波谱分析期末重点
《波谱分析》期末复习资料

《波谱分析》期末复习资料·《波谱分析》期末复习资料⼀、名词解释:1、摩尔吸光系数;根据⽐尔定律,吸光度A与吸光物质的浓度c和吸收池光程长b 的乘积成正⽐。
当c的单位为g/L,b的单位为cm时,则A = abc,⽐例系数a称为吸收系数,单位为L/g.cm;当c的单位为mol/L,b的单位为cm时,则A = εbc,⽐例系数ε称为摩尔吸收系数,单位为L/mol.cm,数值上ε等于a与吸光物质的摩尔质量的乘积。
它的物理意义是:当吸光物质的浓度为1 mol/L,吸收池厚为1cm,以⼀定波长的光通过时,所引起的吸光度值A。
ε值取决于⼊射光的波长和吸光物质的吸光特性,亦受溶剂和温度的影响。
显然,显⾊反应产物的ε值愈⼤,基于该显⾊反应的光度测定法的灵敏度就愈⾼。
2、⾮红外活性振动;物质分⼦吸收红外光发⽣振动和转动能级跃迁,必须满⾜两个条件:1. 红外辐射光量⼦具有的能量等于分⼦振动能级能量差△E2. 分⼦振动时必须伴随偶极矩的变化,具有偶极矩的变化的分⼦振动是红外活性振动,否则是⾮红外活性振动。
3、弛豫;⼈们把向平衡状态恢复的过程称为弛豫过程。
原⼦核从激化的状态回复到平衡排列状态的过程叫弛豫过程。
这个过程遵循指数变化规律,其时间常数称为弛豫时间。
弛豫过程所需的时间叫弛豫时间。
即达到热动平衡所需的时间。
热动平衡即因热量⽽导致的动态平衡。
4、碳谱的γ-效应;5、麦⽒重排是MCLATTERTY对质谱分析中离⼦的重排反应提出的经验规则。
具有不饱和官能团C=X(X为O、S、N、C等)及其γ-H原⼦结构的化合物,γ-H原⼦可以通过六元环空间排列的过渡态,向缺电⼦(C=X+ )的部位转移,发⽣γ-H的断裂,同时伴随C=X 的β键断裂(属于均裂),这种断裂称为McLafferty重排,简称麦⽒重排(麦⽒于1956年发现),例如:2-戊酮在质谱中,位于含有杂原⼦双键的γ-位氢原⼦,通过六员过渡态转移到杂原⼦上的过程称之为麦⽒重排。
波谱解析复习总结

波谱解析复习总结(一)常用解谱数据总结关于数据,是一定要记的···大家想怎么记爱怎么记就怎么记吧,建议自己总结,这样记的好一些。
下面是鄙人的,嘻嘻。
(老师PPT上有很多总结的)一、氢谱化学位移值δ(ppm)影响化学位移值的因素:只有空间效应和共轭效应是屏蔽效应增大,向高场位移,即ζ↑,δ↓.(一)0.4~4.0为饱和C上的H① 0.4~1.8 连饱和C的饱和C上的H② 1.8~2.5 连不饱和C的饱和C上的HI. 1.8~2.1 连C=C、C≡C的饱和C上的HII. 2.1~2.5 连C=O、N、S、苯环的饱和C上的H③ 3.0~4.6 连-O-的饱和C上的H其中,4.1左右可能有酯基④例外的:2.3~3.0是叁键上的H(二)4.6~8.0为不饱和C上的H① 4.6~6.0 C=C上的H② 6.0~8.0 苯环上的H(三)4.0~5.5为脂肪醇-OH的H若有0.5~1.0,为稀溶液(四)3.5~7.7为酚的-OH的H若有10~16,为分子内氢键(五)9.0~10.0为H-C=0的H(六)10.5~13为-COOH的H(七)胺类①~1.0 脂肪胺②4~5(气泡峰)芳香胺③6~7(气泡峰)酰胺,仲胺类其它:J值:①任何情况下J顺<j反< p="">②总体情况:J苯环H<j邻(烯h)<j邻(烷h)<j偕h< p="">③苯环H:J对<j间<="">④烯烃H:J邻(顺)<j邻(反)(j邻(顺)6~14hz;j邻(反)11~18hz)< p="">⑤烷烃H:J邻6~8Hz⑥同碳上的H:J偕10~16Hz要求掌握给图能测量算得J值,再推化合物种类。
二、碳谱碳谱的DEPT值:季碳消失!θ=45°,季C消失;θ=90°,季C消失,只有CH向上;θ=135°,季C消失,只有CH2向下。
吉林大学22春“药学”《波谱分析》期末考试高频考点版(带答案)试卷号:2

吉林大学22春“药学”《波谱分析》期末考试高频考点版(带答案)一.综合考核(共50题)1.影响紫外吸收波长的因素有()。
A.共轭体系B.超共轭效应C.溶剂效应D.立体效应参考答案:ABCD2.电子跃迁(名词解释)参考答案:电子跃迁本质上是组成物质的粒子(原子、离子或分子)中电子的一种能量变化。
根据能量守恒原理,粒子的外层电子从低能级转移到高能级的过程中会吸收能量;从高能级转移到低能级则会释放能量。
能量为两个能级能量之差的绝对值。
3.一种酯类(M=116),质谱图上在m/z57(100%),m/z29(27%)及m/z43(27%)处均有离子峰,初步推测其可能结构如下,试问该化合物结构为()。
A.(CH3)2CHCOOC2H5B.CH3CH2COOCH2CH2CH3C.CH3(CH2)3COOCH3D.CH3COO(CH2)3CH3参考答案:B4.红外光谱3367cm-1有一强而宽的谱带可能为羰基的伸缩振动吸收峰。
()A.错误B.正确参考答案:ACH2=CF2中,两个1H和两个19F都分别为化学等价的核,同时也分别是磁等价的核。
()A.错误B.正确参考答案:A6.分子中若有一组核,其化学位移严格相等,则这组核称为彼此化学等价的核。
()A.正确B.错误参考答案:A7.CH3CH2Cl中甲基的3个质子,它们的化学位移相等,为化学等价质子。
()A.错误B.正确参考答案:B8.立体效应是指因空间位阻、构象、跨环共轭等影响因素导致吸收光谱的红移或蓝移,立体效用常常伴随增色或减色效应。
()A.正确B.错误参考答案:A9.端基炔的C-H伸缩振动位于3310~3200cm-1处,峰形尖锐,吸收强度中等。
()A.正确B.错误参考答案:AA.错误B.正确参考答案:A11.物质的紫外——可见吸收光谱的产生是由于()。
A.原子核内层电子的跃迁B.原子核外层电子的跃迁C.分子的振动D.分子的转动参考答案:B12.紫外-可见吸收光谱主要决定于()。
有机波谱分析期末复习总结

有机波谱分析期末复习总结名词解析发⾊团(chromophoric groups):分⼦结构中含有π电⼦的基团称为发⾊团,它们能产⽣π→π*和n→π*跃迁从⽽你呢个在紫外可见光范围内吸收。
助⾊团(auxochrome):含有⾮成键n电⼦的杂原⼦饱和基团本⾝不吸收辐射,但当它们与⽣⾊团或饱和烃相连时能使该⽣⾊团的吸收峰向长波长移动并增强其强度的基团,如羟基、胺基和卤素等。
红移(red shift):由于化合物结构发⽣改变,如发⽣共轭作⽤引⼊助⾊团及溶剂改变等,使吸收峰向长波⽅向移动。
蓝移(blue shift):化合物结构改变时,或受溶剂的影响使吸收峰向短波⽅向移动。
增⾊效应(hyperchromic effect):使吸收强度增加的作⽤。
减⾊效应(hypochromic effect):使吸收强度减弱的作⽤。
吸收带:跃迁类型相同的吸收峰。
指纹区(fingerprint region):红外光谱上的低频区通常称指纹区。
当分⼦结构稍有不同时,该区的吸收就有细微的差异,并显⽰出分⼦特征,反映化合物结构上的细微结构差异。
这种情况就像⼈的指纹⼀样,因此称为指纹区。
指纹区对于指认结构类似的化合物很有帮助,⽽且可以作为化合物存在某种基团的旁证。
但该区中各种官能团的特征频率不具有鲜明的特征性。
共轭效应 (conjugated effect) :⼜称离域效应,是指由于共轭π键的形成⽽引起分⼦性质的改变的效应。
诱导效应(Inductive Effects):⼀些极性共价键,随着取代基电负性不同,电⼦云密度发⽣变化,引起键的振动谱带位移,称为诱导效应。
核磁共振:原⼦核的磁共振现象,只有当把原⼦核置于外加磁场中并满⾜⼀定外在条件时才能产⽣。
化学位移:将待测氢核共振峰所在位置与某基准物氢核共振峰所在位置进⾏⽐较,其相对距离称为化学位移。
弛豫:通过⽆辐射的释放能量的途径核由⾼能态向低能态的过程。
分⼦离⼦:有机质谱分析中,化合物分⼦失去⼀个电⼦形成的离⼦。
波谱解析重点总结

顺730-665、反980-960邻770-735、间810-750,725-6801.2胺 α碳2.7-3.1 β碳1.1-1.71CH 3 0.8-1.2 CH 2 1.1-1.8 CH 1.1-1.8 HC= 4.5-7.5 =C-CH 3 1.7 =C-CH 22.0 ≡CH 2.5 ≡C-CH 3/2/1 1.8 2.2 2.6Ph-H 6.5-8.5 Ph-CH 3/2/1 2.3 2.6 2.9 Ph(H)-R 7.26-(0.2 0.12 0.22) Ph-OH 4.0-12 R-OH 0.5-5.5 CH 2/1-OH 3.5-4.0 3.8-4.2 O-CH 3/2/1 3.5-4.0 O-CH 2 3.4-4.2 O-CH 3.5-4.3 R-NHx 0.3-3.5 N-CH 3 2.3-3.1 N-CH 2/1 2.5-3.5 3.0-3.7 CHx-NO 2 4.2-4.6 CHO >9 O=C-CH X 2.0-2.7CHx-COOH 2.0-2.6Ph(H)-O- 7.26-(0.48 0.09 0.44) CHx-COOR2.0-2.5 CHx-OCOR3.5-5.3 Ph(H)-CO- 7.26-(0.62 0.14 0.21)Ph(H)-COOR7-8.5 Ph(H)-OCOR6-7……Ph(H)-NH 27.26-(0.75 0.25 0.65) CONH X 5.0-10CH X -CONR 22.0-2.5Ph(H)-CONR 2/17.5-8.5 6.8-7.5烷烃 CH 2960‐2850、CH 2 1460、CH 3 1380、4个CH 2 724‐722 烯烃 C=C 1680-1620、=CH 3100‐3000(中强度)芳烃 3100‐3000(中强);骨架1625-1400、单770-690双峰、对860-800 炔烃 三键2260-2100、端炔氢3340-3260 醇、酚 羟基3670-3230(宽)、C-O 1250-1000醚 醚键,脂肪醚1150-1050、芳醚 1310-1020 酮 羰基 1700(强) α吸电子 到波数 共轭低波数 醛 1700(强)、活泼氢2880-2650(两个中强) 羧酸1700(强)、羟基3200-2500(宽)、C-O 1300-1200羧酸酯 1700(强1780/1750)、C-O 1300-1050(双峰)胺 N-H 3500-3250(2/1个峰)、C-N 1360-1030酰胺 3500-3100、羰基1700-1630、C-N 1400NO 2-脂肪1565-1545; 1380-1350、芳 1550-1500; 1365-1290 (强)腈 氰基 2300-22000.75—2.5—25—100 近中远 二羰基有3个羰基峰(烯醇式) 吸电子高波数、共轭低波数频率电负性强,屏蔽弱,吸电子,位移大,低场,左移 共轭 氢键 位移大 低场 增场强 苯环:6-9.5 单取代:强吸电子 233(234) 邻对间 二取代:邻(两/一组峰) 间 1223(123) 对 22(23)(1)M+1相对丰度 =1.1x(C)+0.37w(N)M+2相对丰度 =(1.1x)2/200+0.2 z(O) +4.4s(S)共轭 红移 反式波长 长电负性 低场低场 sp 3 sp sp 2高 苯环:饱和杂原子 邻对 位移小 吸电子共轭 邻对 位移大烷烃 M-43 M-49 强 烯丙基 41 55 69 83芳烃 91苄基正离子 91+n14 77 78 79 醇 31 45 59 是醇不是烯 醛 M-44 酮 58+n12脂肪羧酸 60 芳香羧酸 M-17 M-45。
波谱考点

一、紫外光谱1.郎伯-比耳定理A = log(I0/I1 ) = log(1/T ) = €*c*I2.溶剂极性作用极性增大使π—π*红移,n—π*跃迁蓝移,精细结构消失3.作用:推测化合物分子骨架1)200-800nm 没有吸收,说明分子中不存在共轭结构(-C=C-C=C-,-C=C-C=O,苯环等),可能为饱和化合物。
2)200-250nm有强吸收峰,为发色团的K带,说明分子中存在上述共轭结构单元。
3)250-300nm 有中等强度的吸收峰,为苯环的B带,说明为芳香族化合物。
4)270-350nm有弱吸收峰,为R带,可能为羰基化合物、烯醇等。
5)样品有颜色,说明分子中含较大的共轭体系,或为含N化合物。
二、红外光谱1.分子的振动造成偶极矩的改变产生红外吸收分子的振动的频率与化学键的强度和原子的质量相关红外光谱通过测定分子中化学键的振动频率来确定官能团下面式子中力常数k:与键长、键能有关:键能↑(大),键长↓(短),k↑。
2.红外活性1)必须是能引起分子偶极矩变化的振动才能产生红外吸收光谱2)极性键通常有红外活性3)对称分子中的非极性键通常没有红外活性或吸收很弱3.振动中偶极矩变化越大,吸收强度越大4.特征吸收频率具有同一类型化学键或官能团的不同化合物,其红外吸收频率总是出现在一定的频率范围内,我们把这种能代表某基团,并有较高强度的吸收峰,称为该基团的特征吸收峰(又称官能团吸收峰)。
5.各种官能团的红外吸收位置6.影响红外光谱吸收强度的因素1)极性大的基团,吸收强度大,C=O比C=C强,C=N比C=C强2)使基团极性降低的诱导效应使吸收强度减小,使基团极性增大的诱导效应使吸收强度增加3)共轭效应使π电子离域程度增大,极化程度增大,吸收强度增加4)振动耦合使吸收增大,费米共振使倍频或组频的吸收强度显著增加5)形成氢键使振动吸收峰变强变宽6)能级跃迁的几率,v=0→v=2比v=0→v=1能阶大,但几率小,吸收峰弱诱导效应、共轭效应、中介效应(共振效应)、环的张力、空间障碍、氢键、质量效应7.官能团特征吸收位置1)烷烃特征吸收位置2)烯烃特征吸收位置3)烯烃=C-H的面外弯曲振动——判断双键的取代类型4)炔烃特征吸收位置a)炔键C-H伸缩振动:3340-3300厘米-1,波数高于烯烃和芳香烃,峰形尖锐b)CC叁键伸缩振动:2100厘米-1 ,峰形尖锐,强度中到弱。
有机化学波谱分析知识要点

波谱分析第一章紫外光谱1、为什么紫外光谱可以用于有机化合物的结构解析?紫外光谱可以提供:谱峰的位置(波长)、谱峰的强度、谱峰的形状。
反映了有机分子中发色团的特征,可以提供物质的结构信息。
2、紫外-可见区内(波长范围为100-800 nm )的吸收光谱。
3、Lamber-Beer 定律适用于单色光吸光度:A= lg(I 0/I) = lc透光度:-lgT = bcA :吸光度;l :光在溶液中经过的距离;:摩尔吸光系数,为浓度在1mol/L 的溶液中在1 cm 的吸收池中,在一定波长下测得的吸光度;c :浓度。
4、有机物分子中含有π键的不饱和基团称为生色团;有一些含有n 电子的基团(如—OH 、—OR 、—NH 2、—NHR 、—X 等),它们本身没有生色功能(不能吸收λ>200 nm 的光),但当它们与生色团相连时,就会发生n —π共轭作用,增强生色团的生色能力(吸收波长向长波方向移动,且吸收强度增加),这样的基团称为助色团。
5、λmax 向长波方向移动称为红移,向短波方向移动称为蓝移(或紫移)。
吸收强度即摩尔吸光系数增大或减小的现象分别称为增色效应或减色效应。
6、电子跃迁的类型:1. σ→σ*跃迁:饱和烃(甲烷,乙烷);E 很高,λ<150 nm (远紫外区)。
2. n →σ*跃迁:含杂原子饱和基团(-OH ,-NH 2);E 较大,λ150~250 nm (真空紫外区)。
3. π→π*跃迁:不饱和基团(-C=C-,-C=O );E 较小,λ~ 200 nm ,体系共轭,E 更小,λ更大;该吸收带称为K 带。
4. n →π*跃迁:含杂原子不饱和基团(-C ≡N,C=O ):E 最小,λ 200~400 nm (近紫外区)该吸收带称为R 带。
7、λmax 的主要影响因素:1. 共轭体系的形成使吸收红移;2. pH 值对光谱的影响:碱性介质中,↑,吸收峰红移,↑3. 极性的影响:π→π*跃迁:极性↑,红移,↑;↓。
波谱解析期末试题及答案

波谱解析期末试题及答案试题一:1. 什么是波谱解析?为什么它在科学研究中如此重要?2. 简要描述一下光的波动理论和量子力学对波谱解析的贡献。
3. 请解释以下术语:离子化能,激发态,自旋磁矩。
4. 为什么波谱解析在化学和物理学中常用于确定物质的结构和组成?5. 请列举至少三种波谱技术,并简述其原理和应用领域。
答案:1. 波谱解析是一种研究物质光谱(包括电磁波谱和粒子波谱)的方法,通过分析光谱中的特征峰值、强度和频率等参数,来推断物质的性质和组成。
波谱解析在科学研究中非常重要,因为光谱数据能够提供关于物质的能级结构、相互作用以及粒子性质等方面的重要信息。
2. 光的波动理论和量子力学是波谱解析的两个重要理论基础。
光的波动理论认为光是一种电磁波,具有波长和频率等特性。
量子力学则基于粒子和能级的概念,解释了微观领域的光谱现象。
这些理论使得我们能够理解和解释光谱现象,并推导出许多重要的波谱分析方程式。
3. 离子化能是指将一个原子或分子从束缚态转变为离子的最小能量。
激发态是指原子或分子在吸收能量后,电子跃迁到较高能级的状态。
自旋磁矩是指由于自旋而产生的磁矩,其大小与电子自旋的角动量有关。
4. 波谱解析在化学和物理学中被广泛应用于确定物质的结构和组成。
通过分析不同波长或频率范围的光谱特征,可以得到物质的能级结构、分子结构和化学键等信息。
这对于研究新材料性质、分析化学成分以及理解化学反应机理等方面具有重要意义。
5. 波谱解析涉及许多技术,以下列举了三种常见的波谱技术:a. 紫外-可见吸收光谱:该技术通过测量物质对紫外和可见光的吸收来推测物质的电子能级结构和溶液浓度等。
它在药物分析、环境监测和生物化学等领域具有广泛应用。
b. 红外光谱:红外光谱通过测量物质在红外光区域的吸收和散射来研究物质的分子结构和振动特性。
它在有机化学、材料科学和生物医学等领域具有重要应用。
c. 核磁共振光谱:核磁共振光谱通过测量物质中核自旋的能级跃迁来研究物质的分子结构、组成和化学环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波谱解析重中重
1.UV产生原理?电子跃迁类型(σ→σ*,n→σ*,π→π*,n→π*)、能级大小和相对应的吸收波段P6?
2.什么叫发色团(生色)(π→π*,n→π*)和助色团(n→σ*)P8?
3.什么是K带(π→π*,210-250,ε=104)R带(n→π*,250-500,ε小于100)P9?
3.什么是特征区、指纹区和相关峰和其波数范围?IR谱的9个重要区段?
4. 不饱和度的计算: = 1+1/2N数+C数-1/2H数?
5.氢谱影响化学位移的因素(诱导效应、化学键的各向异性、活泼氢核交换、氢键)P123?
6.偶合常数大小(J aaˊ8-12、J aeˊ2-4、J eeˊ1-3 ,双键顺式偶合常数(8-12)、反式偶合常数(12-18)、同碳(2),苯环邻H偶合常数(6-10)、间H(1-3)、对H(0-1)偶合常数)?
7. 什么是NOE效应和NOE差谱P148?什么是去偶试验?
8.DEPT和OFR谱如何区别碳的级数?氢核磁不等价情况(6点)?P134-135
9.13C的化学位移及其三个重要区段(0-55,55-100,70-90,90-160,160-190,
大于200)?C的裂分数与级数关系(s,d,t,q)?
10.记住一些见常H-NMR基团化学位移数据基础值:甲基(0.8)、亚甲基(1.25)、
次甲基H(1.5)的基础值?羰甲基、甲氧基H-NMR值(2.1,3.8),双键H 基础值(5.25)、苯环H基础值(7.25)。
11.EI-MS谱判断分子离子峰的原则P205?含一个Cl和和一个Br的M+2峰的比
例?
12.什么是α、I、RDA裂解、麦氏重排P220?
13. 各类化合物质谱特点(烷系:29、43、57、71、85….芳系:39、51、65、77、91、92、93。
氧系:31、45、59、73(醚、酮)。
氮系:30、44、58。
)?
15.常见的碎片离子?(P206)
一、单项选择题(每小题4个备选答案中只有一个最佳答案,每小题1分,共20小题,共计20分)二、填空题(每空1分,共20空,共计20分)三、名词解释(每小题4分,5小题,共计20分)四、简答题(每小题5分,4小题,共计20分)五、谱图解析(每小题5分,共4小题,共计20分)。