MOS管驱动电路

合集下载

MOS管驱动电路设计,如何让MOS管快速开启和关闭?

MOS管驱动电路设计,如何让MOS管快速开启和关闭?

MOS管驱动电路设计,如何让MOS管快速开启和关闭?关于M O S管驱动电路设计,本文谈一谈如何让M O S管快速开启和关闭。

一般认为M O S F E T(M O S管)是电压驱动的,不需要驱动电流。

然而,在M O S管的G极和S极之间有结电容存在,这个电容会让驱动M O S变的不那么简单。

下图的3个电容为M O S管的结电容,电感为电路走线的寄生电感:如果不考虑纹波、E M I和冲击电流等要求的话,M O S管开关速度越快越好。

因为开关时间越短,开关损耗越小,而在开关电源中开关损耗占总损耗的很大一部分,因此M O S管驱动电路的好坏直接决定了电源的效率。

怎么做到M O S管的快速开启和关闭呢?对于一个M O S管,如果把G S之间的电压从0拉到管子的开启电压所用的时间越短,那么M O S管开启的速度就会越快。

与此类似,如果把M O S管的G S电压从开启电压降到0V的时间越短,那么M O S管关断的速度也就越快。

由此我们可以知道,如果想在更短的时间内把G S电压拉高或者拉低,就要给M O S管栅极更大的瞬间驱动电流。

大家常用的P W M芯片输出直接驱动M O S或者用三极管放大后再驱动M O S的方法,其实在瞬间驱动电流这块是有很大缺陷的。

比较好的方法是使用专用的M O S F E T驱动芯片如T C4420来驱动M O S管,这类的芯片一般有很大的瞬间输出电流,而且还兼容T T L电平输入,M O S F E T驱动芯片的内部结构如下:M O S驱动电路设计需要注意的地方:因为驱动线路走线会有寄生电感,而寄生电感和M O S管的结电容会组成一个L C振荡电路,如果直接把驱动芯片的输出端接到M O S管栅极的话,在P W M波的上升下降沿会产生很大的震荡,导致M O S管急剧发热甚至爆炸,一般的解决方法是在栅极串联10欧左右的电阻,降低L C振荡电路的Q值,使震荡迅速衰减掉。

因为M O S管栅极高输入阻抗的特性,一点点静电或者干扰都可能导致M O S管误导通,所以建议在M O S管G极和S极之间并联一个10K的电阻以降低输入阻抗。

mos并联驱动电路设计

mos并联驱动电路设计

mos并联驱动电路设计设计MOS管的并联驱动电路时,我们需要考虑一些重要因素。

首先,我们需要确定所需的电流和电压能力,以便选择合适的MOS 管。

其次,我们需要考虑MOS管的开关速度和功耗,以及电路的稳定性和可靠性。

接下来,我将从电路原理、元件选择、电路设计和性能优化等方面来详细回答你的问题。

在MOS管并联驱动电路的设计中,我们通常会采用驱动电路来控制MOS管的开关。

驱动电路的设计需要考虑到MOS管的输入电容、输入电压和电流需求。

在选择驱动电路时,我们需要注意驱动电路的响应速度和输出能力,以确保能够快速充放电MOS管的栅极电容,从而提高开关速度和降低功耗。

在元件选择方面,我们需要选择适合的MOS管和驱动电路芯片。

MOS管的选择需要考虑到电流和电压的要求,以及开关速度和导通电阻。

驱动电路芯片的选择需要考虑到输出能力、输入电压范围、过流保护等特性,以确保能够稳定可靠地驱动MOS管。

在电路设计方面,我们需要注意布局和连接方式。

合理的布局可以减小电磁干扰和串扰,提高电路的稳定性和可靠性。

正确的连接方式可以确保MOS管并联驱动电路能够正常工作,并且提高电路的效率和性能。

最后,在性能优化方面,我们可以通过合理的参数调节和电路优化来提高MOS管并联驱动电路的性能。

例如,调节驱动电路的输出电流和电压,优化MOS管的驱动信号波形,以及优化布局和连接方式等方法,可以提高电路的开关速度、降低功耗和提高稳定性。

综上所述,设计MOS管的并联驱动电路需要考虑到多个方面,包括电路原理、元件选择、电路设计和性能优化等。

通过综合考虑这些因素,并采取合适的措施,我们可以设计出稳定可靠、性能优越的MOS管并联驱动电路。

希望这些信息能够对你有所帮助。

如果你有其他问题,欢迎继续提问。

详细讲解MOSFET管驱动电路

详细讲解MOSFET管驱动电路

详细讲解M O S F E T管驱动电路在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素;这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的;下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创;包括MOS管的介绍,特性,驱动以及应用电路;1,MOS管种类和结构MOSFET管是FET的一种另一种是JFET,可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种;至于为什么不使用耗尽型的MOS管,不建议刨根问底;对于这两种增强型MOS管,比较常用的是NMOS;原因是导通电阻小,且容易制造;所以开关电源和马达驱动的应用中,一般都用NMOS;下面的介绍中,也多以NMOS 为主;MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的;寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍;在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管;这个叫体二极管,在驱动感性负载如马达,这个二极管很重要;顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的;2,MOS管导通特性导通的意思是作为开关,相当于开关闭合;NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况低端驱动,只要栅极电压达到4V或10V就可以了;PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况高端驱动;但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS;3,MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗;选择导通电阻小的MOS管会减小导通损耗;现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有;MOS在导通和截止的时候,一定不是在瞬间完成的;MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失;通常开关损失比导通损失大得多,而且开关频率越快,损失也越大;导通瞬间电压和电流的乘积很大,造成的损失也就很大;缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数;这两种办法都可以减小开关损失;4,MOS管驱动跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了;这个很容易做到,但是,我们还需要速度;在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电;对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大;选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小;第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压;而高端驱动的MOS管导通时源极电压与漏极电压VCC相同,所以这时栅极电压要比VCC大4V或10V;如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了;很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管;上边说的4V或10V是常用的MOS管的导通电压,设计时当然需要有一定的余量;而且电压越高,导通速度越快,导通电阻也越小;现在也有导通电压更小的MOS管用在不同的领域里,但在12V汽车电子系统里,一般4V导通就够用了;MOS管的驱动电路及其损失,可以参考Microchip公司的AN799 Matching MOSFET Drivers to MOSFETs;讲述得很详细,所以不打算多写了;5,MOS管应用电路MOS管最显着的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动,也有照明调光;现在的MOS驱动,有几个特别的需求,1,低压应用当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有左右的压降,导致实际最终加在gate上的电压只有;这时候,我们选用标称gate电压的MOS管就存在一定的风险;同样的问题也发生在使用3V或者其他低压电源的场合;2,宽电压应用输入电压并不是一个固定值,它会随着时间或者其他因素而变动;这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的;为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate电压的幅值;在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗;同时,如果简单的用电阻分压的原理降低gate电压,就会出现输入电压比较高的时候,MOS管工作良好,而输入电压降低的时候gate电压不足,引起导通不够彻底,从而增加功耗;3,双电压应用在一些控制电路中,逻辑部分使用典型的5V或者数字电压,而功率部分使用12V甚至更高的电压;两个电压采用共地方式连接;这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS管,同时高压侧的MOS管也同样会面对1和2中提到的问题;在这三种情况下,图腾柱结构无法满足输出要求,而很多现成的MOS驱动IC,似乎也没有包含gate电压限制的结构;于是我设计了一个相对通用的电路来满足这三种需求;电路图如下:图1 用于NMOS的驱动电路图2 用于PMOS的驱动电路这里我只针对NMOS驱动电路做一个简单分析:Vl和Vh分别是低端和高端的电源,两个电压可以是相同的,但是Vl不应该超过Vh;Q1和Q2组成了一个反置的图腾柱,用来实现隔离,同时确保两只驱动管Q3和Q4不会同时导通;R2和R3提供了aPWM电压基准,通过改变这个基准,可以让电路工作在PWM信号波形比较陡直的位置;Q3和Q4用来提供驱动电流,由于导通的时候,Q3和Q4相对Vh和GND最低都只有一个Vce的压降,这个压降通常只有左右,大大低于的Vce;R5和R6是反馈电阻,用于对gate电压进行采样,采样后的电压通过Q5对Q1和Q2的基极产生一个强烈的负反馈,从而把gate电压限制在一个有限的数值;这个数值可以通过R5和R6来调节;最后,R1提供了对Q3和Q4的基极电流限制,R4提供了对MOS管的gate电流限制,也就是Q3和Q4的Ice的限制;必要的时候可以在R4上面并联加速电容;这个电路提供了如下的特性:1,用低端电压和PWM驱动高端MOS管;2,用小幅度的PWM信号驱动高gate电压需求的MOS管;3,gate电压的峰值限制4,输入和输出的电流限制5,通过使用合适的电阻,可以达到很低的功耗;6,PWM信号反相;NMOS并不需要这个特性,可以通过前置一个反相器来解决;在设计便携式设备和无线产品时,提高产品性能、延长电池工作时间是设计人员需要面对的两个问题;DC-DC转换器具有效率高、输出电流大、静态电流小等优点,非常适用于为便携式设备供电;目前DC-DC转换器设计技术发展主要趋势有:1高频化技术:随着开关频率的提高,开关变换器的体积也随之减小,功率密度也得到大幅提升,动态响应得到改善;小功率DC-DC转换器的开关频率将上升到兆赫级;2低输出电压技术:随着半导体制造技术的不断发展,微处理器和便携式电子设备的工作电压越来越低,这就要求未来的DC-DC变换器能够提供低输出电压以适应微处理器和便携式电子设备的要求;这些技术的发展对电源芯片电路的设计提出了更高的要求;首先,随着开关频率的不断提高,对于开关元件的性能提出了很高的要求,同时必须具有相应的开关元件驱动电路以保证开关元件在高达兆赫级的开关频率下正常工作;其次,对于电池供电的便携式电子设备来说,电路的工作电压低以锂电池为例,工作电压~,因此,电源芯片的工作电压较低;MOS管具有很低的导通电阻,消耗能量较低,在目前流行的高效DC-DC芯片中多采用MOS管作为功率开关;但是由于MOS管的寄生电容大,一般情况下NMOS开关管的栅极电容高达几十皮法;这对于设计高工作频率DC-DC转换器开关管驱动电路的设计提出了更高的要求;在低电压ULSI设计中有多种CMOS、BiCMOS采用自举升压结构的逻辑电路和作为大容性负载的驱动电路;这些电路能够在低于1V电压供电条件下正常工作,并且能够在负载电容1~2pF的条件下工作频率能够达到几十兆甚至上百兆赫兹;本文正是采用了自举升压电路,设计了一种具有大负载电容驱动能力的,适合于低电压、高开关频率升压型DC-DC转换器的驱动电路;电路基于Samsung AHP615 BiCMOS工艺设计并经过Hspice仿真验证,在供电电压,负载电容为60pF时,工作频率能够达到5MHz以上;自举升压电路自举升压电路的原理图如图1所示;所谓的自举升压原理就是,在输入端IN 输入一个方波信号,利用电容Cboot将A点电压抬升至高于VDD的电平,这样就可以在B端输出一个与输入信号反相,且高电平高于VDD的方波信号;具体工作原理如下;当VIN为高电平时,NMOS管N1导通,PMOS管P1截止,C点电位为低电平;同时N2导通,P2的栅极电位为低电平,则P2导通;这就使得此时A点电位约为VDD,电容Cboot两端电压UC≈VDD;由于N3导通,P4截止,所以B点的电位为低电平;这段时间称为预充电周期;当VIN变为低电平时,NMOS管N1截止,PMOS管P1导通,C点电位为高电平,约为VDD;同时N2、N3截止,P3导通;这使得P2的栅极电位升高,P2截止;此时A 点电位等于C点电位加上电容Cboot两端电压,约为2VDD;而且P4导通,因此B点输出高电平,且高于VDD;这段时间称为自举升压周期;实际上,B点电位与负载电容和电容Cboot的大小有关,可以根据设计需要调整;具体关系将在介绍电路具体设计时详细讨论;在图2中给出了输入端IN电位与A、B两点电位关系的示意图;驱动电路结构图3中给出了驱动电路的电路图;驱动电路采用Totem输出结构设计,上拉驱动管为NMOS管N4、晶体管Q1和PMOS管P5;下拉驱动管为NMOS管N5;图中CL为负载电容,Cpar为B点的寄生电容;虚线框内的电路为自举升压电路;本驱动电路的设计思想是,利用自举升压结构将上拉驱动管N4的栅极B点电位抬升,使得UB>VDD+VTH ,则NMOS管N4工作在线性区,使得VDSN4 大大减小,最终可以实现驱动输出高电平达到VDD;而在输出低电平时,下拉驱动管本身就工作在线性区,可以保证输出低电平位GND;因此无需增加自举电路也能达到设计要求;考虑到此驱动电路应用于升压型DC-DC转换器的开关管驱动,负载电容CL很大,一般能达到几十皮法,还需要进一步增加输出电流能力,因此增加了晶体管Q1作为上拉驱动管;这样在输入端由高电平变为低电平时,Q1导通,由N4、Q1同时提供电流,OUT端电位迅速上升,当OUT端电位上升到VDD-VBE时,Q1截止,N4继续提供电流对负载电容充电,直到OUT端电压达到VDD;在OUT端为高电平期间,A点电位会由于电容Cboot 上的电荷泄漏等原因而下降;这会使得B点电位下降,N4的导通性下降;同时由于同样的原因,OUT端电位也会有所下降,使输出高电平不能保持在VDD;为了防止这种现象的出现,又增加了PMOS管P5作为上拉驱动管,用来补充OUT端CL的泄漏电荷,维持OUT端在整个导通周期内为高电平;驱动电路的传输特性瞬态响应在图4中给出;其中a为上升沿瞬态响应,b为下降沿瞬态响应;从图4中可以看出,驱动电路上升沿明显分为了三个部分,分别对应三个上拉驱动管起主导作用的时期;1阶段为Q1、N4共同作用,输出电压迅速抬升,2阶段为N4起主导作,使输出电平达到VDD,3阶段为P5起主导作用,维持输出高电平为VDD;而且还可以缩短上升时间,下降时间满足工作频率在兆赫兹级以上的要求;需要注意的问题及仿真结果电容Cboot的大小的确定Cboot的最小值可以按照以下方法确定;在预充电周期内,电容Cboot 上的电荷为VDDCboot ;在A点的寄生电容计为CA上的电荷为VDDCA;因此在预充电周期内,A点的总电荷为Q_{A1}=V_{DD}C_{boot}+V_{DD}C_{A} 1B点电位为GND,因此在B点的寄生电容Cpar上的电荷为0;在自举升压周期,为了使OUT端电压达到VDD,B点电位最低为VB=VDD+Vthn;因此在B点的寄生电容Cpar上的电荷为Q_{B}=V_{DD}+V_{thn}Cpar 2忽略MOS管P4源漏两端压降,此时Cboot上的电荷为VthnCboot ,A点寄生电容CA的电荷为VDD+VthnCA;A点的总电荷为QA2=V_{thn}C_{BOOT}+V_{DD}+V_{thn}C_{A} 3同时根据电荷守恒又有Q_{B}=Q_{A}-Q_{A2} 4综合式1~4可得C_{boot}=\frac{V_{DD}+V_{thn}}{v_{DD}-v_{thn}}Cpar+\frac{v_{thn}}{v_{DD}-v_{ thn}}C_{A}=\frac{V_{B}}{v_{DD}-v_{thn}}Cpar+\frac{V_{thn}}{v_{DD}-v_{thn}}C_{ A} 5从式5中可以看出,Cboot随输入电压变小而变大,并且随B点电压VB变大而变大;而B点电压直接影响N4的导通电阻,也就影响驱动电路的上升时间;因此在实际设计时,Cboot的取值要大于式5的计算结果,这样可以提高B点电压,降低N4导通电阻,减小驱动电路的上升时间;P2、P4的尺寸问题将公式5重新整理后得:V_{B}={V_{DD}-V_{thn}\frac{C_{boot}}{Cpar}-V_{thn}\frac{C_{A}}{Cpar} 6 从式6中可以看出在自举升压周期内, A、B两点的寄生电容使得B点电位降低;在实际设计时为了得到合适的B点电位,除了增加Cboot大小外,要尽量减小A、B两点的寄生电容; 在设计时,预充电PMOS管P2的尺寸尽可能的取小,以减小寄生电容CA;而对于B点的寄生电容Cpar来说,主要是上拉驱动管N4的栅极寄生电容,MOS管P4、N3的源漏极寄生电容只占一小部分;我们在前面的分析中忽略了P4的源漏电压,因此设计时就要尽量的加大P4的宽长比,使其在自举升压周期内的源漏电压很小可以忽略;但是P4的尺寸以不能太大,要保证P4的源极寄生电容远远小于上拉驱动管N4的栅极寄生电容;阱电位问题如图3所示,PMOS器件P2、P3、P4的N-well连接到了自举升压节点A上;这样做的目的是,在自举升压周期内,防止他们的源/漏--阱结导通;而且这还可以防止在源/漏--阱正偏时产生由寄生SRC引起的闩锁现象;上拉驱动管N4的阱偏置电位要接到它的源极,最好不要直接接地;这样做的目的是消除衬底偏置效应对N4的影响;Hspice仿真验证结果驱动电路基于Samsung AHP615 BiCMOS工艺设计并经过Hspice仿真验证;在表1中给出了电路在不同工作电压、不同负载条件下的上升时间tr和下降时间tf 的仿真结果;在图5中给了电路工作在输入电压、工作频率为5MHz、负载电容60pF条件下的输出波形;结合表1和图5可以看出,此驱动电路能够在工作电压为,工作频率为5MHz,并且负载电容高达60pF的条件下正常工作;它可以应用于低电压、高工作频率的DC-DC转换器中作为开关管的驱动电路;结论本文采用自举升压电路,设计了一种BiCMOS Totem结构的驱动电路;该电路基于Samsung AHP615 BiCMOS工艺设计,可在电压供电条件下正常工作,而且在负载电容为60pF的条件下,工作频率可达5MHz以上;。

工作中常用的几个mos管驱动电路

工作中常用的几个mos管驱动电路

工作中常用的几个mos管驱动电路常用的几个MOS管驱动电路MOS管是一种常用的电子元件,广泛应用于各个领域的电路中。

在工作中,我们经常会用到一些与MOS管相关的驱动电路,以确保MOS管能够正常工作。

本文将介绍几个常用的MOS管驱动电路。

1. 单级MOS管驱动电路单级MOS管驱动电路是一种简单但有效的驱动电路。

它由一个MOS管和一个电阻组成。

通过控制输入信号的电压,可以控制MOS 管的导通和截止,从而控制输出电压的高低。

这种驱动电路适用于一些简单的应用场景,如LED灯的驱动等。

2. 双级MOS管驱动电路双级MOS管驱动电路是一种更复杂但更稳定的驱动电路。

它由两个MOS管和一些电阻、电容等元件组成。

其中一个MOS管负责放大输入信号,另一个MOS管负责输出信号的驱动。

这种驱动电路具有较高的驱动能力和稳定性,适用于一些要求较高的应用场景,如电机驱动、功率放大等。

3. 高侧驱动电路高侧驱动电路是一种特殊的MOS管驱动电路,用于控制MOS管的源极电压。

由于MOS管的源极电压与驱动信号的电压之间存在差异,因此需要采用一些特殊的电路来实现高侧驱动。

常见的高侧驱动电路包括级联电阻和电容、反相器等。

这种驱动电路适用于一些对源极电压控制要求较高的应用场景,如电源开关、电动汽车驱动等。

4. 低侧驱动电路低侧驱动电路是一种常见的MOS管驱动电路,用于控制MOS管的漏极电压。

它通常由一个MOS管和一个电阻组成,通过控制输入信号的电压,可以控制MOS管的导通和截止,从而控制输出信号的高低。

低侧驱动电路适用于一些对漏极电压控制要求较高的应用场景,如LED驱动、电机控制等。

总结:在工作中,我们经常会用到一些与MOS管相关的驱动电路。

本文介绍了几个常用的MOS管驱动电路,包括单级驱动电路、双级驱动电路、高侧驱动电路和低侧驱动电路。

这些驱动电路都有各自的特点和适用场景,可以根据具体的需求选择合适的驱动电路。

通过合理使用这些驱动电路,可以确保MOS管能够正常工作,提高电路的性能和稳定性。

MOS管驱动电路总结

MOS管驱动电路总结

MOS管驱动电路总结MOS(金属氧化物半导体)管驱动电路是一种常见的功率电子器件,用于驱动高功率负载或控制功率器件的开关。

它通过电路中的MOS管(也称为MOSFET)来实现开关效果。

MOSFET驱动电路的设计与应用具有重要意义,下面是对MOS管驱动电路的总结。

一、MOS管的基本原理MOS管是一种具有与传统晶体管相似结构的半导体器件。

它的核心部分是氧化层上的金属层和半导体基区。

MOS管通过改变基区和导通层之间的电阻来实现开关效果。

MOS管具有低输入电阻、高输入阻抗、快速开关速度和较低的功耗等优势。

二、MOS管的驱动方式1.直流驱动:直流驱动方式是最简单的方式,只需将DC信号连接到MOS管的栅极,使其在正常工作区域内工作。

直流驱动方式适用于低频应用。

2.求幅驱动:幅度驱动方式是通过向MOS管的栅极施加一个脉宽调制信号来控制其导通和关闭状态。

脉宽调制信号的幅度决定了MOS管的开启程度,从而控制输出信号的幅度。

求幅驱动方式适用于一些需要调整信号幅度的应用。

3.双电源驱动:双电源驱动方式使用两个电源分别给MOS管的源极和栅极提供电压。

这种驱动方式可以保持MOS管在稳态工作区域内,避免其处于截止区或饱和区,从而提高工作效率。

三、MOS管驱动电路的设计要点1.选择适当的驱动电路结构和元件:常见的MOS管驱动电路结构包括共射极结构、共源结构和H桥结构。

不同结构适用于不同的应用场景。

此外,还需选择合适的电阻、电容和二极管等元件。

2.考虑驱动电源和信号电源的匹配:驱动电路的电源电压应与MOS管的额定电压匹配,以确保稳定可靠的工作。

此外,还需注意输入信号的频率和幅度与驱动电路的匹配性。

3.保护电路的设计:由于MOS管具有较高的功率特性,对驱动电路的保护显得尤为重要。

常见的保护电路包括过流保护、过温保护、过压保护和短路保护等。

4.电流放大器的设计:为了提高MOS管的驱动能力,通常需要使用电流放大器来增大输出电流,从而驱动更大的负载。

nmos 管高边驱动电路

nmos 管高边驱动电路

nmos 管高边驱动电路(原创实用版)目录1.NMOS 管概述2.高边驱动电路的概念3.NMOS 管在高边驱动电路中的应用4.高边驱动电路的优点5.高边驱动电路的设计要点正文【1.NMOS 管概述】MOS 管,全称为 N 沟道金属氧化物半导体场效应晶体管,是一种常见的场效应晶体管。

其结构主要由 n 型半导体、金属栅极和 p 型半导体基底构成,具有高输入阻抗、低噪声和低功耗等特点,在数字电路和模拟电路中都有广泛应用。

【2.高边驱动电路的概念】高边驱动电路,是一种驱动能力强、输出电压高的电路,主要用于驱动电容性负载,例如 LED 显示屏、液晶显示屏等。

它可以提供较大的驱动电流,使得负载能够正常工作,同时具有较低的输出阻抗,能够减小信号在传输过程中的衰减。

【3.NMOS 管在高边驱动电路中的应用】在高边驱动电路中,NMOS 管可以作为开关元件使用。

由于其高输入阻抗的特点,可以大大减少输入信号的衰减,提高电路的驱动能力。

同时,NMOS 管具有较低的导通电阻,可以提供较大的驱动电流,使得负载能够正常工作。

【4.高边驱动电路的优点】高边驱动电路具有以下优点:(1)驱动能力强:高边驱动电路可以提供较大的驱动电流,使得负载能够正常工作。

(2)输出电压高:高边驱动电路具有较低的输出阻抗,能够减小信号在传输过程中的衰减,提高输出电压。

(3)稳定性好:高边驱动电路采用 NMOS 管作为开关元件,具有较高的工作稳定性。

【5.高边驱动电路的设计要点】在设计高边驱动电路时,需要注意以下几点:(1)选择合适的 NMOS 管:需要根据负载的驱动电流和输出电压选择合适的 NMOS 管,以保证电路的正常工作。

(2)设计合理的电路结构:需要设计合理的电路结构,以提高电路的驱动能力和稳定性。

工作中常用的几个mos管驱动电路

工作中常用的几个mos管驱动电路

工作中常用的几个mos管驱动电路常用的几个MOS管驱动电路MOS管驱动电路是一种常见的电路设计,用于控制MOS管的开关动作。

它们在各种电子设备和系统中起着重要的作用。

本文将介绍几种常用的MOS管驱动电路,包括共源极驱动电路、共漏极驱动电路和双MOS管驱动电路。

1. 共源极驱动电路共源极驱动电路是一种简单且常用的MOS管驱动电路。

它的基本原理是通过一个NPN晶体管来驱动MOS管的栅极电压。

在这个电路中,输入信号通过一个电阻分压电路到达基极,然后通过NPN晶体管放大,最后驱动MOS管的栅极。

这种电路具有输出电流大、驱动能力强的优点,适用于需要高电流驱动的场合。

2. 共漏极驱动电路共漏极驱动电路是另一种常用的MOS管驱动电路。

它的基本原理是通过一个PNP晶体管来驱动MOS管的源极电压。

在这个电路中,输入信号通过一个电阻分压电路到达基极,然后通过PNP晶体管放大,最后驱动MOS管的源极。

这种电路具有输出电压高、驱动能力强的优点,适用于需要高电压驱动的场合。

3. 双MOS管驱动电路双MOS管驱动电路是一种更为复杂但更为灵活的MOS管驱动电路。

它由两个MOS管组成,一个用于驱动另一个。

其中一个MOS管作为驱动管,控制另一个MOS管的导通和截止。

这种电路可以实现高速切换和低功耗的特点,适用于需要快速响应和高效率的场合。

总结:MOS管驱动电路是一种常用的电路设计,用于控制MOS管的开关动作。

常见的几种MOS管驱动电路包括共源极驱动电路、共漏极驱动电路和双MOS管驱动电路。

它们分别具有不同的优点和适用场合。

在实际应用中,根据具体需求选择合适的驱动电路可以提高系统的性能和可靠性。

nmos 管高边驱动电路

nmos 管高边驱动电路

nmos 管高边驱动电路【原创实用版】目录1.NMOS 管的基本原理2.高边驱动电路的构成3.NMOS 管在高边驱动电路中的应用4.高边驱动电路的优点5.NMOS 管高边驱动电路的发展前景正文MOS 管,即 n 型金属 - 氧化物 - 半导体场效应晶体管,是一种常见的场效应晶体管。

其基本原理是利用 n 型半导体的电子特性,通过在 n 型半导体基片上制作源极、漏极和栅极,形成一个三极管结构。

在 NMOS 管中,栅极和源极之间有一层绝缘层,通常为氧化铝或氮化硅等,起到了隔离电子的作用。

当栅极施加正向电压时,栅极和源极之间的绝缘层上会形成一个正向导电通道,使得源极和漏极之间可以导通电流。

高边驱动电路,是一种常用于驱动高阻尼负载的电路。

它主要由 NMOS 管、电源、负载和控制电路组成。

在高边驱动电路中,NMOS 管作为开关元件,负责控制电源对负载的供电。

当控制电路输出正电压时,NMOS 管导通,电源对负载供电;当控制电路输出负电压时,NMOS 管截止,电源对负载断电。

MOS 管在高边驱动电路中的应用,主要是利用其导通电阻小、开关速度快、电源电压范围宽等优点,提高电路的效率和稳定性。

相较于传统的继电器和高压驱动电路,高边驱动电路具有体积小、重量轻、功耗低等优点,因此在现代电子设备中得到了广泛应用。

高边驱动电路的优点主要体现在其高效、可靠和节能等方面。

首先,由于 NMOS 管具有较低的导通电阻和较快的开关速度,高边驱动电路可以实现较高的工作效率;其次,高边驱动电路采用电压控制方式,可以实现负载的精确控制,提高了电路的可靠性;最后,高边驱动电路的功耗低,可以有效地减少设备的能耗,提高其使用寿命。

随着科技的不断发展,NMOS 管高边驱动电路在未来仍具有很大的发展前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MOS管驱动电路总结在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。

这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。

包括MOS管的介绍,特性,驱动以及应用电路。

1、MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

至于为什么不使用耗尽型的MOS管,不建议刨根问底。

对于这两种增强型MOS管,比较常用的是NMOS。

原因是导通电阻小,且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS。

下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。

寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。

这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。

顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

2、MOS管导通特性导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。

但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

3、MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。

选择导通电阻小的MOS管会减小导通损耗。

现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。

MOS在导通和截止的时候,一定不是在瞬间完成的。

MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。

通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。

导通瞬间电压和电流的乘积很大,造成的损失也就很大。

缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。

这两种办法都可以减小开关损失。

4、MOS管驱动跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。

这个很容易做到,但是,我们还需要速度。

在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。

对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。

选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。

而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V。

如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。

很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。

上边说的4V或10V是常用的MOS管的导通电压,设计时当然需要有一定的余量。

而且电压越高,导通速度越快,导通电阻也越小。

现在也有导通电压更小的MOS管用在不同的领域里,但在12V汽车电子系统里,一般4V导通就够用了。

MOS管的驱动电路及其损失,可以参考Microchip公司的AN799 Matching MOSFET Drivers to MOSFETs。

讲述得很详细,所以不打算多写了。

5、MOS管应用电路MOS管最显著的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动,也有照明调光。

这三种应用在各个领域都有详细的介绍,这里暂时不多写了。

以后有时间再总结。

现在的MOS驱动,有几个特别的需求:1、低压应用当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有0.7V 左右的压降,导致实际最终加在gate上的电压只有4.3V。

这时候,我们选用标称gate电压4.5V的MOS管就存在一定的风险。

同样的问题也发生在使用3V 或者其他低压电源的场合。

2、宽电压应用输入电压并不是一个固定值,它会随着时间或者其他因素而变动。

这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的。

为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate 电压的幅值。

在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗。

同时,如果简单的用电阻分压的原理降低gate电压,就会出现输入电压比较高的时候,MOS管工作良好,而输入电压降低的时候gate电压不足,引起导通不够彻底,从而增加功耗。

3、双电压应用在一些控制电路中,逻辑部分使用典型的5V或者3.3V数字电压,而功率部分使用12V甚至更高的电压。

两个电压采用共地方式连接。

这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS管,同时高压侧的MOS管也同样会面对1和2中提到的问题。

在这三种情况下,图腾柱结构无法满足输出要求,而很多现成的MOS驱动IC,似乎也没有包含gate电压限制的结构。

于是,我设计了一个相对通用的电路来满足这三种需求。

电路图如下:图1 用于NMOS的驱动电路图2 用于PMOS的驱动电路这里我只针对NMOS驱动电路做一个简单分析:Vl和Vh分别是低端和高端的电源,两个电压可以是相同的,但是Vl不应该超过Vh。

Q1和Q2组成了一个反置的图腾柱,用来实现隔离,同时确保两只驱动管Q3和Q4不会同时导通。

R2和R3提供了PWM电压基准,通过改变这个基准,可以让电路工作在PWM 信号波形比较陡直的位置。

Q3和Q4用来提供驱动电流,由于导通的时候,Q3和Q4相对Vh和GND最低都只有一个Vce的压降,这个压降通常只有0.3V左右,大大低于0.7V的Vce。

R5和R6是反馈电阻,用于对gate电压进行采样,采样后的电压通过Q5对Q1和Q2的基极产生一个强烈的负反馈,从而把gate电压限制在一个有限的数值。

这个数值可以通过R5和R6来调节。

最后,R1提供了对Q3和Q4的基极电流限制,R4提供了对MOS管的gate电流限制,也就是Q3和Q4的Ice的限制。

必要的时候可以在R4上面并联加速电容。

这个电路提供了如下的特性:1,用低端电压和PWM驱动高端MOS管。

2,用小幅度的PWM信号驱动高gate电压需求的MOS管。

3,gate电压的峰值限制4,输入和输出的电流限制5,通过使用合适的电阻,可以达到很低的功耗。

6,PWM信号反相。

NMOS并不需要这个特性,可以通过前置一个反相器来解决。

在设计便携式设备和无线产品时,提高产品性能、延长电池工作时间是设计人员需要面对的两个问题。

DC-DC转换器具有效率高、输出电流大、静态电流小等优点,非常适用于为便携式设备供电。

目前DC-DC转换器设计技术发展主要趋势有:(1)高频化技术:随着开关频率的提高,开关变换器的体积也随之减小,功率密度也得到大幅提升,动态响应得到改善。

小功率DC-DC转换器的开关频率将上升到兆赫级。

(2)低输出电压技术:随着半导体制造技术的不断发展,微处理器和便携式电子设备的工作电压越来越低,这就要求未来的DC-DC变换器能够提供低输出电压以适应微处理器和便携式电子设备的要求。

这些技术的发展对电源芯片电路的设计提出了更高的要求。

首先,随着开关频率的不断提高,对于开关元件的性能提出了很高的要求,同时必须具有相应的开关元件驱动电路以保证开关元件在高达兆赫级的开关频率下正常工作。

其次,对于电池供电的便携式电子设备来说,电路的工作电压低(以锂电池为例,工作电压2.5~3.6V),因此,电源芯片的工作电压较低。

MOS管具有很低的导通电阻,消耗能量较低,在目前流行的高效DC-DC芯片中多采用MOS管作为功率开关。

但是由于MOS管的寄生电容大,一般情况下NMOS 开关管的栅极电容高达几十皮法。

这对于设计高工作频率DC-DC转换器开关管驱动电路的设计提出了更高的要求。

在低电压ULSI设计中有多种CMOS、BiCMOS采用自举升压结构的逻辑电路和作为大容性负载的驱动电路。

这些电路能够在低于1V电压供电条件下正常工作,并且能够在负载电容1~2pF的条件下工作频率能够达到几十兆甚至上百兆赫兹。

本文正是采用了自举升压电路,设计了一种具有大负载电容驱动能力的,适合于低电压、高开关频率升压型DC-DC转换器的驱动电路。

电路基于Samsung AHP615 BiCMOS工艺设计并经过Hspice仿真验证,在供电电压1.5V ,负载电容为60pF 时,工作频率能够达到5MHz以上。

自举升压电路自举升压电路的原理图如图1所示。

所谓的自举升压原理就是,在输入端IN输入一个方波信号,利用电容Cboot将A点电压抬升至高于VDD的电平,这样就可以在B端输出一个与输入信号反相,且高电平高于VDD的方波信号。

具体工作原理如下。

当VIN为高电平时,NMOS管N1导通,PMOS管P1截止,C点电位为低电平。

同时N2导通,P2的栅极电位为低电平,则P2导通。

这就使得此时A点电位约为VDD,电容Cboot两端电压UC≈VDD。

由于N3导通,P4截止,所以B点的电位为低电平。

这段时间称为预充电周期。

当VIN变为低电平时,NMOS管N1截止,PMOS管P1导通,C点电位为高电平,约为VDD。

同时N2、N3截止,P3导通。

这使得P2的栅极电位升高,P2截止。

此时A点电位等于C点电位加上电容Cboot两端电压,约为2VDD。

而且P4导通,因此B点输出高电平,且高于VDD。

这段时间称为自举升压周期。

实际上,B点电位与负载电容和电容Cboot的大小有关,可以根据设计需要调整。

具体关系将在介绍电路具体设计时详细讨论。

在图2中给出了输入端IN电位与A、B两点电位关系的示意图。

驱动电路结构图3中给出了驱动电路的电路图。

驱动电路采用Totem输出结构设计,上拉驱动管为NMOS管N4、晶体管Q1和PMOS管P5。

下拉驱动管为NMOS管N5。

图中CL 为负载电容,Cpar为B点的寄生电容。

虚线框内的电路为自举升压电路。

本驱动电路的设计思想是,利用自举升压结构将上拉驱动管N4的栅极(B点)电位抬升,使得UB>VDD+VTH ,则NMOS管N4工作在线性区,使得VDSN4 大大减小,最终可以实现驱动输出高电平达到VDD。

相关文档
最新文档