λλλΛΛ,,21,则aE A +的n 个特征值为),2,1(,n i a i Λ=+λ,取{}i a λmax >,则),2,1(0n i a i Λ=>+λ即aE A +的n 个特征值全为正aE A +⇒正定.10、f 的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3030002aa A ,由标准型23222152y y y f ++=知A 的三个特征值为1,2,5. 由0)3)(3)(2(33002=---+-=--=-λλλλλλa a aa E A 知A 的三个特征值为a a -+3,3,2.于是2=a 或2-,不妨取2=a ,于是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=320230002A 对⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=00011000122220001,11E A λ,对应特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1101ξ,单位化,212101⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=η 对22=λ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-300210001202100002E A ,对应特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0012ξ,取22ξη=; 对53=λ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-0001100012202200035E A ,对应特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1103ξ,单位化⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=212103η,于是所用正交变换矩阵为⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-=2102121021010Q . 11、二次型f 的标准矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=λλλ111111A ,要f 正定,即要求A 正定,必须A 的各阶主子式:0>∆k ,)3,2,1(=k 即01>=∆λ,011122>-==∆λλλ,10)2()1(11111123>⇔>-+=--=∆λλλλλλ且202>⇔>-λλ. 故当2>λ时,二次型f 为正定. 12、A为正定矩阵,则A为对称矩阵,即,ij ji a a =因此ij j ij i i ji j ji b c a c c a c b ===,从而B 也为对称矩阵.⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎪⎪⎭⎫ ⎝⎛===n n n nn n n n n n j iji ij c c c A c c c c c c a a a a a a a a a c c c c a c b B OO O ΛΛΛΛΛΛO21212121222211121121)()(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⇒n n n n n n n n T x c x c x c A x c x c x c x x x c c c A c c c x x x BX X M ΛM O O Λ2211221121212121),,(),( (1)由于n c c c Λ,,21为非零实数,对021≠⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x X M ,有02211≠⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n x c x c x c M ,又A 为正定矩阵,则(1)式右端大于0,从而对0≠X ,有0>BX X T ,故B 为正定矩阵.。

高等数学下(同济大学第五版)课后习题答案1(精品文档)

高等数学下(同济大学第五版)课后习题答案1(精品文档)

第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。

习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xyxy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x xy x y →→→→→→==⋅=++ 解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可. 2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂=+=∂z y ∂==∂ (4))ln(222z y x u ++=解:222222222222,,u x u y u z x x y z y x y z z x y z∂∂∂===∂++∂++∂++ (5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z u u u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)z x y x y x y x∂=-++=-+∂4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂ (3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f yf y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y-+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂由轮换对称性, 2222222323,r r y r r z y r z r∂-∂-==∂∂ 222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论 1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档