高考数学命题规律.

合集下载

高考数学专题知识突破:考点2 命题及其关系、充分条件与必要条件

高考数学专题知识突破:考点2 命题及其关系、充分条件与必要条件

考点二命题及其关系、充分条件与必要条件知识梳理1.命题的概念可以判断真假、用文字或符号表述的语句,叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.(3) 如果p q,q p,那么称p是q的充分不必要条件.(4) 如果q p,p q,那么称p是q的必要不充分条件.(5) 如果p q,且q p,那么称p是q的既不充分也不必要条件.典例剖析题型一四种命题及其相互关系例1命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案 B解析将原命题的条件与结论互换即得逆命题,故原命题的逆命题为“若一个数的平方是正数,则它是负数”.变式训练命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数答案 C解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x +y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.解题要点 1.写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.2.一些常见词语的否定例2有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.变式训练下列有关命题的说法正确的是________.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②若一个命题是真命题,则其逆命题也是真命题;③命题“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.答案 ④解析 命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,所以①不正确;原命题与逆命题不等价,所以②不正确;命题“存在x ∈R ,使得x 2+x +1<0”的否定是“对任意x ∈R ,均有x 2+x +1≥0”,所以③不正确;命题“若x =y ,则sin x =sin y ”是真命题,所以逆否命题为真命题,④正确.解题要点 1.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.2.根据“原命题与逆否命题是等价的,逆命题与否命题也是等价的”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二 充分条件与必要条件例3 已知p :“a ,b ,c 成等比数列”,q :“b =ac ”,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a ,b ,c 成等比数列,则有b 2=ac ,所以b =±ac ,所以充分性不成立.当a =b =c =0时,b =ac 成立,但此时a ,b ,c 不成等比数列,所以必要性不成立,所以p 是q 的既不充分也不必要条件.变式训练 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件答案 A解析 由正弦定理,知a ≤b ⇔2R sin A ≤2R sin B (R 为△ABC 外接圆的半径)⇔sin A ≤sinB . 例4 设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的________(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)条件.答案 必要不充分解析 因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故“a >b ”是“f (a )>f (b )”的必要不充分条件.变式训练 设x ∈R ,则“x >1”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 由不等式220x x +->得(2)(1)0x x +->,即2x <-或1x >,所以由1x >可以得到不等式220x x +->成立,故充分性成立;但由220x x +->不一定得到1x >,所以必要性不成立,即“x >1”是“220x x +->”的充分而不必要条件.解题要点 1.充要条件问题应首先弄清问题中条件是什么,结论是什么,再进一步判断条件与结论的关系,解题过程分为三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.2.充要条件的三种判断方法(1) 定义法:根据p q ,q p 进行判断; (2) 集合法:根据p 、q 成立的对象的集合之间的包含关系进行判断;(3) 等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.当堂练习1. 设p :1<x <2,q :2x >1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面4.已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的 条件.5.U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅” 条件.课后作业一、 选择题1.下列语句中命题的个数是( )①2<1;②x <1;③若x <2,则x <1;④函数f (x )=x 2是R 上的偶函数.A.0B.1C.2D.32.“x =1”是“x 2-2x +1=0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件3.“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设p :x <3,q :-1<x <3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”6.若m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤07.已知命题p :若x =-1,则向量a =(1,x )与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .48.设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题9.x ≠3或y ≠5是x +y ≠8的____________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)10.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.11.(1)“x >y >0”是“1x <1y”的________条件. (2) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的________条件.12.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题,其中是假命题的是________.13.“m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件.当堂练习答案1. 答案 A解析 当1<x <2时,2<2x <4,∴p ⇒q ;但由2x >1,得x >0,∴q p ,故选A.2答案 A解析 由(a -b )a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时 (a -b )·a 2<0,必要性不成立;故选A.3.答案 D解析 对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.4.答案 充分不必要条件解析 当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1, 解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i ”的充分不必要条件.5.答案 充要条件解析 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.课后作业答案二、 选择题1.答案 D2.答案 A解析 解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件.3.答案 A4.答案 C解析 ∵x <3-1<x <3,但-1<x <3⇒x <3,∴p 是q 的必要不充分条件,故选C.5.答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C. 6.答案 D解析 原命题为“若p ,则q ”,则其逆否命题为“若q ,则p ”.∴所求命题为“若方程x 2+x -m =0没有实根,则m ≤0”.7.答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2.8.答案 B解析 m ⊂α,m ∥βα∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件. 二、填空题9.答案 必要不充分解析 设p :x =3且y =5,q :x +y =8,显然p 是q 的充分不必要条件,∴p 是q 的必要不充分条件,即x ≠3或y ≠5是x +y ≠8的必要不充分条件.10.答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.11.答案 (1)充分不必要 (2)充要解析 (1)1x <1y⇒xy ·(y -x )<0, 即x >y >0或y <x <0或x <0<y .所以x >y >0 ⇒1x <1y ,但反过来1x <1y, 所以是充分不必要条件.(2) 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |. 所以是充要条件.12.答案 ①②解析 对于①其否命题为“若k ≤0,则方程x 2+2x +k =0无实根”,为假命题;②的逆命题为“若a <b ,则1a >1b”,为假命题;③中原命题为真命题,故其逆否命题也为真命题. 13.答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14,因为m <14⇒m ≤14,反之不成立. 故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.。

高考数学命题格式要求2023年

高考数学命题格式要求2023年

根据2023年高考数学命题格式要求,以下是一般的命题格式:
1. 单项选择题(选择题):
- 题目由一个问题或陈述组成。

- 选项之间用括号标识,如A、B、C、D等。

- 每个选项都有唯一的正确答案。

2. 多项选择题(选择题):
- 题目由一个问题或陈述组成。

- 选项之间用括号标识,如A、B、C、D等。

- 可以有一个或多个正确答案。

3. 填空题:
- 题目通常是一个句子或问题,需要填写一个或多个数字、字母或符号。

- 需要确切地填写答案,例如:填写一个整数、小数、分数、根式等。

4. 解答题(主观题):
- 题目通常包含一个问题或要求,需要学生给出详细的解答或证明过程。

- 可能需要学生进行推理、演算、图形绘制、证明等。

此外,根据不同的考试要求和命题风格,具体的命题格式可能会有所变化。

请学生在备考过程中仔细阅读并遵循当年发布的高考数学命题格式要求,以确保能够准确理解和回答考题。

1。

高考数学题型占分比重及命题规律

高考数学题型占分比重及命题规律

高考数学题型占分比重及命题规律高考数学可以说是高中数学学习的最后一站,是对学生数学水平的全面检验。

对于学生来说,掌握高考数学的命题规律以及数学题型占分比重,是备战高考的重中之重。

下面将就这两个方面进行深入探讨。

一、高考数学题型占分比重高考数学题型包括选择题、填空题、解答题和应用题四种类型。

它们在高考数学卷中的分值比重分别为:选择题35%、填空题15%、解答题35%、应用题15%。

1.选择题选择题是高考数学试卷中占分比重最高的一类题,其分值占35%。

选择题需要考生从4个或5个选项中选出一个或多个正确答案。

在这类题里,大部分是基础性内容,也就是最基本的知识点,所以相对来说难度并不是太大。

但是如果指望做得很好,要求考生对知识点的掌握程度必须要非常扎实,必须长期积累。

2.填空题在高考数学试卷中,填空题分值占到了15%,比较重要,且填空题考查的范围较广,既有基础性的知识点如三角函数、立体几何等,也有中高级难度的数学知识如函数极值、微积分等。

除了考查知识点外,这类题目也考查考生的解决问题的思路和逻辑能力。

因此在考试前,要认真回归基础,前期有重点,后期有集中。

3.解答题解答题是高考数学试卷的重头戏,它的分值比重也是占到了35%,这意味着解答题对于考生的总分影响是相当大的。

解答题不仅考查学生对基础内容的掌握程度,更重要的是对学生的思维能力、创新意识、推理能力和实际应用能力的考量。

这几点都需要认真准备,并且实践中需要大量的练习,才能够巧妙地处理各种情况和技巧。

4.应用题应用题的分值比重占到了15%,它主要考查学生实际应用数学知识解决问题的能力,对数学的实际应用有很大的推动作用。

应用题不仅要求学生熟练掌握数学知识,还要求学生具备理解实际问题的能力,能够将问题转化为数学语言,解决实际问题。

由于现代社会中数学在许多领域都有着广泛的应用,因此应用题成为备考中不能忽视的一环。

二、高考数学命题规律高考数学命题规律总体来说还是比较稳定和规律性的。

高考数学命题规律与数学教学策略

高考数学命题规律与数学教学策略

高考数学命题规律与数学教学策略1 数学教学的两个阶段及其教学浅析1.1 新课教学阶段1.2 复习教学阶段1.3 教学的基本依据和参考资料1.3.1 学习考纲,确定要求《考试说明》是由国家教委考试中心颁发的高考法定性文件,规定了考试的性质、内容、形式等,特别是明确指出了考试内容和考试要求,也就是说要考的知识点及各知识点要考到什么程度均有明确现定.教学中使用考试说明,应该仔细剖析对能力要求和考查的数学思想与数学方法有哪些,有什么要求,明确一般的数学方法,普遍的数学思想及一般的逻辑方法(即通性通法),推敲对考试内容三个不同层次的要求,准确掌握哪些内容是了解,哪些是理解和掌握,哪些是灵活和综合运用,在复习教学中应严格按照《考试说明》中所规定的内容和要求去复习.这样既能明了知识系统的全貌,又可知晓知识体系的主干及重点内容.如对递推数列中规定,“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几顶”.又如,在函数部分、不等式部分及几何部分对一些内容的考查要求均有明确规定,而仍有教师还要求学生掌握一些不再要求的内容,这样做既加重学生负担,也加重老师负担,偏离了正确的复习方向,复习效益当然不高.1.3.2 钻研课本,确定标准不少教师和学生在高考总复习时把课本扔到了一边,每天抢着一本资料“埋头”做题,这是十分错误的.其一,课本是全国统一的,这不仅仅是内容上的统一,而且定义、定理、公式等叙述上的规范,符号上的使用也是统一的.无论资料上、参考书中怎样叙述,如何使用符号,但课本是标准.如93年高考题理科24题使用了连加号“Σ”,许多考生不懂,但课本代数(下)P260出现过,由于长期不用课本,他们也忘了.其二,许多高考题课本中有原型,即由课本中的例题、习题引伸、变化而来.由此可见脱离课本的复习是不可取的,良好的知识结构是高效应用知识的保证,我们应该以课本为标准,重视课本,狠抓基础,建构学生的良好知识结构和认知结构,将课本中的题目加以引伸、拓宽、变化,做到举一反三,触类旁通,使学生打好基础.并以课本为主,重新全面梳理知识、方法,注意知识结构的重组与概括,揭示其内在的联系与规律,从中提炼出思想方法.在知识的深化过程中,切忌孤立对待知识、方法,而是自觉地将共前后联系,纵横比较、综合,自觉地将新知识及时纳入已有的知识系统中去,融代数学、三角、立几、解几于一体,进而形成一个条理化、有序化、网络化的高效的有机认知结构.如面对代数中的“四个二次”:二次三项式,一元一次方程,一元二次不等式,二次函数时,以二次方程为基础、二次函数为主线、通过联系解析几何、三角函数、带参数的不等式等典型重要问题,建构知识,发展能力.1.3.3 研究考题,确定形式高考命题坚持以“三个有利”为指导思想,即有利于高校自主办学,有利于高校选拔新生,有利于中学数学教学,因此,高考题必将对中学数学教学发挥十分重要的导向作用.所以,无论复习哪部分内容,我们都应该认真的分析、研究近几年的高考题对这部分内容的考查情况,做到心中有数,提高效率.如细心研究近十年的高考题对参数方程的考查,可发现仅仅是以选择题或填空题的形式,对参数方程的概念和参数方程化普通方程作了一点简单的考查;对二项式定理的考查主要考了通项公式的应用及求系数和的方法且主要是以选择题和填空题的形式出现的等等.即便是来年要考其它方面的,也必将遵循“整体保持稳定,不造成大起大落现象”的原则.那么,我们还有什么必要、有什么理由在这些内容上过多补充和发挥呢?1.3.4 推敲评价,确定方向每年高考评卷结束后,国家教委考试中心要集中各自治区、直辖市的大、中学教师、教研员、评卷负责人及考试研究人员代表,召开高考评卷总结暨全国高考试题评价会,进行广泛交流和深入研讨,根据各地定性分析材料和全国抽样统计数据,最后形成当年的全国高考数学试卷评价报告.评价报告对试题的难度、各章节知识的考查、数学思想方法的考查,总体上的得与失等情况均有详细的阐述,甚至明确对中学数学教学提出建议.通过认真学习、研究、推敲评价报告,我们可以知道许多信息和高考题的改进方向.“优点将继续保持,缺点将进一步弥补”必将是高考命题的根本原则.1.3.5 分析形势,确定措施其中的形势主要包括教育、教学改革、课程改革和教材改革形势,高考改革形势和招生形势等.1.4 教学的基本策略和措施基础知识——注重联系基本方法——注重特征基本能力——注重思维解题教学——注重解题方向和解题策略复习教学——注重教育改革和学生发展2 对数学科高考《考试说明》的认识2.1 2002年数学高考《考试说明》与去年基本相同这表明高考数学必然以稳定为前提,稳中求改,稳中求进,深化能力立意,积极改革创新.在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查;在强调综合性的同时,重视试题的层次性,合理调控综合程度,坚持多层次多角度的考查.落实命题指导思想的具体措施是:优化试卷结构,拓展命题思路,创新试题设计,控制试题难度,强化选拔功能.2.2 在考试内容上,文科与理科仍然略有差别文史类高考数学试题命题范围是高中阶段代数、立体几何和平面解析几何的必学内容;理工农医类的命题范围除必学内容外,还包括选学内容的“反三角函数和简单三角方程”、“参数方程和极坐标”两个部分.2.3 在考试形式和试卷结构方面,文科与理科完全相同试题分选择题、填空题和解答题3种;3种题型所占分数的百分比为:选择题40%,填空题10%,解答题50%.试卷包括第Ⅰ卷和第Ⅱ卷,Ⅰ卷为选择题,Ⅱ卷为非选择题.代数、立体几何和平面解析几何所占比例与教学中所占课时比例大致相同,代数60%,立体几何20%,平面解析几何20%.试题难度分为容易题、中等题和难题.难度系数0.7以上的题目为容易题,难度系数在0.4至0.7之间的为中等题,难度系数0.4以下的为难题.3种试题的比例约为3∶5∶2,文科试题的难度低于理科试题(以减少小题题量、降低要求、改换试题等方式体现).2.4 考试说明对知识要求和能力要求进行了具体说明,并特别提出了知识和能力考查的注意事项近年来,数学科考试说明在知识点和考查内容上无多大变化,但1997年和2000年的两次修订却值得高度重视.1997年的修订,增加了关于数学能力的要求,是高考命题由知识立意转变为能力立意的标志;2000年的修订,在坚持改革创新的背景下,提出了知识与能力考查的几个注意事项,是高考命题积极创新、多侧面考查考生创新意识和实践能力的发端.2.4.1 对数学基础知识的考查,要求全面又突出重点,注重学科的内在联系和知识的综合重点知识是支撑学科知识体系的主要内容,考查时要保持较高的比例,并达到必要的深度,构成数学试题的主体.学科的内在联系,包括代数、立体几何、平面解析几何三个分科之间的相互联系及在各自发展过程中,各部分知识间的纵向联系.知识的综合性,则是从学科的整体高度考虑问题,在知识网络交汇点设计试题.2.4.2 加强对数学思想方法的考查力度数学思想和方法是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识发生、发展和应用的过程中.因此,对于数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时,要从学科整体意义和思想含义上立意,注意通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.2.4.3 能力考查以逻辑思维能力为核心对能力的考查,以逻辑思维能力为核心,全面考查各种能力,强调探究性、综合性、应用性,切合考生的实际.运算能力是思维能力与运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是以含字母的式的运算为主,同时要兼顾对算理和逻辑推理的考查.空间想象能力是对空间形式的观察、分析、抽象的能力,图形的处理与图形的变换都要注意与推理相结合.分析问题和解决问题的能力是上述三种基本数学能力的综合体现.对数学能力的考查要以数学基础知识、数学思想和方法为基础,加强思维品质的考查,对数学应用问题,要把握好提出问题所涉及的数学知识和方法的深度和广度,要切合我国中学数学教学的实际.在理科综合能力测试的考试说明中,提出重视对考生理解能力、推理能力、设计和完成实验的能力、获取知识的能力、分析综合能力的考查,强调运用已有知识解决实际问题的综合学习能力,这也是值得数学学科借鉴和思考的.2.5 对能力考查的深层次理解与分析在中学同一学校、同一班级的学生基本上是在同等条件下进行学习的,但学生运用知识解决实际问题的能力却是各不相同的,这种不相同说明学生在学习能力上的个体差异.说到考能力,根本点就是要把学生在能力上的这种个体差异,通过试卷中的试题组合这种间接的测量方式,以分数的量化形式体现出来.考能力,就是要考查学生运用所学知识解决问题的能力.对高考来讲,学生不但要知其然,还要知其所以然,还要能举一反三.知其然就是要知道是什么,知其所以然是要知道为什么,举一反三要求学生能运用所学知识联系一些实际问题,分析一些问题,解决一些问题.从认知学的角度来说这三个层次是不同的,是递增的,后面的层次是涵盖前面层次的.2.5.1 高考不可能脱离知识去考能力知识是能力考查的载体.知识就好像英语单词,能力是用这些单词组成的句子、文章.文章的好坏很大程度上反映了这个考生的英语能力.如果脱离知识考能力就会变成智力竞赛,当然智力竞赛也需要掌握一些基本知识,但这些知识往往是不系统不全面的.所以说首先高考不可能脱离知识,不可能脱离高中阶段所学的知识去考能力.数学试题中的能力考查必然以高中阶段的主体知识和重要知识为依托.2.5.2 高考考查的知识是对高中所学的知识的抽样中学数学有100多个知识点.高考中不可能全部都概括,只能是抽样.这种抽样源于命题老师对数学学科基本理论框架的认识水平,哪些概念和规律对培养中学生的数学素养是重要的,哪些对继续进入高等学校学习相关专业是必不可少的,哪些对培养学生的分析能力、思维能力是有启迪作用的,等等.2.5.3 高考所考查的能力层次是高中学生所能达到的能力水平2.5.4 高考要考的能力主要是笔试环境下所能体现的能力现在高考的主要手段仍是笔试,如将来增加面试、实践能力考查等那是后话.对中学生来讲,发现问题的能力就很重要.3 高考数学的命题特点与规律分析3.1 高考数学命题的基本原则3.1.1 高考命题的理论基础目前我国高考命题的主要理论依据有三方面:斯皮尔曼的能力因素说理论,教育目标分类学理论和标准化考试理论.这三方面的理论在指导我国的考试实践中发挥了巨大的作用,同时我国的考试理论和考试命题工作者在原有理论的基础上不断发展创新,总结了有学科特点的、有中国特色的命题经验.3.1.1.1 斯皮尔曼的能力因素说理论.有关能力的研究可以分为因素说和结构说.因素说是研究能力构成要素的学说,一般能力和特殊能力理论是因素说理论中有代表性的一种.在《考试说明》中,一般能力在学科的表现和考查要求包括:记忆、识别学科的基本知识,正确理解各种概念、原理和规律,应用基本理论解决实际问题,应用学科术语条理清楚、逻辑严密地进行文字表述.各学科能力的要求体现了学科特点,如语文科的阅读理解能力、写作能力;数学科的运算能力、逻辑思维能力、空间想象能力;物理、化学科的实验能力等.3.1.1.2教育目标分类学理论.在教育目标分类学研究中,以布卢姆的教育目标分类学影响最为显著,其理论包括认知领域、情感领域和精神运动技能领域.布卢姆又对认知领域的研究最为深入.布卢姆的认知领域教育目标模型由六个由简单到复杂的层次构成,即知识、领会、运用、分析、综合、评价.高考命题在应用这一理论的过程中,发现一些问题,如认知层级划分没有学科特点,缺少一些重要的认知过程,不同的学科往往不能套用.如对数学、物理这样的学习科目,其至关重要的观察、实验和实验设计等项目未被列入上述的层次.针对这些问题,高考命题研究人员都根据我国高考的实际情况进行了调整.根据这一理论,高考各科都确定考试的要求层次,多数科目分为三级,个别科目分为四级或五级.由于知识点的重要程度不同,所以在考查过程中对其要求的层次也不同.数学科的要求层次分为了解、记住,理解、掌握、会,灵活运用三个层次.3.1.1.3标准化考试理论.根据一般的理解,标准化考试是“一种按系统的科学程序组织,具有统一的标准,并对误差作了严格控制的考试.”考试标准化包括试题编制、考试实施、阅卷评分以及分数转换与解释等四个环节.1991年各科颁布实施《考试说明》.《考试说明》规定了考试的性质、考试目标和考试要求.同时总结了高考命题的基本原则、理论与技术,进行了题型功能的研究,试卷中各种题型的比例,试题难度的范围,难易题的比例,整卷的难度控制的研究.3.1.2高考数学命题的能力观《数学科考试说明》将能力要求归结为逻辑思维能力、运算能力、空间想象能力和分析问题解决问题的能力,继承了中学数学教学大纲的表述方式,同时增加了新的内涵,界定了能力的范围,突出了学科能力的特质.数学科考试在强调考查学科能力的同时,还注意开阔眼界,拓宽思路,适应新的形势的要求.3.1.2.1运用学科知识考查一般心理能力.一般能力是特殊能力的基础.一般能力的发展为特殊能力的发展创造了有利条件;一般能力是通过各科知识的学习训练以及生活实践培养和增强的.学科知识结构和人的认知能力有各自的逻辑结构和发展序列,两种结构、两个序列互相容纳、互相匹配,学生的知识和能力互相促进、共同发展.由于学科的特点,各学科在建构学生的知识结构中发挥不同的作用.以学科知识为思维材料和操作对象,考查考生对材料的组织、存贮、提取的能力,对知识的记忆、理解、运用、分析与综合能力.考查一般性的、可在不同学科领域、不同的生活和工作领域中进行迁移的能力.数学不应等同于数学知识(事实性结论)的汇集,而应把数学活动包含进去,将其看成人类的一种创造性活动,从而除事实性结论外,还应把“问题”、“语言”、“方法”等同样看成是数学(或者说数学活动)的重要组成部分.立足于人类社会正经历着由工业社会向信息社会的重要转变的事实,才能更好地认识数学教育的作用和功能,与帮助学生“学会数学地思考”相比,我们应当帮助学生经由数学学会思维.高考中,数学科考试并不是为本学科选拔专门的人才,而是以学科知识为材料,在甄别考生中发挥其应有的作用.数学科应根据大学培养方向、选才要求确定总的考查目标,结合学科特点,确定适合于本学科考查的目标,考查考生能力结构中易于本学科考查的能力因素,确定数学科能力合理的考查层次,发挥数学科在高考中的基础学科的作用.从数学本身的特点来看,它能够较好地满足选拔的各种条件:数学的抽象性及其逻辑体系,使它能够很好地反映考生的逻辑思维能力和演绎推理水平;数学问题的多样性和层次性,使命题人员能够较好地控制试卷的难度和区分度;数学应用的广泛性,使数学知识成为进一步学习的基础,而数学素质则成为科学人才的重要特征;数学背景的客观性,使它能较好地体现公平竞争的原则.因此,孤立地强调学科特点,片面地考查学科能力,以至于造成试题过于难、偏是没有意义的.数学科考试要发挥基础学科的作用,测量顺利完成各种活动所必备的基本心理能力.高考不同于学校课程的成绩考试,也不同于一般的“智力测验”,它不是测量我们通常认为的人的聪明程度,它测量的是各方面已经得到发展的能力.它所考查的基本的能力是学生在多年与环境的相互作用中发展起来的,是学校教育的结果,是那些影响大学中各种学习活动的、比较稳定的、表现在认知方面的心理特征.学习能力既不同于智力也不同于专业知识技能.可以从以下几方面进行区分:知识技能主要来源于教育和有意的学习,智力则在某种程度上受人的遗传特征的影响,学习能力不仅反映教育和有意学习的结果,而且反映课外学习和无意学习的结果.一般地讲,智力是很难改变的,知识技能则较容易因训练和遗忘而改变.大学学习能力是通过课内外需要较长时间才能发生变化的能力.与智力相比,它可以通过教育而变化;与知识相比,它不会因训练和遗忘而在短时期内发生变化.人的智力几乎影响人在各个方面、各个领域的活动,知识技能则仅影响人在有限领域的活动.学习能力是指那些影响到大学学习中各种活动的心理特征.当高考在考查学习能力的时候,以学生目前的表现为基础,更加关注的是学生在以后的大学学习中的表现将会如何.与此不同,知识考试则主要关注学生现在对某一部分知识的掌握情况.数学科考试中要求有一定的数学知识基础,这些当然不是先天的技能,而是在学校中习得的,如果一个人没有学过代数和几何课程,即使他非常聪明,他在数学科考试中也不会得到很好的成绩.3.1.2.2综合考查学科能力.在高考中,对学科能力的考查是以知识为基础、以问题为载体的.应当注意的是,各种学科能力具有同等重要的意义,“同等重要”有几个含义:一是学科能力要求不是以能力层次为出发点划分的,而是以学科能力因素的不同方面和不同特点划分的,不存在谁高谁低的问题;二是这些能力要求在命题中的地位是相同的,可以用不同的材料,通过不同的形式考查,不存在哪种能力重要,哪种能力不重要的问题;三是这些能力因素是有内在联系的,这种联系反映在试题上就表现为一道试题可能有多种能力要求.一般来说,孤立地强调考查某一种能力是不适宜的.考生解况问题的过程是综合运用各种能力的过程,因此,高考中对能力的考查也应强调综合考查.再比如,数学科在考查逻辑思维能力时,经常与运算能力结合考查,通过具体的计算推导或证明问题的结论;同时,在计算题中,也较多地糅进了逻辑推理的成分,边推理边计算.因此,在考查过程中应明确能力考查的目的,全面准确理解能力考查的意义,摆正各种能力考查之间的关系,确定合适的比重.3.1.2.3注意学科间的渗透与交叉.从过去对学科能力的模糊认识到现在的清楚的认识是一个飞跃,但更重要的是在此基础上的飞跃.从今后高考改革的方向分析,则更有意义.随着高校专业调整和课程改革,普通高校本科的培养目标更着重通才教育.要求学生要有扎实的基础,也需要擅长学科之间的内在联系.与传统的学科纵向型人才相比,是一种综合的横向型人才.因此要求学生注重对事物的整体结构、功能和作用的认识,以及对事物变化发展过程的分析理解.就知识和能力的关系而言,所涉及的知识,多以多样性、复杂性和综合性显现出来.要求考生掌握学科之间的内在联系以及能够运用多学科知识解决问题.掌握各个学科不同的思维方法和学科知识.因此应当明确,学科考试并不是为本学科选拔专门的人才,而是以学科知识为材料,在甄别考生中发挥各自的作用.高考应根据大学培养方向、选才要求确定总的考查目标,各科根据自己的学科特点,确定适于本学科考查的目标,考查考生能力结构中易于本学科考查的能力因素.如对辩证思维方法的考查,政治和历史学科都可以考查,但政治学科可在社会、经济、文化、科技等各方面考查,注重共时性;而历史学科则易于用史实考查考生对历史事件、人物的认识,注重历时性.再比如对运算能力的考查,物理、化学、数学都能考查,但各有侧重,物理、化学更注重以运算作为工具解决本学科的具体问题;而数学则更注重算理、运算方法和能力的考查.因此各科要根据各自的特点,为考查考生的一般能力和认知结构发挥不同的作用.数学和语文作为基础学科是最具有综合性的课程和学科.3.1.3 以能力立意命题建构主义认为,在具体问题中,知识并不是拿来便用,一用就灵,而是需要针对具体情境进行再创造.学生的学习不仅是对新知识的理解,而且是对新知识的分析、检验和批判.知识在各种情况下应用并不是简单套用,具体情境总有自己的特异性,所以,学习知识不能满足于教条式的掌握,而是需要不断深化,把握它在具体情境中的复杂变化,使学习走向“思维中的具体”.实际上,考试特别是高考,正是试图创设新颖的情境,考查考生在具体情境应用知识的能力.因此数学科近年提出了以能力立意的命题思想.一道试题包括立意、情境、设问三个方面.立意是试题的考查目的,情境是实现立意的材料和介质,设问是试题的呈现形式.以能力立意命题,就是首先确定试题在能力方面的考查目的,然后根据能力考查的要求,选择适宜的数学内容,设计恰当的设问方式.强调以能力立意命题使命题工作发生了深刻的变化.3.1.3.1在高考命题操作中,试题考查意向立足点的确定是一个首要的关键问题.在经验命题的年代,它的解决往往是凭借命题人员的个人经验,既缺乏深刻的理论指导,也缺乏有效的。

2023高考数学命题建议

2023高考数学命题建议

2023高考数学命题建议
一、难度分布
1. 难度分布应当均匀,不应有过多极难题或过多低难度题目;
2. 难度应当适中,既能考察学生的基本数学能力,又能考验学生的解决问题的能力。

二、试题类型
1. 应当包括选择题、填空题、计算题和证明题;
2. 选择题可以考查学生的基本知识和分析问题的能力;
3. 填空题可以考查学生的计算和推导能力;
4. 计算题可以考查学生的计算和应用能力;
5. 证明题可以考查学生的逻辑推理和论证能力。

三、考查范围
1. 应当覆盖初中和高中数学的所有知识点;
2. 重点考查高中数学的重点知识点,如函数、导数、极限等;
3. 考查初中数学时,应注重基础知识,如平面几何、三角函数等。

四、命题原则
1. 题目可读性要好,题目要清晰明了,符合语文规范;
2. 题目要具有可行性,即学生可以在规定时间内完成;
3. 题目应当有一定难度,但是要有可确定的解题步骤,能够利用数学工具进行求解;
4. 题目应当严格遵循国家教育部颁发的数学课程标准和教材要求,内容要和现实生活和实际工作紧密联系。

五、试卷布局和考试时间
1. 试卷应当设置为单独命题的题目,试卷布局要合理;
2. 试卷的命题要覆盖考试标准要求;
3. 缩短考试时间是全国普遍的趋势,因此在试卷命题上,要适应国家政策,并确保考查范围。

六、结语
以上是2023年高考数学命题的建议,希望有助于命题教师更好地为学生出好试题,能够更好的检测学生的数学水平。

高考数学单选题和多选题的答题技巧

高考数学单选题和多选题的答题技巧

高考数学单选题和多选题的答题技巧【命题规律】高考的单选题和多选题绝大部分属于中档题目,通常按照由易到难的顺序排列,每道题目一般是多个知识点的小型综合,其中不乏渗透各种数学的思想和方法,基本上能够做到充分考查灵活应用基础知识解决数学问题的能力.(1)基本策略:单选题和多选题属于“小灵通”题,其解题过程可以说是“不讲道理”,所以其解题的基本策略是充分利用题干所提供的信息作出判断和分析,先定性后定量,先特殊后一般,先间接后直接,尤其是对选择题可以先进行排除,缩小选项数量后再验证求解.(2)常用方法:单选题和多选题也属“小”题,解题的原则是“小”题巧解,“小”题快解,“小”题解准.求解的方法主要分为直接法和间接法两大类,具体有:直接法,特值法,图解法,构造法,估算法,对选择题还有排除法(筛选法)等.【核心考点目录】核心考点一:直接法核心考点二:特珠法核心考点三:检验法核心考点四:排除法核心考点五:构造法核心考点六:估算法核心考点七:坐标法核心考点八:图解法【真题回归】1.(2022·天津·统考高考真题)函数()21x f x x-=的图像为()A .B .C .D .2.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为()A .23B .24C .26D .273.(2022·全国·统考高考真题)函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .4.(2022·北京·统考高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-5.(多选题)(2022·全国·统考高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥6.(多选题)(2022·全国·统考高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =7.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C D 8.(多选题)(2022·全国·统考高考真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【方法技巧与总结】1、排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论.2、特殊值法:从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特值法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.3、图解法:对于一些含有几何背景的题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等.4、构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模型,揭示问题的本质,从而找到解题的方法5、估算法:由于选择题提供了唯一正确的选项,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量.6、检验法:将选项分别代人题设中或将题设代人选项中逐一检验,确定正确选项.【核心考点】核心考点一:直接法【典型例题】例1.(2022春·贵州贵阳·高三统考期中)基本再生数0R 与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()e rtI t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 近似满足01R rT =+.有学者基于已有数据估计出0 3.28R =6T =.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间约为(ln 20.69≈)()A .1.8天B .2.5天C .3.6天D .4.2天例2.(2022春·广东深圳·高三深圳中学校考阶段练习)设函数()()πsin sin 03f x x x ωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π上有且仅有3个极值点,则ω的取值范围是().A .710,33⎛⎤⎥⎝⎦B .47,33⎛⎤ ⎥⎝⎦C .1013,33⎛⎤ ⎥⎝⎦D .14,33⎛⎤ ⎥⎝⎦例3.(多选题)(2022春·吉林长春·高一东北师大附中校考期中)设函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都有()3f x ≤,则实数m 的取值可以是()A .3B .4C .92D .112核心考点二:特珠法【典型例题】例4.(辽宁省鞍山市第一中学2022届高三下学期六模考试数学试题)若e b a >>>b m a =,a n b =,log a p b =,则m ,n ,p 这三个数的大小关系为()A .m n p >>B .n p m >>C .n m p>>D .m p n>>例5.(多选题)(广东省佛山市顺德区2022届高三下学期三模数学试题)已知01b a <<<,则下列不等式成立的是()A .log log a b b a<B .log 1a b >C .ln ln a b b a<D .ln ln a a b b>例6.(多选题)(2022春·重庆沙坪坝·高一重庆一中校考阶段练习)我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数.有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.现已知函数()11f x ax a x =++-,则下列说法正确的是()A .函数()12y f x a =+-为奇函数B .当0a >时,()f x 在()1,+∞上单调递增C .若方程()0f x =有实根,则()[),01,a ∞∞∈-⋃+D .设定义域为R 的函数()g x 关于()1,1中心对称,若12a =,且()f x 与()g x 的图象共有2022个交点,记为()(),1,2,,2022i i i A x y i = ,则()()()112220222022x y x y x y ++++++ 的值为4044核心考点三:检验法【典型例题】例7.(多选题)(2022·高一课时练习)对于定义在R 上的函数()y f x =,若存在非零实数0x ,使得()y f x =在()0,x -∞和()0,x +∞上均有零点,则称0x 为()y f x =的一个“折点”.下列函数中存在“折点”的是()A .()132x f x -=+B .()()1lg 32f x x =+-C .3()3x f x x=-D .21()4x f x x +=+例8.(多选题)(2022·全国·高三专题练习)已知函数()()2cos 10,02f x x πωϕωϕ⎛⎫=+-><< ⎪⎝⎭的图象经过原点,且恰好存在2个[]00,1x ∈,使得()f x 的图象关于直线0x x =对称,则()A .3πϕ=B .ω的取值范围为58,33ππ⎡⎫⎪⎢⎣⎭C .一定不存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称D .()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减例9.(多选题)(2022秋·高二课时练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是()A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根D .设函数()f x =R a ∈,e 为自然对数的底数),若曲线sin y x =上存在点00(,)x y 使00(())f f y y =成立,则a 的取值范围是[]1,e 核心考点四:排除法【典型例题】例10.函数()y f x =的部分图象如图所示,则()A .B .C .D .例11.定义在R 上的函数()f x 满足(2)(2)f x f x -=+,且在(2,)+∞单调递增,(4)0f =,4()g x x =,则函数(2)()y f x g x =+的图象可能是()A .B .C .D .例12.如图1,已知PABC 是直角梯形,//AB PC ,AB BC ⊥,D 在线段PC 上,.AD PC ⊥将PAD 沿AD 折起,使平面PAD ⊥平面ABCD ,连接PB ,PC ,设PB的中点为N ,如图2.对于图2,下列选项错误的是()A .平面PAB ⊥平面PBC B .BC ⊥平面PDC C .PD AC⊥D .2PB AN=核心考点五:构造法【典型例题】例13.已知关于x 的不等式ln ln(1)0x e mx x m ---+在(0,)+∞恒成立,则m 的取值范围是()A .(1,1]e --B .(1,1]-C .(1,1]e -D .(1,]e 例14.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足(1)[()()]0x f x f x -'->,22(2)()xf x f x e--=⋅则下列判断一定正确的是()A .(1)(0)f f <B .2(2)(0)f e f >C .3(3)(0)f e f >D .4(4)(0)f e f <例15.已知log a π=12log sin 35b =︒,ee c ππ=,则()A .c b a >>B .c a b >>C .b c a >>D .a b c>>核心考点六:估算法【典型例题】例16.(2020春·江苏淮安·高三江苏省涟水中学校考阶段练习)古希腊时期,人们认为最美0.618≈称为黄金分割比例),已知一位美女身高160cm ,穿上高跟鞋后肚脐至鞋底的长度约103.8cm ,若她穿上高跟鞋后达到黄金比例身材,则她穿的高跟鞋约是()(结果保留一位小数)A .7.8cmB .7.9cmC .8.0cmD .8.1cm例17.设函数()f x 是定义在R 上的奇函数,在区间[1,0]-上是增函数,且(2)()f x f x +=-,则有()A .B .C .D .核心考点七:坐标法【典型例题】例18.在ABC 中,3AC =,4BC =,90.C P ∠=︒为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-例19.如图,在直角梯形ABCD 中,//,,2,AB CD AD DC AD DC AB E ⊥==为AD的中点,若(,)CA CE DB R λμλμ=+∈,则λμ+的值为()A .65B .85C .2D .83例20.(多选题)如图,在边长为2的正方形ABCD 中,P 为以A 为圆心、AB 为半径的圆弧(BD包含B ,)D 上的任意一点,且AP x AB y AD =+,则下列结论正确的是()A .x y +的最大值为B .x y +的最小值为2C .AP AD ⋅的最大值为4D .PB PD ⋅的最小值为4-核心考点八:图解法【典型例题】例21.已知函数31,(0),()2ln ,(0),x x f x x x --⎧=⎨>⎩若方程()f x ax =有三个不同的解1x ,2x ,3x ,则a 的取值范围为()A .2(0,eB .2(0,eC .2(,1]eD .(0,1)例22.已知A ,B 是圆O :221x y +=上的两个动点,||AB =,32OC OA OB =- ,M 为线段AB 的中点,则OC OM ⋅的值为()A .14B .12C .34D .32例23.过原点O 的直线交双曲线E :22221(0,0)x y a b a b-=>>于A ,C 两点,A 在第一象限,1F 、2F 分别为E 的左、右焦点,连接2AF 交双曲线E 右支于点B ,若2||||OA OF =,222||3||CF BF =,则双曲线E 的离心率为.()A .2145B .2134C.5D .535【新题速递】一、单选题1.已知函数()f x ,()g x 都是定义域为R 的函数,函数(1)g x -为奇函数,(1)()0f x g x +-=,(3)(2)0f x g x ----=,则(2)f =()A .1-B .0C .1D .22.已知a b <,0a ≠,0b ≠,c R ∈,则下列不等关系正确的是()A .22a b<B .11a b>C .a c b c -<-D .ac bc<3.某同学掷骰子5次,分别记录每次骰子出现的点数,根据5次的统计结果,可以判断一定没有出现点数6的是A .中位数是3,众数是2B .平均数是3,中位数是2C .方差是2.4,平均数是2D .平均数是3,众数是24.在平面内,,A B 是两个定点,C 是动点.若1AC BC ⋅=,则点C 的轨迹为()A .圆B .椭圆C .抛物线D .直线5.在ABC 中,3AC =,4BC =,90.C P ∠=︒为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-6.在平行四边形ABCD 中,3A π∠=,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足||||||||BM CN BC CD =,则AM AN ⋅ 的最大值是()A .2B .3C .4D .5二、多选题7.已知0a >,0b >,且41a b +=,则()A .162a b+B .1122log log 4a b +C .4ln 1ab e --- D .24sin 1a b -+8.定义在(0,)+∞上的函数()f x 的导函数为()f x ',且恒成立,则A.B .C.D.9.已知1a >,1b >,且333a b e e a b ++=+,则下列结论正确的是()A .322ab +>B .2218a b+<C .ln()1a b ->D .ln()ln 4a b +<10.已知定义在R 上的单调递增函数()f x 满足:任意x ∈R 有(1)(1)2f x f x -++=,(2)(2)4f x f x ++-=,则()A .当x ∈Z 时,()f x x =B .任意x ∈R ,()()f x f x -=-C .存在非零实数T ,使得任意x ∈R ,()()f x T f x +=D .存在非零实数c ,使得任意x ∈R ,|()|1f x cx - 11.已知函数()f x 及其导函数()f x '的定义域均为R ,对任意的x ,y ∈R ,恒有()()2()()f x y f x y f x f y ++-=⋅,则下列说法正确的有()A .(0)1f =B .()f x '必为奇函数C .()(0)0f x f +D .若1(1)2f =,则202311()2n f n ==∑12.函数2||()x f x x a=+的大致图象可能是()A.B.C.D .13.已知函数()tan(cos )cos(sin )f x x x =+,则()A .()f x 是定义域为R 的偶函数B .()f x 的最大值为2C .()f x 的最小正周期为πD .()f x 在[0,2π上单调递减14.若10a b c >>>>,则有()A .log log c c a b >B .cca b >C .()()a b c b a c +>+D .a b b c<15.十六世纪中叶,英国数学家雷科德在《砺志石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c R ∈,则下列命题正确的是()A .若0a b >>,则22ac bc>B .若0a b <<,则11a b b a+<+C .若0a b c <<<,则b b ca a c+<+D .若0,0a b >>,则22b a a ba b++ 16.下面有四个说法正确的有()A .1a <且12b a b <⇒+<且1ab <B .1a <且110b ab a b <⇒--+<C .D .111x x>⇒参考答案【真题回归】1.(2022·天津·统考高考真题)函数()21x f x x-=的图像为()A .B .C .D .【答案】D【解析】函数()21x f x -=的定义域为{}0x x ≠,且()()()2211x x f x f x xx----==-=--,函数()f x 为奇函数,A 选项错误;又当0x <时,()210x f x x -=≤,C 选项错误;当1x >时,()22111x x f x x xx x--===-函数单调递增,故B 选项错误;故选:D.2.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为()A .23B .24C .26D .27【答案】D【解析】该几何体由直三棱柱AFD BHC -及直三棱柱DGC AEB -组成,作HM CB ⊥于M ,如图,因为3,120CH BH CHB ==∠= ,所以32CM BM HM ===,因为重叠后的底面为正方形,所以AB BC ==在直棱柱AFD BHC -中,AB ⊥平面BHC ,则AB HM ⊥,由AB BC B ⋂=可得HM ⊥平面ADCB ,设重叠后的EG 与FH 交点为,I 则132713813333,=3333=322224I BCDA AFD BHC V V --=⨯=⨯⨯则该几何体的体积为8127222742AFD BHC I BCDA V V V --=-=⨯-=.故选:D.3.(2022·全国·统考高考真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .【答案】A【解析】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.4.(2022·北京·统考高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=()A .40B .41C .40-D .41-【答案】B【解析】令1x =,则432101a a a a a ++++=,令=1x -,则()443210381a a a a a -+-+=-=,故420181412a a a +++==,故选:B.5.(多选题)(2022·全国·统考高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥【答案】BC【解析】因为22222a b a b ab ++⎛⎫≤≤⎪⎝⎭(,a b ÎR ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设cos ,sin 22y x y θθ-==,所以cos ,x y θθθ==,因此2222511cos sin cos 12cos 2333x y θθθθ=θ-θ+=++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当,33x y ==-时满足等式,但是221x y +≥不成立,所以D 错误.故选:BC .6.(多选题)(2022·全国·统考高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD 【解析】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACD V ED S a a a =⋅⋅=⋅⋅⋅= ,()232111223323ABC V FB S a a a =⋅⋅=⋅⋅⋅= ,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥,又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D = ,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ===,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ====,3EF a ==,222EM FM EF +=,则EM FM ⊥,212EFM S EM FM =⋅=,AC =,则33123A EFM C EFM EFM V V V AC S a --=+=⋅= ,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确.故选:CD.7.(多选题)(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A B .32C .2D .2【答案】AC【解析】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B ,所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支,OB a =,1OF c =,1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,21NF NF 2a-=532222a a b a ⎛⎫--= ⎪⎝⎭,2b e 2a =∴=,选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OB a =,1OF c =,1FB b =,设12F NF α∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,235NA NF 22a a ==,12NF NF 2a -=352222a b a a +-=,所以23b a =,即32b a =,所以双曲线的离心率2c e a ==选C[方法二]:答案回代法A e 2=选项特值双曲线())22121,F ,F 4x y -=∴,过1F 且与圆相切的一条直线为(y 2x =+,两交点都在左支,N ⎛∴ ⎝,2112NF 5,NF 1,FF ∴===则123cos 5F NF ∠=,C e 2=选项特值双曲线())2212x y 1,F ,F 49-=∴,过1F 且与圆相切的一条直线为(2y x 3=,两交点在左右两支,N 在右支,N ∴,2112NF 5,NF 9,FF ∴===则123cos 5F NF ∠=,[方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,若,M N 分别在左右支,因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支,又OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,在12F NF △中,有()212sin sin sin NF NF cβαβα==+,故()122sin sin sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin a c β=,cos b c β=,故4sin 5α=,代入整理得到23b a =,即32b a =,所以双曲线的离心率c e a ==若,M N 均在左支上,同理有()212sin sin sin NF NF c βαβα==+,其中β为钝角,故cos bcβ=-,故()212sin sin sin NF NF cβαβα-=-+即sin sin cos cos sin sin a c βαβαβα=--,代入3cos 5α=,sin a c β=,4sin 5α=,整理得到:1424a b a =+,故2a b =,故e ==故选:AC.8.(多选题)(2022·全国·统考高考真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确;对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222f x f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC.故选:BC.[方法三]:因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.【方法技巧与总结】1、排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论.2、特殊值法:从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特值法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.3、图解法:对于一些含有几何背景的题,若能根据题目中的条件,作出符合题意的图形,并通过对图形的直观分析、判断,即可快速得出正确结果.这类问题的几何意义一般较为明显,如一次函数的斜率和截距、向量的夹角、解析几何中两点间距离等.4、构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模型,揭示问题的本质,从而找到解题的方法5、估算法:由于选择题提供了唯一正确的选项,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量.6、检验法:将选项分别代人题设中或将题设代人选项中逐一检验,确定正确选项.【核心考点】核心考点一:直接法【典型例题】例1.(2022春·贵州贵阳·高三统考期中)基本再生数0R 与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()e rtI t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R ,T 近似满足01R rT =+.有学者基于已有数据估计出0 3.28R =,6T =.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间约为(ln 20.69≈)()A .1.8天B .2.5天C .3.6天D .4.2天【答案】C【解析】把0 3.28R =,6T =代入01R rT =+,可得0.38r =,所以()0.38e tI t =.设在新冠肺炎疫情初始阶段,累计感染病例数增加3倍需要的时间为1t ,则有()()14I t t I t +=,即()10.380.38t e 4e t t +=,整理有10.38t e 4=,则10.38ln 4t =,解得1ln 42ln 220.693.60.380.380.38t ⨯==≈≈.故选:C .例2.(2022春·广东深圳·高三深圳中学校考阶段练习)设函数()()πsin sin 03f x x x ωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π上有且仅有3个极值点,则ω的取值范围是().A .710,33⎛⎤⎥⎝⎦B .47,33⎛⎤ ⎥⎝⎦C .1013,33⎛⎤ ⎥⎝⎦D .14,33⎛⎤ ⎥⎝⎦【答案】A【解析】由题知,()ππsin sin sin326f x x x x x x ωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭,因为[]0,πx ∈,所以πππ,π666x ωω⎡⎤+∈+⎢⎥⎣⎦,因为()f x 在[]0,π上有且仅有3个极值点,所以5ππ7ππ262ω<+≤,解得71033ω<≤,所以ω的取值范围是710,33⎛⎤ ⎥⎝⎦,故选:A例3.(多选题)(2022春·吉林长春·高一东北师大附中校考期中)设函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都有()3f x ≤,则实数m 的取值可以是()A .3B .4C .92D .112【答案】ABC【解析】因为函数()f x 的定义域为R ,满足()2(2)f x f x =-,且当2(]0,x ∈时,()(2)f x x x =-,所以当(2,4]x ∈时,()2(2)[2(2)]2(2)(4)f x x x x x =---=--,当6(4],x ∈时,()4[(2)2][4(2)]4(4)(6)f x x x x x =----=--,函数部分图象如图所示,由4(4)(6)3x x --=,得2440990x x -+=,解得92x =或112x =,因为对任意(,]x m ∈-∞,都有()3f x ≤,所以由图可知92m ≤,故选:ABC核心考点二:特珠法【典型例题】例4.(辽宁省鞍山市第一中学2022届高三下学期六模考试数学试题)若e b a >>>b m a =,a n b =,log a p b =,则m ,n ,p 这三个数的大小关系为()A .m n p >>B .n p m >>C .n m p >>D .m p n>>【答案】C【解析】因为e b a >>>所以取52,2a b ==,则()5225,6bm a ====,2525 6.2524an b ⎛⎫=== ⎪⎝⎭=,()25log log 1,22a pb ==∈,所以n m p >>.故选:C.例5.(多选题)(广东省佛山市顺德区2022届高三下学期三模数学试题)已知01b a <<<,则下列不等式成立的是()A .log log a b b a <B .log 1a b >C .ln ln a b b a <D .ln ln a a b b>【答案】BC【解析】选项A :()()22lg lg lg lg lg lg lg lg log log lg lg lg lg lg lg a b b a b a b a b a b a a b a b a b-+--=-==由01b a <<<,可得lg lg 0b a <<,则lg lg 0b a >,lg lg 0b a -<,lg lg 0b a +<则()()lg lg lg lg 0lg lg b a b a a b-+>,则log log a b b a >.判断错误;选项B :由01a <<,可得log a y x =为(0,)+∞上减函数,又0b a <<,则log log 1a a b a >=.判断正确;选项C :由01a <<,可知x y a =为R 上减函数,又b a <,则a b a a >由0a >,可知a y x =为(0,)+∞上增函数,又b a <,则a a b a <,则b a a b >又ln y x =为(0,)+∞上增函数,则ln ln b a a b >,则ln ln a b b a <.判断正确;选项D :令211e e a b ==,,则01b a <<<,e ln l 111e n e a a =-=,222ln ln 112e e eb b =-=则22122e0e ln eln e a a b b --+==<-,即ln ln a a b b <.判断错误.故选:BC例6.(多选题)(2022春·重庆沙坪坝·高一重庆一中校考阶段练习)我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数.有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.现已知函数()11f x ax a x =++-,则下列说法正确的是()A .函数()12y f x a =+-为奇函数B .当0a >时,()f x 在()1,+∞上单调递增C .若方程()0f x =有实根,则()[),01,a ∞∞∈-⋃+D .设定义域为R 的函数()g x 关于()1,1中心对称,若12a =,且()f x 与()g x 的图象共有2022个交点,记为()(),1,2,,2022i i i A x y i = ,则()()()112220222022x y x y x y ++++++ 的值为4044【答案】ACD【解析】对于A.()()11121211f x a a x a a ax x x+-=+++-=++-由解析式可知1y ax x=+是奇函数,故A 正确;对于B.特殊值法33152322212f a a a ⎛⎫=++=+ ⎪⎝⎭-,()1223121f a a a =++=+-即3(2)122a f f ⎛⎫-=- ⎪⎝⎭,若02a <<,则()f x 在()1,+∞上不是单调递增,故B 错误.对于C.令()101f x ax a x =++=-,分离参数后211a x=-,()(]21,0)(0,1x ∞-∈-⋃故()[)21,01,1x ∞∞∈-⋃+-,C 正确;对于D.由A 可知,当12a =时,()f x 关于()1,1中心对称,且()g x 关于()1,1中心对称,所以这2022个交点关于()1,1对称,故()()122022122022202220224044x x x y y y +++++++=+= ,D 正确.故选:ACD核心考点三:检验法【典型例题】例7.(多选题)(2022·高一课时练习)对于定义在R 上的函数()y f x =,若存在非零实数0x ,使得()y f x =在()0,x -∞和()0,x +∞上均有零点,则称0x 为()y f x =的一个“折点”.下列函数中存在“折点”的是()A .()132x f x -=+B .()()1lg 32f x x =+-C .3()3x f x x=-D .21()4x f x x +=+【答案】BC【解析】A :因为10()32323x f x -=+≥+=,所以()f x 没有零点,即()f x 没有“折点”;B :当0x ≥时1()lg(3)2f x x =+-单调递增,又1(0)lg 302f =-<,1(7)lg1002f =->,所以()f x 在()0,+∞上有零点.又()()1lg 32f x x =+-是偶函数,所以()f x 在(),0-∞上有零点,所以()f x 存在“折点”.C :令3()03x f x x =-=,得0x =或()f x 在()0,+∞上有零点,在(),0-∞上有零点,即()f x 存在“折点”.D :令21()04x f x x +==+,解得=1x -,所以()f x 只有一个零点,即()f x 没有“折点”.故选:BC例8.(多选题)(2022·全国·高三专题练习)已知函数()()2cos 10,02f x x πωϕωϕ⎛⎫=+-><< ⎪⎝⎭的图象经过原点,且恰好存在2个[]00,1x ∈,使得()f x 的图象关于直线0x x =对称,则()A .3πϕ=B .ω的取值范围为58,33ππ⎡⎫⎪⎢⎣⎭C .一定不存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称D .()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减【答案】ABD【解析】因为()02cos 10,02f πϕϕ=-=<<,得3πϕ=,A 正确.设3u x πω=+,则2cos 1y u =-如图所示,由[]0,1x ∈,得,333x πππωω⎡⎤+∈+⎢⎥⎣⎦,所以233ππωπ≤+<,得5833ππω≤<,B 正确.如图所示,当5323ππωπ≤+<时,存在3个[]10,1x ∈,使得()f x 的图象关于点()1,1x -对称.C 错误.因为10,4x ⎡⎤∈⎢⎥⎣⎦,所以1,3343x πππωω⎡⎤+∈+⎢⎥⎣⎦,又5833ππω≤<,所以31443ππωπ≤+<,所以()f x 在10,4⎡⎤⎢⎥⎣⎦上单调递减,D 正确.故选:ABD例9.(多选题)(2022秋·高二课时练习)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹·布劳威尔,简单地讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是()A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根D .设函数()f x =R a ∈,e 为自然对数的底数),若曲线sin y x =上存在点00(,)x y 使00(())f f y y =成立,则a 的取值范围是[]1,e 【答案】BCD【解析】对于A ,令()sin g x x x =-,x ∈R ,()cos 10g x x '=-≤,当且仅当cos 1x =时取“=”,则()g x 在R 上单调递减,而(0)0g =,即()g x 在R 上只有一个零点,函数()f x 只有一个不动点,A 不正确;对于B ,因二次函数2(1)y ax b x c =+-+至多有两个零点,则函数()f x 至多有两个不动点,B 正确;对于C ,依题意,方程2()0(1)0f x x ax b x c -=⇔+-+=无实数根,即2(1)40b ac ∆=--<,当0a >时,二次函数()y f x x =-的图象开口向上,则()0f x x ->恒成立,即R x ∀∈,恒有()f x x >,而()R f x ∈,因此有[()]()f f x f x x >>恒成立,即方程(())f f x x =无实根,当a<0时,二次函数()y f x x =-的图象开口向下,则()0f x x -<恒成立,即R x ∀∈,恒有()f x x <,而()R f x ∈,因此有[()]()f f x f x x <<恒成立,即方程(())f f x x =无实根,所以函数2()(0)f x ax bx c a =++≠没有不动点,则方程(())f f x x =无实根,C 正确;对于D ,点00(,)x y 在曲线sin y x =上,则0[1,1]y ∈-,又00(())f f y y =,即有001y ≤≤,当001y ≤≤时,00()f y y =满足00(())f f y y =,显然函数()f x =函数,若00()f y y >,则000(())()f f y f y y >>与00(())f f y y =矛盾,若00()f y y <,则000(())()f f y f y y <<与00(())f f y y =矛盾,因此,当001y ≤≤时,00()f y y =,即当01x ≤≤时,()f x x =,对[0,1]x ∈,2e e x x x a x a x x +-=⇔=-+,令2()e x h x x x =-+,[0,1]x ∈,()e 21220x h x x x '=-+≥-≥,而两个“=”不同时取得,即当[0,1]x ∈时,()0h x '>,于是得()h x 在[0,1]上单调递增,有(0)()(1)h h x h ≤≤,即1()e h x ≤≤,则1e a ≤≤,D 正确.故选:BCD核心考点四:排除法【典型例题】例10.函数()y f x =的部分图象如图所示,则()A .B .C .D .【答案】A【解析】由题意,函数()f x 图象可得函数()f x 为奇函数,对于A ,111()2(1)2(1)f x x x x -=++-+---,符合题意,对于B ,111()2(1)2(1)f x x x x -=-+-+---,符合题意,对于C ,111()2(1)2(1)f x x x x -=+--+---,不符合题意,对于D ,111()2(1)2(1)f x x x x -=--+-+---,不符合题意,故排除C ,D 选项,又当0.1x =时,代入B 中函数解析式,即111(0.1)2(0.11)0.12(0.11)f =-++-55100119=--<,不符合题意;故排除B 选项,故选.A 例11.定义在R 上的函数()f x 满足(2)(2)f x f x -=+,且在(2,)+∞单调递增,(4)0f =,4()g x x =,则函数(2)()y f x g x =+的图象可能是()A .B .C .D .【答案】B【解析】依题意可知函数()f x 的对称轴方程为2x =,在(2,)+∞上单调递增,且(4)0f =,设()(2)h x f x =+,则函数()h x 的对称轴方程为0x =,在(0,)+∞上单调递增,且(2)0h =,()h x ∴是偶函数,且当02x <<时,()0.h x <因此函数4(2)()()y f x g x h x x =+=⋅也是偶函数,其图象关于y 轴对称,故可以排除选项A 和D ;当02x <<时,4()0y h x x =⋅<,由此排除选项.C 例12.如图1,已知PABC 是直角梯形,//AB PC ,AB BC ⊥,D 在线段PC 上,.AD PC ⊥将PAD 沿AD 折起,使平面PAD ⊥平面ABCD ,连接PB ,PC ,设PB的中点为N ,如图2.对于图2,下列选项错误的是()A .平面PAB ⊥平面PBC B .BC ⊥平面PDC C .PD AC⊥D .2PB AN=【答案】A【解析】解:因为AD PC ⊥,所以AD DC ⊥,AD PD ⊥,又DC ,PD ⊂平面PDC ,DC PD D ⋂=,即AD ⊥平面PDC ,折叠前有//AB PC ,AB BC ⊥,AD PC ⊥,所以//AD BC ,所以BC ⊥平面PDC ,故B 正确.由于平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PD ⊂平面PAD ,且AD PD ⊥,所以PD ABCD ⊥平面,又AC ABCD ⊂平面,所以PD AC ⊥,故C 正确.DC PD ⊥ ,DC AD ⊥,PD AD D ⋂=,PD 、AD 在平面PAD 内,DC ∴⊥平面PAD ,//AB DC ,AB ∴⊥平面PAD ,又PA ⊂平面PAD ,故AB PA ⊥,PAB ∴∆为直角三角形,N 为斜边的中点,所以2PB AN =,故D 正确.由排除法可得A 错误.故选.A 核心考点五:构造法【典型例题】例13.已知关于x 的不等式ln ln(1)0xe mx x m ---+在(0,)+∞恒成立,则m 的取值范围是()A .(1,1]e --B .(1,1]-C .(1,1]e -D .(1,]e 【答案】A【解析】解:由ln ln(1)0xe mx x m ---+得ln(1)x e mx m x -+ ,即,令()xf x e x =+,(0,)x ∈+∞,则,故()f x 在(0,)x ∈+∞单调递增,若()(ln(1))f x f m x + ,则在(0,)x ∈+∞恒成立,记()ln(1)g x x m x =-+,则()0g x 在(0,)x ∈+∞上恒成立,即min ()0g x ,因为1()1g x x'=-,则当1x <时,()0,g x '<当1x >时,()0,g x '>故()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,故min ()(1)1ln(1)0g x g m ==-+所以,即01m e <+,解得11m e -<- ,所以m 的取值范围是(1,e --故选:.A 例14.已知函数()f x 在R 上可导,其导函数为()f x ',若()f x 满足(1)[()()]0x f x f x -'->,22(2)()xf x f x e--=⋅则下列判断一定正确的是()A .(1)(0)f f <B .2(2)(0)f e f >C .3(3)(0)f e f >D .4(4)(0)f e f <【答案】C【解析】解:令()()x f x g x e =,则()()().xf x f xg x e''-=()f x 满足:(1)[()()]0x f x f x -'->,∴当1x <时,()()0.()0.f x f x g x '-<∴'<此时函数()g x 单调递减.(1)(0).g g ∴->即10(1)(0)(0).f f f e e-->=。

高考数学各专题命题规律汇编

高考数学各专题命题规律汇编

高考数学各专题命题规律汇编专题一集合、简易逻辑考向(一)集合1.规律小结集合作为高中数学的预备知识内容,每年高考都将其作为必考题,题目分布在选择题1,2,以集合的运算为主,多与解不等式等交汇,新定义运算也有较小的可能出现,属于基础性题目,主要基本考生的运算求解能力,学科素养主要考查理性思维和数学探索。

2.考点频度高频考点:集合的概念及表示和集合间的基本运算。

低频考点:集合间的基本关系。

3.备考策略集合主要以课程学习情境为主,备考应以常见的选择题目为主训练,难度通常不大,在备考中注意与一元二次不等式,绝对值不等式的解法相结合。

在备考时要注意以下两点:(1)在注重集合定义的基础上,牢固掌握集合的基本概念与运算,加强与其他数学知识的联系,借助数轴和Venn图突出集合的工具性;(2)适当地加强与函数、不等式的联系,注意小题目的综合化。

考向(二)简易逻辑1.规律小结简易逻辑主要要求考生理解其中蕴含的逻辑思想,并且容易与函数、不等式、数列、三角函数、立体几何交汇。

考查的热点是充要条件和全称量词命题与存在量词命题。

要注意,本部分内容出错原因主要是与其他知识交汇部分,其次是充要条件的判断容易出错。

2.考点频度高频考点:充分条件与必要条件。

3.备考策略常用逻辑用语是数学学习和思维的工具,要通过具体的例子让学生切实理解其中的基本概念和思维方法。

由于该内容与函数、立体几何、不等式、数列等知识结合紧密,在立体几何、函数、不等式、数列等内容备考过程中注重渗透充分必要条件、全称量词命题和存在量词命题。

专题二平面向量与复数考向(一)平面向量1.规律小结三年三考,向量题考的比较基础,突出向量的几何运算或代数运算,不侧重于与其他知识交汇,难度不大。

这样有利于考查向量的基本运算,符合课标要求。

2.考点频度高频考点:线性运算、夹角计算、数量积。

中频考点:模的计算、向量的垂直与平行。

低频考点:综合问题。

(从2021年中频考点降为低频考点)3.备考策略纵观近几年高考,平面向量重点考查向量的概念、共线、垂直、线性运算及标运算等知识,侧重考查数量积的坐标运算,难度较低,同时也有可能出现在解答题中,突出其工具功能。

2023届高考数学---导数专题命题规律小结及备考策略

2023届高考数学---导数专题命题规律小结及备考策略

2023届高考数学---导数专题命题规律小结及备考策略1.规律小结纵观近几年高考对导数的考查,试题设计一般是包含一大一小(全国Ⅱ卷一般只有大题),理科对导数的几何意义以及切线考查的频率较高,用导数研究函数的单调性、极值、最值是引导教学的常规要求。

文科对切线、单调性和零点考查的频次较高,导数研究不等式的要求相对理科要低许多。

导数研究不等式、零点等则是导数综合运用的最好载体,从思想方法上看,函数与方程、数形结合、分类讨论是重点考查的内容,从关键能力上看,侧重对逻辑思维能力、运算求解能力、创新能力的考查,从学科素养上看,突出理性思维和数学探索。

命题基本上是强调导数的工具性作用,不涉及导数本身过多的理论。

2.考点频度高频考点:含参函数的参数对函数性质的影响;用导数研究函数的单调性、极值或最值;导数的几何意义,求曲线切线的方程;函数的零点讨论;函数的图像与函数的奇偶性。

中频考点:用函数的单调性比较大小;利用函数证明不等式或求不等式的解;求参数的取值范围;函数模型的应用。

低频考点:反函数、定积分。

3.备考策略预计2022年的高考难度会有所降低,但变化不大,保持稳定是主基调,小题一般是基础题,大题突出综合性,作为载体的指数函数、对数函数、三角函数应该引起足够的重视。

(1)2022年高考仍然重点利用导数的几何意义求函数的切线、利用导数研究函数的单调性、极值与最值问题,难度不定,题目可能为简单题,也可能为难题,题型为选择题、填空题或解答题。

(2)2022年高考在导数综合应用的命题方面,理科仍将以选择、填空压轴题或解答题压轴题形式考查不等式恒(能)成立问题与探索性问题、利用导数证明不等式、利用导数研究零点或方程解问题,重点考查分类整合思想、分析解决问题的能力。

文科仍将以解答题压轴题形式考查零点、极值、最值,简单不等式恒(能)成立问题与探索性问题、利用导数解证与不等式有关的问题,一般难度不会太高。

新高考的考查内容会与理科类似,难度可能会略低一些。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学命题规律
2018-01-16
1、解析几何最经常考什么?
解析几何是一些综合题最喜欢考察的知识点,可难可易。

纵观历年高考命题的规律,解析几何主要围绕主干知识--椭圆的方程和性质,运用圆心的轨迹、圆锥曲线的定义、性质、椭圆标准方程的变形、直线斜率、圆的性质和平面几何知识推证椭圆的一些基本性质,会对圆锥曲线中的存在性、唯一性、不变性、恒成立等性质进行论证、运用。

2、三角形题年年考,失分严重怎么办?
对于三角形这个知识点,在复习的时候复习,应重视以图形为载体运用三角变换求角的方法与注意点,已知三角形的中线、角平分线或高等如何解三角形。

3、填空题后几题可能一般比较难,怎么办?
根据对多年高考命题的分析,填空题最后几题之所以难,是因为涉及向量数量积、基本不等式、数列、圆锥曲线等知识点。

那有什么解决的方法呢?其实向量数量积的考核,主要以三角形、平行四边形、梯形、正六边形和圆锥曲线为载体,数形结合求数量积和参数;基本不等式主要考察求最值及参数范围;数列与圆锥曲线基本量的计算,运用抽象函数的性质求函数值与解不等式、三角形的计算与三角求值;命题的否定与必要不充分条件也经常考察。

4、立体几何怎么都搞不定?
复习应关注符号语言表述的命题的真假判断,共(异)面的判断与证明、用性质定理寻找平行线与垂线的方法,运用三棱锥体积求点面距离。

5、关于应用题。

应用题可从解三角形、概率、数列求和、函数、立几等模型出发构建数学模型,概率应用题应注意解题规范。

6、函数重点考什么?为什么每次都错很多?
分析近几年的高考题,函数主要是论证函数的基本性质,难点是将函数与方程、不等式等知识结合,涉及求参数范围、解不等式、证明不等式,重视分类讨论在研究函数问题中的工具作用。

7、数列复习应重视对差、等比数列的综合运用。

掌握证明一个数列不是等差(比)数列的方法,会用整数的基本性质和求不定方程整数解的方法求解数列的基本量,证明数列的一些基本性质(如无穷子数列项的整除性质和不等关系)。

8、学有余力的话,关注一点高等数学的知识和竞赛知识用处大吗?
在中国教育中,如果想要在应试方面有比较明显的优势,高分网高考频道小编建议学生们可以在学有余力的基础上,关注高等数学知识与竞赛知识,在高考中,虽然知识点都出自高考大纲,但高考在思维的考察方面,实际上是站在更高的高度。

如果在解题中有一点高等数学的底子,很多知识点交叉的题或者是难题,解决起来都是很方便的。

[高考数学命题规律]。

相关文档
最新文档