分布式存储系统的要点

汉柏科技

分布式存储系统要点

王智民 汉柏科技有限公司

分布式存储系统

分布式存储系统,有块存储、对象存储、文件存储,有不同的开源项目如Ceph、GlusterFS、Sheepdog、Swift,还有不同的商业实现如Google、AWS、微软、金山、七牛、又拍、阿里云还有Qingcloud

首先对象存储和文件存储的区别是不大的,存储的都是一样的东西,只是抛弃了统一

的命名空间和目录树的结构,使得扩展起来桎梏少一些。

独立的互联网存储服务一般都是做对象存储的,因为块存储是给计算机用的,对象存

储是给浏览器等HTTP客户端用的。

分布式存储系统的三个问题

?对于一套分布式存储的方案,怎样评估它是好还是不好?

?如何对分布式存储的不同实现进行分类?

?分布式存储中的“数据可靠性”是如何计算的?

1.运行或在线系统需要高性能

2.离线或备份数据需要高容量,低价格

3.所有的数据都必须是可靠的,绝对不能丢

?对于块存储,要求的访问时延是 10ms 级的,因为给虚拟机用的,传统硬盘也是

10ms 级的时延,请求尺寸都很小,但qps(iops)可能会很高,那么在这种情况下: ?异地多中心是不现实的,存储要和主机尽量接近,相应地可靠性必然会有所打折

?强一致副本不会过多,强一致要求对时延有影响

?对于对象存储,要求的访问时延是 100ms - 1s 级的,请求一般是中到大尺寸,低 qps 的,在这种情况下 ?可以用更多的分散副本数来换取更高的可靠性,但过多副本增加维持一致性的难度,需要折衷

分布式存储系统的三个问题

?对于一套分布式存储的方案,怎样评估它是好还是不好?

?如何对分布式存储的不同实现进行分类?

?分布式存储中的“数据可靠性”是如何计算的?

按照存储接口来划分

1.对象存储: 也就是通常意义的键值存储,其接口就是简单的GET、PUT、DEL和其他扩展,如七牛、又拍、Swift、S3

2.块存储: 这种接口通常以QEMU Driver或者Kernel Module的方式存在,这种接口

需要实现Linux的Block Device的接口或者QEMU提供的Block Driver接口,如Sheepdog,AWS的EBS,青云的云硬盘和阿里云的盘古系统,还有Ceph的RBD(RBD是Ceph面向块存储的接口)

3.文件存储: 通常意义是支持POSIX接口,它跟传统的文件系统如Ext4是一个类型的,但区别在于分布式存储提供了并行化的能力,如Ceph的CephFS(CephFS是Ceph面向文件存储的接口),但是有时候又会把GFS,HDFS这种非POSIX接口的类文件存储接口归入此类。

分布式存储系统的三个问题

?对于一套分布式存储的方案,怎样评估它是好还是不好?

?如何对分布式存储的不同实现进行分类?

?分布式存储中的“数据可靠性”是如何计算的?

按照应用场景来划分

1.对象存储(键值数据库):接口简单,一个对象我们可以看成一个文件,只能全写全读,通常以大文件为主,要求足够的IO带宽。

2.块存储(硬盘):它的IO特点与传统的硬盘是一致的,一个硬盘应该是能面向通用需求的,即能应付大文件读写,也能处理好小文件读写。但是硬盘的特点是容量大,热点明显。因此块存储主要可以应付热点问题。另外,块存储要求的延迟是最低的。

3.文件存储(文件系统):支持文件存储的接口的系统设计跟传统本地文件系统如Ext4这种的特点和难点是一致的,它比块存储具有更丰富的接口,需要考虑目录、文件属性等支持,实现一个支持并行化的文件存储应该是最困难的。但像HDFS、GFS 这种自己定义标准的系统,可以通过根据实现来定义接口,会容易一点。

分布式存储系统的三个问题

?对于一套分布式存储的方案,怎样评估它是好还是不好?

?如何对分布式存储的不同实现进行分类?

?分布式存储中的“数据可靠性”是如何计算的?

按照实现技术来划分

1.系统的分布式设计:主从、还是全分布式或者是兼而有之,目前现在存储系统因为一致性的要求,以主从为主。

2.底层的单机存储:

一种是依赖本地文件系统的接口,如GlusterFS,Swift,Sheepdog,Ceph

一种是依赖块接口的,目前只知道Nutanix是使用这个的

一种是依赖键值接口的,目前应该只有Ceph是支持(Ceph支持多种单机存储接口)

第一种依赖文件系统是因为分布式存储系统本身已经够复杂,实现者很难从上层一直到底层存储都去实现,而本地文件系统已经是一个通用化并且非常成熟的实现,因此分布式存储系统绝大部分(上述提到的都应该是)都会直接依赖本地文件系统。

第二种接口目前只知道Nutanix是支持的(传统的存储厂商的存储产品一般会使用这种方式),这种接口也就是比第一种去掉了文件系统层,实现一个简单的物理块管理即可。

第三种它的主要原因是“存储定义”和对象存储的普及,希望硬盘来提供简单的键值接口即可,如希捷的Kinetic API,Fusionio NVMKV,这种接口另一方面是闪存厂商非常喜爱的,因为闪存的物理特性使得它支持键值接口比快接口容易得多,目前Ceph是支持这种接口,而希捷和华为最近推出了IP硬盘,听说已经实现了Swift上的原型。

分布式存储系统的三个问题

?对于一套分布式存储的方案,怎样评估它是好还是不好?

?如何对分布式存储的不同实现进行分类?

?分布式存储中的“数据可靠性”是如何计算的?

按照实现技术来划分(续)

3.策略方面,三副本、多AZ六副本和网络RAID都是一类的,它们都是指数据的分布策略来提供数据可用性,通常来说前两者情况就是数据的多个副本分布在所有服务器的几个中,也就是只要超过副本数的服务器挂掉,存储系统就面临部分数据不可用的情况。网络RAID是为了避免这种情况,比如在1000台服务器的情况,将其分成10台一组的100组,这样同样是一份数据(Data1)的三个副本都只属于某一个组,它不可用只当1组内(10台)中超过3个台机器不可用时才会发生,这样概率会小非常多。

EC(擦除码)是一个类副本策略,它可以理解为增强版的复制,更少的副本可以达到更好的数据可用。

4.硬件方面,SSD,SAS,SATA和内存的组合是为了提供数据访问的性能。千兆、万兆甚至Inifiniband是组合是为了提供网络传输的性能。

分布式存储系统的三个问题

?对于一套分布式存储的方案,怎样评估它是好还是不好?

?如何对分布式存储的不同实现进行分类?

?分布式存储中的“数据可靠性”是如何计算的?

实际上这个计算是需要依赖于存储系统本身的。我们使用Ceph,Ceph的优势是提供了一个叫CRush算法的实现,可以轻松根据需要来规划数据的副本数和高可用性。参考Ceph提供的模型定义来规划自己的。这是我的同事朱荣泽做的故障计算,这个计算只针对副本策略,并不适合使用EC(擦除码)的情况。

硬盘发生故障的概率是符合泊松分布的。fit = failures in time = 1/MTTF ~= 1/MTBF = AFR/(24*365)事件概率 Pn(λ,t) = (λt)n e-λt / n!

这里只计算丢失数据的概率,不计算丢失每个object的概率。

N代表OSD的个数、R代表副本数、S代表scatter width,关系着recovery时间

我们忽略Non-Recoverable Errors的概率

计算1年内任意R个OSD发生相关故障概率的方法是:1年内OSD故障的概率。在recovery时(R-1)个OSD发生故障的概率。以上概率相乘。假设结果是Pr

因为任意R个OSD不一定属于Ceph的Copy Sets,则Ceph的丢失Copy Sets的概率是:

M = Copy Sets Number

在N个OSD中,任意R个OSD的组合数是 C(R,N)

丢失Copy Sets的概率是 Pr * M / C(R, N)。

最终公式是:

P = func(N, R, S, AFR)

分布式存储系统的三个问题

?对于一套分布式存储的方案,怎样评估它是好还是不好?

?如何对分布式存储的不同实现进行分类?

?分布式存储中的“数据可靠性”是如何计算的?

可靠性的定义可以有不同,比如有人会定义为:假设整个系统有 L 个对象,在 1 年内会损失 m 个对象,那么可靠性为

1 - m/L。我在我那篇文章中的定义是:整个系统有 L 块硬盘,1 年内丢失数据的概率是多少(而不管丢失了多少个对

象)。

沿用文章中的可靠性定义,数据可靠性的计算涉及到以下几个量:集群规模-总硬盘数目(L)、容错度(M)、修复速度(t)、单盘可靠性(p:在t时间内损坏的概率)

我的计算方法是,先计算这L块硬盘在t时间内同时损坏M+1块硬盘的概率是多少(Pt,也就是丢失数据的概率,当然有细心的网友说t时间内同时损坏M+1块盘不一定会丢失数据,这点当然是正确的,但是这个丢失数据的概率虽然不为1但是非常接近1,而且此时对软件系统来说已经是失控状态,为了简化计算假设为1),然后把时间拉长到1年(T)的数据丢失概率(P)。这个拉长是非常简单换算公式:

P = 1 - (1 - Pt)^(T/t) ≈ Pt * (T/t)

所以关键是计算 Pt(这L块硬盘在t时间内同时损坏M+1块硬盘的概率)。我们扩展一下,用 Pt(i) 表示 t 时间内有且仅有 i 块盘损坏的概率。前面的 Pt 实际上是 Pt(>M),而不是 Pt(M+1)。不难得出:

Pt(>M) = 1 - Pt(0) - Pt(1) - ... - Pt(M)

好了,我们就剩下计算 Pt(i) 了。这个概率的计算比较常规:

Pt(i) = C(L, i) * p^i * (1-p)^(L-i)

其中 C(L, i) 是组合数,也就是 C(L, i) = L! / (i! * (L-i)!)

至此整个计算过程完成。不过有一个细节需要说明下,由于以下两个原因,你无法用计算机常规的浮点数计算来得到 P:?C(L, i) 值会很大,甚至会超过 float64 浮点类型的最大值(约为1e308),用浮点运算最终会变 Inf(无穷大)。?p 非常小,这会导致计算过程精度损失非常大,计算的累计误差无法忽略,答案和理论值大相径庭。

所以如果你真要去算这个概率,需要用无损计算的数学包。

分布式存储系统的一些理解和实践

分布式存储系统的一些理解和实践 张建伟 一、分布式存储系统介绍 1.简介 互联网数据规模越来越大,并发请求越来越高,传统的关系数据库,在很多使用场景下并不能很好的满足需求。分布式存储系统应运而生。它有良好的扩展性,弱化关系数据模型,甚至弱化一致性要求,以得到高并发和高性能。按功能分类,主要有以下几种: ?分布式文件系统 hdfs ceph glusterfs tfs ?分布式对象存储 s3(dynamo) ceph bcs(mola) ?分布式表格存储 hbase cassandra oceanbase ?块存储 ceph ebs(amazon) 分布式存储系统,包括分布式系统和单机存储两部分;不同的系统,虽在功能支持、实现机制、实现语言等方面是有差异的,但其设计时,关注的关键问题是基本相同的。单机存储的主流实现方式,有hash引擎、B+树引擎和LSM树(Log Structured Merge Tree)三种,不展开介绍。本文第二章节,主要结合hbase、cassandra和ceph,讲下分布式系统设计部分,需要关注的关键问题。 2.适用场景 各分布式存储系统功能定位不尽相同,但其适用和不适用的场景,在一定程度上是相同的,如下。

1)适用 大数据量(大于100T,乃至几十PB) key/value或者半结构化数据 高吞吐 高性能 高扩展 2)不适用 Sql查询 复杂查询,如联表查询 复杂事务 二、分布式存储系统设计要点 1.数据分布 分布式存储,可以由成千甚至上万台机器组成,以实现海量数据存储和高并发。那它最先要解决的就是数据分布问题,即哪些数据存储在哪些机器(节点)上。常用的有hash类算法和用meta表映射两种方式。一般完全分布式的设计(无master节点),会用hash类算法;而集中式的设计(有master节点)用meta表映射的方式。两者各有优缺点,后面讲到具体问题时再做比较。 1)一致性hash 将存储节点和操作的key(key唯一标识存储的object,有时也叫object name)都hash到0~2的32次方区间。映射到如下环中的某个位置。沿操作key的位置顺时针找到的第一个节点即为此key的primary存储节点。如下图所示:

存储方案设计原则

存储方案设计原则 设计是把一种设想通过合理的规划周密的计划通过各种感觉形式传达出来的过程。以下是的存储方案设计原则,希望能够帮助到大家! 1、CAP理论 2000年Eric Brewer教授提出了著名的CAP理论,即:一个分布式系统不可能满足一致性,可用性和分区容错性这三个需求,最多只能同时满足两个。 xx年MIT的Seth Gilbert 和 Nancy lynch两人证明了CAP理论的正确性。 根据CAP理论,一致性(C),可用性(A),分区容错性(P),三者不可兼得,必须有所取舍。 因此系统架构师不要把精力浪费在如何设计才能同时满足CAP 三者的完美分布式系统,而是应该研究如何进行取舍,满足实际的业务需求。 C: Consistency(一致性),任何一个读操作总是能读取到之前完成的写操作结果,也就是在分布式环境中,多点的数据是一致的; A: Availability(可用性),每一个操作总是能够在确定的时间内返回,也就是系统随时都是可用的; P: Tolerance of work Partition(分区容忍性),在出现网络分区(比如断网)的情况下,分离的系统也能正常运行;

对于分布式存储系统而言,分区容错性(P)是基本需求,因此只有CP和AP两种选择。CP模式保证分布在网络上不同节点数据的一致性,但对可用性支持不足,这类系统主要有BigTable, HBASE,MongoDB, Redis, MemcacheDB, Berkeley DB等。AP模式主要以实现"最终一致性(Eventual Consistency)"来确保可用性和分区容忍性,但弱化了数据一致性要求,典型系统包括Dynamo, Tokyo Cabi,Cassandra, CouchDB, SimpleDB等。 2、Eventual Consistency(最终一致性) 简而言之:过程松,结果紧,最终结果必须保持一致性。 从客户端考虑数据一致性模型,假设如下场景: 存储系统:它在本质上是大规模且高度分布的系统,其创建目的是为了保证耐用性和可用性。 进程A:对存储系统进行读写。 进程B和C:这两个进程完全独立于进程A,也读写存储系统。客户端一致性必须处理一个观察者(在此即进程A、B或C)如何以及何时看到存储系统中的一个数据对象被更新。 根据以上场景可以得到如下三种一致性模型: 强一致性:在更新完成后,(A、B或C进行的)任何后续访问都将返回更新过的值。 弱一致性:系统不保证后续访问将返回更新过的值,在那之前要先满足若干条件。从更新到保证任一观察者看到更新值的时刻之间的这段时间被称为不一致窗口。

分布式操作系统知识点

第一章知识点 1.说明分布式系统相对于集中式系统的优点和缺点。从长远的角度看,推动分布式系统发展的主要动力是什么? 2.多处理机系统和多计算机系统有什么不同? 3.真正的分布式操作系统的主要特点是什么? 4.分布式系统的透明性包括哪几个方面,并解释透明性问题对系统和用户的重要性。 5.在分布式操作系统中,为什么采用微内核技术,通常微内核提供哪些服务? 第二章知识点 6.客户-服务器模式的主要思想及优点。 7.客户为了发送消息给服务器,它必须知道服务器的地址。试给出服务器进程编址的几种方法,并说明如何定位进程。 8.对于接收消息Receive原语,为什么需要缓存, 缓存的作用是什么? 9.说明在C/S模式下解决消息可靠传输的三种方法? 10.说明RPC的主要思想及RPC调用的主要步骤。(远程过程调用函数sum(4,7)为例说明) 11.在RPC调用时,如果服务器或客户机崩溃了,各有哪些解决方法。 12.RPC信包发送可采用爆发协议,但是会产生超限错误(overrun error),给出解决办法。 13.一个影响RPC执行时间的问题是消息的拷贝问题,试说明在那些环节需要拷贝,并说明减少拷贝次数的方法。 14.在组通信中,给出组编址的的三种方式。 15.用组通信方式时,举例说明消息顺序的重要性,并说明解决方法说明。 第三章知识点 16.实现分布式系统同步的复杂性表现在哪几个方面?说明先发生关系,并说明在LAMPORT算法中怎样给事件分配时间。 17.有三个进程分别运行在不同的机器上,每个机器都有自己的时钟并以不同且不变的速率工作(进程1的时钟嘀嗒了6下时,进程2的时钟嘀嗒了8下,而进程3的时钟嘀嗒了10下)。举例说明进程之间消息传递中违反先发生关系的情况,并说明如何用Lamport方法解决。 18.说明RICART和AGRAW ALE分布式互斥算法;假定A和B是相互独立的两个临界区,进程0要进入A,进程1要进入B,R-A分布式互斥算法会导致死锁吗?说明理由。 19.许多分布式算法需要一个协调者,叙述欺负选举算法。 20.举例说明用私有工作空间实现事务处理时的基本思想。 21.说明在分布式系统中实现原子性提交的两阶段提交协议的基本思想及其优点。 22.举例说明为什么使用集中式的死锁检测算法会产生假死锁,并给出一种解决办法。 23.举例说明分布式死锁检测方法Chandy-Misra-Has算法的思想以及如何解除死锁。 24.说明wait-die和wound-wait分布式死锁预防方法。事务时间戳为50的进程申请事务时间戳为100的进程占用的资源。按以上两种策略,结果会如何? 第四章. 知识点 25、叙述实现线程包的方法及其优缺点。 26、说明发送者发起的分布式启发算法和接收者发起的分布式启发算法及各自的主要缺点。 27、说明主机后备容错方法的主要思想,在主机崩溃后存在的问题及解决方法。 28、多处理机系统中,fail-silent类型和Byzantine类型处理机错误各需要至少多少个处理机才能满足要求?说明理由。 29、举例说明Lamport等人提出的算法是如何解决Byzantine将军问题的。

浅析建筑智能化在绿色建筑中的应用

浅析建筑智能化在绿色建筑中的应用 发表时间:2018-09-21T14:16:53.583Z 来源:《建筑学研究前沿》2018年第12期作者:侯琦 [导读] 智能化建筑是信息技术为技术支持,利用网络平台构建建筑监控管理中心,再结合各种软件以及硬件设备。 华夏竣诚(北京)智能建筑工程有限公司北京西城 100083 摘要:在生态环境不断恶化的形势下,社会发展面临着巨大资源与环境压力。在建筑行业中融入节能环保理念,建设完成绿色建筑对节约资源、保护环境具有重要意义。现阶段,人们对建筑功能提出了更高的要求,智能化建筑已经成为了建筑模式必然的发展趋势。将智能化建筑与绿色建筑结合起来,对于推动建筑行业发展具有重要意义。文章对智能化建筑和绿色建筑进行了概述, 一、智能化建筑和绿色建筑概述 1.智能化建筑概述 智能化建筑是信息技术为技术支持,利用网络平台构建建筑监控管理中心,再结合各种软件以及硬件设备,将建筑内部的信息通讯系统、公共安全系统等基本功能系统结合起来,实现对建筑运行情况的时刻掌控,为建筑内部民众提供安全保障,并根据建筑内部居民的需求对其运行状态做出相应的调整,为人们提供更加舒适、便捷、安全的建筑环境,丰富了建筑内涵,使建筑功能更加完善,实现了对建筑价值的深层挖掘,是建筑行业的巨大进步表现,也是现阶段建筑形式的主要发展方向。 2.绿色建筑概述 绿色建筑是基于可持续发展观提出的一种新型建筑形式,建筑建设及运行需要耗费大量的资源和能源,还容易产生建筑垃圾、废水、废弃等污染物,对环境的影响是非常严重的,很容易破坏生态平衡,不利于实现城市的可持续发展,人与环境之间的和谐关系也将被打破,针对这种现象提出了绿色建筑建设理念。在建筑建设过程中,对周围环境进行充分勘察,制定更加科学的施工方案,对周围环境进行充分利用;减少资源和能源的浪费,用可再生能源代替不可再生能源,使用节能环保型、无有害物质建筑材料,降低对生态环境的影响;在拆除建筑物后对建筑材料进行循环利用,减少建筑垃圾,协调人、建筑与环境之间的关系,实现对生态环境的保护。 二、绿色建筑智能化技术的内容 绿色建筑智能化技术主要包括以下内容: 2.1计算机技术 计算机技术包括硬件和软件两部分,应用到绿色建筑中的核心是并行的分布式计算机网络技术。并行使得同时处理多种数据成为可能,可以使不同子系统分别处理不同事件,实现任务和负载的分担;计算机开缩网络把整个系统连结成一个有机的整体,实现信息资源共享。 2.2通信技术 通过无线、有线通信技术,实现数据、语像和视频信息等快速传递。 2.3控制技术 控制技术在绿色建筑智能化系统中的应用集散型监控系统(DCS),硬件采用标准化、电,伏化 系列化设计,软件采用实时多任务、多用户分布式操作系统。 2.4图像显示技术 应用于绿色建筑智能化系统主要的图像显示技术有: (1)cRT(Cathode Rag Tube)阴极射线管:由集于体积大、耗电量大,已逐渐被淘汰了。 (2)LED(Light Emitting Diode)发光二极管显筑示屏:LED是一种半导体固体发光器件,目前广泛使系用的有红、绿、蓝三种。把红色和绿色的LED放在义起作为一个像素制作的叫双基色屏;把红、绿、蓝是三种LED管放在一起作为一个像素叫全彩屏。具有能节能、环保、长寿命、安全、响应快、体积小、色彩施丰富、可控等系列独特优点,被认为是节电降能耗的最佳实现途径。 (3)LCD(Liquid Crgstal display)液晶显示屏:LCD采用的是被动发光的技术原理,因此液晶需要背光系统来提供光源。具有质地轻薄、色彩艳丽、无电磁辐射、长寿命、节能省电等优点。 (4)PDP(Plasma Display Panel)等离子体显示屏:PDP在显示平面上安装等离子管作为发光体(像素)。具有图像清晰逼真,屏幕轻薄,便于安装,防电磁干扰、环保无辐射等优良特性。 2.5综合布绒技术 综合布线系统是一种符合工业标准的布线系统,它将绿色建筑中所有电话、数据、图文、图像及多媒体设备的布线组合在一套标准的布线系统上,实现了多种信息系统的兼容、共用和互换互调性能 2.6视频监控技术 视频监控系统是以视频处理技术为核心,综合利用光电传感器、网络、自动控制和人工智能等技术的一种新型监控系统。数字式网络摄象机将视频图像通过计算机网络(TCPP协议)传输给视频服务器,图像数据的处理、显示、录像和共享都是围绕着视频服务器进行的。 2.7智能(C)卡技术 用以实现绿色建筑保安门禁、巡更、停车场、物业收费、商业消费,以及人事与考勤等管理“一卡通”。一般可分为接触式和非接触式两种 (1)接触式智能卡:读卡器必须要有插卡槽和触点,以供卡片插入并接触电源,缺点是使用寿命短,系统难以维护,基础设施投入大等,但发展较早。 (2)非接触式智能卡:采用射频识别,又称射频卡。具操作方便、快捷、无磨损、防水、防潮、使用寿命长等优点。 2.8系统集成技术 将绿色建筑各种不同功能的智能化子系统,通过统一的信息网络平台实现集成,以形成具有信息汇集、资源共享及优化管理等综合功

分布式文件存储方案

1DFS系统 (DFS) 是AFS的一个版本,作为开放软件基金会(OSF)的分布 分布式文件系统 式计算环境(DCE)中的文件系统部分。 如果文件的访问仅限于一个用户,那么分布式文件系统就很容易实现。可惜的是,在许多网络环境中这种限制是不现实的,必须采取并发控制来实现文件的多用户访问,表现为如下几个形式: 只读共享任何客户机只能访问文件,而不能修改它,这实现起来很简单。 受控写操作采用这种方法,可有多个用户打开一个文件,但只有一个用户进行写修改。而该用户所作的修改并不一定出现在其它已打开此文件的用户的屏幕上。 并发写操作这种方法允许多个用户同时读写一个文件。但这需要操作系统作大量的监控工作以防止文件重写,并保证用户能够看到最新信息。这种方法即使实现得很好,许多环境中的处理要求和网络通信量也可能使它变得不可接受。 NFS和AFS的区别 NFS和AFS的区别在于对并发写操作的处理方法上。当一个客户机向服务器请求一个文件(或数据库记录),文件被放在客户工作站的高速缓存中,若另一个用户也请求同一文件,则它也会被放入那个客户工作站的高速缓存中。当两个客户都对文件进行修改时,从技术上而言就存在着该文件的三个版本(每个客户机一个,再加上服务器上的一个)。有两种方法可以在这些版本之间保持同步: 无状态系统在这个系统中,服务器并不保存其客户机正在缓存的文件的信息。因此,客户机必须协同服务器定期检查是否有其他客户改变了自己正在缓存的文件。这种方法在大的环境中会产生额外的LAN通信开销,但对小型LAN来说,这是一种令人满意的方法。NFS 就是个无状态系统。 回呼(Callback)系统在这种方法中,服务器记录它的那些客户机的所作所为,并保留它们正在缓存的文件信息。服务器在一个客户机改变了一个文件时使用一种叫回叫应答(callbackpromise)的技术通知其它客户机。这种方法减少了大量网络通信。AFS(及OSFDCE的DFS)就是回叫系统。客户机改变文件时,持有这些文件拷贝的其它客户机就被回叫并通知这些改变。 无状态操作在运行性能上有其长处,但AFS通过保证不会被回叫应答充斥也达到了这一点。方法是在一定时间后取消回叫。客户机检查回叫应答中的时间期限以保证回叫应答是当前有效的。回叫应答的另一个有趣的特征是向用户保证了文件的当前有效性。换句话说,若

天网云存储系统建设方案

天网云存储系统建设方案 1.1存储需求概述 XX天网二期需要建设XX个高清监控点位,随着城市防控体系系统规模越来越大,以及高清视频的大规模应用,对系统中需要存储的数据和应用的复杂程度在不断提高,且视频数据需要长时间持续地保存到存储系统中,并要求随时可以调用,对存储系统的可靠性和性能等方面都提出了新的要求。 面对数百TB甚至上PB级的海量视频存储需求,传统的SAN或NAS在容量和性能的扩展上会存在瓶颈。而云存储可以突破这些性能瓶颈,而且可以实现性能与容量的线性扩展,这对于本项目存储系统来说是一个新选择。 视频云存储通过软件运用集群技术、虚拟化技术、分布式存储技术将网络中的存储设备集合起来协同工作,共同对外提供数据存储和业务访问功能。为满足本次高清点位视频存储的需求,同时符合行业发展趋势,满足业务使用需求,本次XX天网二期拟建设云存储系统进行录像存储和业务访问接口。 大容量存储需求 随着各地城市视频监控系统建设的深入,摄像头数量日益增多。前端建设普遍采用1080P高清摄像机。依据平安城市的建设要求,高清图像存储30天,那么一万路视频的总存储容量需要大致为十几个PB。 集中存储需求 对于城市级系统数十PB的存储需求,若采用通用IPSAN存储方案,则需上千台IPSAN,难以实现高效、统一的存储与设备管理,无法高效支撑公安视频实战应用。 高IO性能需求 基于视频大数据的智能实战应用对大量视频的快速收集与分析有非常高的要求,而传统IPSAN存储方式由于IO性能低,无法满足视频大数据应用的存储与应用要求。

1.2存储系统基本要求 在设计XX天网视频监控系统存储系统时,依据以下设计要求: (1)监控点的录像过程将对网络交换设备产生很大的压力,核心交换机应能负担如此大的交换压力,需考虑网络故障以后录像数据的缓存功能以及网络恢复以后的补录功能。 (2)能集中管理所有存储资源并统一调度,统一部署存储策略。与存储资源物理位置无关,只要IP网可达,便可实现对存储资源随时随地检索和回放。 (3)保障存储系统数据的安全性,对访问权限进行集中管理与分配。 (4)存储空间统一管理、统一分配,可实现无缝在线扩容。 (5)存储系统具有冗余备份的能力,提供持续稳定的性能。 (6)存储系统提供标准的运维接口,维护简单方便。 (8)存储系统具备高可靠性,出现设备故障后,存储业务不中断。 本项目在XX分局建设分布式视频云存储中心,每个存储中心依据接入到该区的视频前端的数量实际情况,规划建设分布式云存储系统。 1.3云存储拓扑示意图 UCS的存储节点通过Uni-FS分布式文件系统,将多台存储节点上的物理资

DFS分布式文件系统的配置与管理

DFS分布式文件系统的配置与管理 班级:17计网1班 小组成员:李腾,刘家法,陈可风,张晨(一)实验目地:DFS分布式文件系统的配置与管理(二)实验环境:Windows server DC (三)实验步骤 (1)在FTP&Web成员服务器上配置共享,共享名称为“share”,并配置共享目录权限为【Everyone】具备【读写权限】,如图 (2)在FS成员服务器上配置共享,共享名称为“share”,并配置共享目录权限为【Everyone】具备读【读写权限】。 (3)在域控制器(DC1)的【服务器管理器】下单机【添加角色和功能】,勾选【DFS复制】和【DFS命名空间】并添加相关功能,如下图 (4)在【ftpserver】和【fs】成员服务器的【服务器管理器】下点击【添加角色和功能】勾选【DFS复制】并添加相应功能,如下图 (5)在域控制器(DC1)的【服务器管理器】下点击【工具】的【DFS management】,单击【新建命令空间】,在弹出的对话框中选择【dc1】为【服务器】配置【命令空间名称】为【公共数据】,并选择【基于域的命令

空间】,复查设置并创建命令空间,如下图 (6)在该根目录下新建文件夹,【名称】为“share”,【文件夹目标】为【\\FS\share】和【\\FTPSER VER\share】,如图 (7)在弹出的【复制】对话框中选择【是】,在弹出的【复制文件夹向导】中根据需要进行设置,这里全部使用默认设置,如下图 (8)查看刚刚配置的DFS【复制】,如下图 项目验证 (1)等待一段时间,两个文件协商复制之后,此时访问DFS共享并上传一个新的文件,如图 (2)此时两个成员服务器的共享文件里都同时有‘test’文件的复制,附图

第7章分布式操作系统.

第七章分式操作系统 一、填空题 1网络拓扑结构主要有三种,它们是(),(),()· 2.将IP地址和城名对应的协议是()· 3.OSI参考模型由()层组成,TCP/IP参考模型由()组成. 4.在TCP/IP模型的传输层共有两个协议,它们是(),()· 5.将物理地址和IP转化的协议是()· 6.使用TCP提供基于Web浏览器的Internet访问服务的是()服务,它通常使用()端口. 7.Java中与远程过程调用具有相似特性的方法是()· 8.Java中将远程对象注册到RMl名称注册表,以便客户端就能够找到这些服务器对象的语句是()· 9.在分布式系统不能采用诸如信号量,管程等方法来解决进程的互斥和死锁问题,因为这些 10,假设在一个分布式系统中有n个进程,采用分布式算法解决互斥问题时,使用一次所需发送的消息数为()· 11.在选举的环算法中,当一个进程发现管理员不能工作时,它把包含()的选举(ELECTION)消息发给它的后继进程. 12.分布式文件系统的设计基于()模式. 13.命名的透明性分两种:()和()· 14.若某分布式系统某一个文件共有6个复制,假设采用的是Gifford方案,那么需满足(),文件才可以读取或者修改. 15.对读取文件有效,但是丝毫不影响写文件的解决缓存一致性问题的算法是()· 16. Sun公司的NFS实现包括()层,顶层是()· 17.分布式系统通信基于()协议. 18.一个分布式系统是一组通过网络相连的各自独立的计算机的()。 19.分布式系统提供一种高效而且简便的环境来()资源. 20.使用分布式系统主要基于以下四点:资源共享,(),可靠性,通信. 21.要使得系统中的计算机联合起来工作,系统中的计算机必须通过()(比如电缆)的方法连接起来. 22、()结构是将所有网络上的计算机设备全都连接在一条电缆上. 23.星形网路上各个节点之间的通信都统一由()控制。 24.环形网络有以下优点()。 25.网络有两种基本类型:()· 26.共享式局域网可能有不同的拓扑结构:() 27.局城网最基本的物理形式是采用某种类型的导线或电缆,把两台或多台计算机连接起来, 以形成这些计算机之间的()· 28.在大多数广城网中,通信子网一般都包括两部分:()

云存储及架构

xx存储原理及系统构架 摘要: 云存储作为一个新兴的研究和应用领域,由于其快速部署、低成本、灵活调整规模等优势被越来越多的企业应用。基于以上研究云存储,本文基于《云存储解析》内容,具体分析了云存储系统构架模式、技术优势及特点,并与传统的存储架构模式进行了对比。 前言 作为近几年兴起的“云计算(CloudComputing)”的一大重要组成部分,“云存储(CloudStorage)”承担着最底层以服务形式收集、存储和处理数据的任务,并在此基础上展开上层的云平台、云服务等业务。与传统的存储设备相比,云存储不仅仅是一个硬件,而是一个网络设备、存储设备、服务器、应用软件、公用访问接口、接入网和客户端程序等多个部分组成的系统。 云存储提供的是存储服务,存储服务通过网络将本地数据存放在存储服务提供商(SSP)提供的在线存储空间。需要存储服务的用户不再需要建立自己的数据中心,只需向SSP申请存储服务,从而避免了存储平台的重复建设,节约了昂贵的软硬件基础设施投资。 1xx存储技术 云存储系统与传统存储系统相比,具有如下不同: 第一,从功能需求来看,云存储系统面向多种类型的网络在线存储服务,而传统存储系统则面向如高性能计算、事务处理等应用;第二,从性能需求来看,云存储服务首先需要考虑的是数据的安全、可靠、效率等指标,而且由于用户规模大、服务范围广、网络环境复杂多变等特点,实现高质量的云存储服务必将面临更大的技术挑战;第三,从数据管理来看,云存储系统不仅要提供类似于POSIX的传统文件访问,还要能够支持海量数据管理并提供公共服务支撑功能,以方便云存储系统后台数据的维护。 基于上述特点,云存储平台整体架构可划分为4个层次,自底向上依次是:

分布式文件系统设计方案

分布式文件系统(DFS)解决方案 一“分布式文件系统(DFS)”概述 DFS并不是一种文件系统,它是Windows Server System上的一种客户/服务器模式的网络服务。它可以让把局域网中不同计算机上的不同的文件共享按照其功能组织成一个逻辑的分级目录结构。系统管理员可以利用分布式文件系统(DFS),使用户访问和管理那些物理上跨网络分布的文件更加容易。通过DFS,可以使分布在多个服务器或者不同网络位置的文件在用户面前显示时,就如同位于网络上的一个位置。用户在访问文件时不再需要知道和指定它们的实际物理位置。 例如,如果您的销售资料分散在某个域中的多个存储设备上,您可以利用DFS 使其显示时就好像所有的资料都位于同一网络共享下,这样用户就不必到网络上的多个位置去查找他们需要的信息。 二部署使用“分布式文件系统(DFS)”的原因 ●访问共享文件夹的用户分布在一个站点的多个位置或多个站点上; ●大多数用户都需要访问多个共享文件夹; ●通过重新分布共享文件夹可以改善服务器的负载平衡状况; ●用户需要对共享文件夹的不间断访问;

●您的组织中有供内部或外部使用的Web 站点; ●用户访问共享文件需要权限。 三“分布式文件系统(DFS)”类型 可以按下面两种方式中的任何一种来实施分布式文件系统: 1.作为独立的分布式文件系统。 ●不使用Active Directory。 ●至多只能有一个根目录级别的目标。 ●使用文件复制服务不能支持自动文件复制。 ●通过服务器群集支持容错。 2.作为基于域的分布式文件系统。 ●必须宿主在域成员服务器上。 ●使它的DFS 名称空间自动发布到Active Directory 中。 ●可以有多个根目录级别的目标。 ●通过FRS 支持自动文件复制。 ●通过FRS 支持容错。 四分布式文件系统特性 除了Windows Server System 中基于服务器的DFS 组件外,还有基于客户的DFS 组件。DFS 客户程序可以将对DFS 根目录或DFS 链接的引用缓存一段时间,该时间由管理员指定。此存储和读取过程对于

信息管理系统—数据存储与管理

大学《数据存储与管理》实验报告 年3月28日

供应商 产品 运货商 供应商 雇员 产品 订单明细 订单 类别 客户 运货商 ? 3.打开 Microsoft Access,点击新建数据库标签,输入“Solomon”作为数据库名称, 并点击创建;点击屏幕左栏里的表,点击使用设计器创建表,在设计视图中按标签 输入每个关系的字段名,数据类型和说明,选中作为主键的字段名,点击主键按钮, 然后保存,并命名。(例下图) 供应商 ID 公司名 称 联系人 姓名 联系人 职务 地址 城 市 地 区 邮政编 码 国 家 电话 传真 主 页 1 佳佳乐 陈小姐 采购经 理 西直门大街 110 号 北 京 华 北 100023 中 国 (010) 65552222 2 康富食 品 黄小姐 订购主 管 幸福大街 290 号 北 京 华 北 170117 中 国 (010) 65554822 3 妙生 胡先生 销售代 表 南京路 23 号 上 海 华 东 248104 中 国 (021) 85555735 (021) 85553349 产品 ID 产品名称 供应商 类别 单位数量 单价 库存量 订购量 再订购量 1 苹果汁 佳佳乐 饮料 每箱 24 瓶 ¥18.00 39 0 10 2 牛奶 佳佳乐 饮料 每箱 24 瓶 ¥19.00 17 40 25 3 蕃茄酱 佳佳乐 调味品 每箱 12 瓶 ¥10.00 13 70 25 运货商 ID 公司名称 电话 1 急速快递 (010) 65559831 2 统一包裹 (010) 65553199 3 联邦货运 (010) 65559931

3种分布式文件系统

第一部分CEPH 1.1 特点 Ceph最大的特点是分布式的元数据服务器通过CRUSH,一种拟算法来分配文件的locaiton,其核心是 RADOS(resilient automatic distributed object storage),一个对象集群存储,本身提供对象的高可用,错误检测和修复功能。 1.2 组成 CEPH文件系统有三个主要模块: a)Client:每个Client实例向主机或进程提供一组类似于POSIX的接口。 b)OSD簇:用于存储所有的数据和元数据。 c)元数据服务簇:协调安全性、一致性与耦合性时,管理命名空间(文件名和 目录名) 1.3 架构原理 Client:用户 I/O:输入/输出 MDS:Metadata Cluster Server 元数据簇服务器 OSD:Object Storage Device 对象存储设备

Client通过与OSD的直接通讯实现I/O操作。这一过程有两种操作方式: 1. 直接通过Client实例连接到Client; 2. 通过一个文件系统连接到Client。 当一个进行打开一个文件时,Client向MDS簇发送一个请求。MDS通过文件系统层级结构把文件名翻译成文件节点(inode),并获得节点号、模式(mode)、大小与其他文件元数据。注意文件节点号与文件意义对应。如果文件存在并可以获得操作权,则MDS通过结构体返回节点号、文件长度与其他文件信息。MDS同时赋予Client操作权(如果该Client还没有的话)。目前操作权有四种,分别通过一个bit表示:读(read)、缓冲读(cache read)、写(write)、缓冲写(buffer write)。在未来,操作权会增加安全关键字,用于client向OSD证明它们可以对数据进行读写(目前的策略是全部client 都允许)。之后,包含在文件I/O中的MDS被用于限制管理能力,以保证文件的一致性与语义的合理性。 CEPH产生一组条目来进行文件数据到一系列对象的映射。为了避免任何为文件分配元数据的需要。对象名简单的把文件节点需要与条目号对应起来。对象复制品通过CRUSH(著名的映射函数)分配给OSD。例如,如果一个或多个Client打开同一个文件进行读操作,一个MDS会赋予他们读与缓存文件内容的能力。通过文件节点号、层级与文件大小,Client可以命名或分配所有包含该文件数据的对象,并直接从OSD簇中读取。任何不存在的对象或字节序列被定义为文件洞或0。同样的,如果Client打开文件进行写操作。它获得使用缓冲写的能力。任何位置上的数据都被写到合适的OSD上的合适的对象中。Client 关闭文件时,会自动放弃这种能力,并向MDS提供新的文件大小(写入时的最大偏移)。它重新定义了那些存在的并包含文件数据的对象的集合。 CEPH的设计思想有一些创新点主要有以下两个方面: 第一,数据的定位是通过CRUSH算法来实现的。

云计算项目范围(包括但不限于)

云计算项目范围(包括但不限于) 一、云计算、云安全应用关键技术研发与服务模式创新 支持云计算架构下为政府企业、社会机构及个人提供基础设施服务(Iaas)、平台服务(Paas)和应用软件服务(Saas)应用的示范。重点支持云计算、云安全解决方案在电子政务、信息安全、文化教育、医疗健康、中小企业服务、社区服务、城市管理等领域具有一定示范效应的应用。鼓励利用原有IT 设施开展云计算改造,对基于国产软硬件、具有自主可控技术,对广州超级计算中心发展具有促进作用的予以优先。二、云计算、云存储、云服务、云安全相关共性关键技术研发和应用示范 1.研究基于云计算架构下海量数据分析处理技术,重点支持开展实时压缩引擎、并行计算、动漫渲染、高速检索、语言理解、语音识别、图像识别、音视频检索和新一代搜索引擎等智能处理的研发和应用示范。 2.大规模分布式存储和处理技术,重点支持分布式存储系统技术、软硬件一体化云存储平台的研发应用与产业化 3.云计算平台运行管理技术,重点支持云计算环境下的系统部署、系统迁移、资源调度、网络应用、按需计量、性能评估等技术的研发、云中间件技术的研发和应用示范。

4.云计算安全技术研发和应用示范,重点开展云环境数据隔离及网络安全、敏感信息覆盖、隐私及数据保护等;云计算数据和用户身份的技术解决方案和服务,侧重于安全云终端、数据中心监测和多租户、身份管理、防欺诈和恶意软件检测、数据丢失防护等。 三、云计算应用示范项目 1.云计算服务项目:指基于云计算架构,以市场化运营为特征且具有运营主体,能够为个人和机构用户提供基础设施服务(Iaas)、平台服务(Paas)和应用软件服务(Saas)的示范项目。包括金融、文化、健康、中小企业服务、社区服务等领域的云计算服务项目。 2.提升信息化水平的云计算改造项目:指各级政府和企业运用服务器虚拟化和桌面虚拟化技术,以提高信息系统效率、减少投入、降低能耗为目标的云计算技术改造项目。政府和大型企业利用原有IT设施开展云计算改造项目。

简述分布式操作系统

郑州轻工业学院 课程设计报告 题目简述分布式操作系统学生姓名杨元家张峰崎 专业班级计科11-01 学号0152 0153 院(系)计算机与通信工程指导教师张旭 完成时间2014 年6月18日

目录 摘要错误!未定义书签。 1 分布式操作系统的特点错误!未定义书签。 2 网络操作系统和分布式操作系统的区别错误!未定义书签。 网络操作系统错误!未定义书签。 网络操作系统错误!未定义书签。 网络操作系统对于计算机网络的作用错误!未定义书签。 分布式操作系统错误!未定义书签。 集群为了提高计算机的性能错误!未定义书签。 分布式操作系统错误!未定义书签。 网络操作系统和分布式操作系统的区别是:错误!未定义书签。 3 以大规模IPTV点播系统为例说明分布式系统分布方式错误!未定义书签。分布式点播系统分析错误!未定义书签。 分布式系统典型结构错误!未定义书签。 分布式系统工作原理错误!未定义书签。 分布式系统的典型应用错误!未定义书签。 分布式点播系统的局限性错误!未定义书签。 结论错误!未定义书签。 参考文献错误!未定义书签。 分布式操作系统的特点

摘要 本文介绍了分布式操作系统的特点以及与网络操作系统的区别,并且以大规模IPTV 点播系统为例说明分布式系统分布方式,分布式操作系统是在比单机复杂的多机环境下得到实现的,并且具备分布性、自治性、并行性、全局性这四个基本特征,能够实现资源共享,加快计算速度,并且可靠性得到了提高。在分布性与并行性上比网络操作系统有独到的优点,并且在透明性以及健壮性方面具有网络操作系统不可匹敌的优势,在大规模IPTV点播系统中,本文从分布式系统的结构、分布式系统的工作原理、分布式系统的典型作用以及分布式系统的局限性等方面详细阐述了分布式系统在服务器系统中是如何实现分布的。 关键字:分布式操作系统、网络操作系统、IPTV点播系统 1 分布式操作系统的特点 分布式操作系统是在比单机复杂的多机环境下得到实现的,操作系统在进行任何一项任务的始终都要依赖于通信软件模块,故而分布式操作系统具有区别于单机操作系统的下列显著特点: (1)具有干预互连的各处理机之间交互关系的责任。分布式操作系统必须保证在不同处理机上执行的进程彼此互不干扰,并严格同步,以及保证避免或妥善解决各处理机对某些资源的竞争和引起的死锁等问题。

7种分布式文件系统介绍

FastDFS (7) Fastdfs简介 (7) Fastdfs系统结构图 (7) FastDFS和mogileFS的对比 (8) MogileFS (10) Mogilefs简介 (10) Mogilefs组成部分 (10) 0)数据库(MySQL)部分 (10) 1)存储节点 (11) 2)trackers(跟踪器) (11) 3)工具 (11) 4)Client (11) Mogilefs的特点 (12) 1. 应用层——没有特殊的组件要求 (12) 2. 无单点失败 (12) 3. 自动的文件复制 (12) 4. “比RAID好多了” (12) 5. 传输中立,无特殊协议 (13) 6.简单的命名空间 (13) 7.不用共享任何东西 (13) 8.不需要RAID (13)

9.不会碰到文件系统本身的不可知情况 (13) HDFS (14) HDFS简介 (14) 特点和目标 (14) 1. 硬件故障 (14) 2. 流式的数据访问 (14) 3. 简单一致性模型 (15) 4. 通信协议 (15) 基本概念 (15) 1. 数据块(block) (15) 2. 元数据节点(Namenode)和数据节点(datanode) . 16 2.1这些结点的用途 (16) 2.2元数据节点文件夹结构 (17) 2.3文件系统命名空间映像文件及修改日志 (18) 2.4从元数据节点的目录结构 (21) 2.5数据节点的目录结构 (21) 文件读写 (22) 1.读取文件 (22) 1.1 读取文件示意图 (22) 1.2 文件读取的过程 (23) 2.写入文件 (24) 2.1 写入文件示意图 (24)

大数据存储技术研究

大数据存储技术研究 3013218099 软工二班张敬喆 1.背景介绍 大数据已成为当前社会各界关注的焦点。从一般意义上讲,大数据是指无法在可容忍的时间内,用现有信息技术和软硬件工具对其进行感知、获取、管理、处理和服务的数据集合。近年来,大数据的飙升主要来自人们的日常生活,特别是互联网公司的服务。据著名的国际数据公司(IDC)的统计,2011年全球被创建和复制的数据总量为1.8ZB(1ZB=1021B),其中75%来自于个人(主要是图片、视频和音乐),远远超过人类有史以来所有印刷材料的数据总量(200PB,1PB=1015B)。 然而,与大数据计算相关的基础研究,诸如大数据的感知与表示、组织与存储、计算架构与体系、模式发现与效应分析等,目前还没有成体系的理论成果。对于大数据计算体系的研究,一方面,需要关注大数据如何存储,提供一种高效的数据存储平台;另一方面,为了应对快速并高效可靠地处理大数据的挑战,需要建立大数据的计算模式以及相关的优化机制。2.相关工作 为了应对数据处理的压力,过去十年间在数据处理技术领域有了很多的创新和发展。除了面向高并发、短事务的OLTP内存数据库外(Altibase,Timesten),其他的技术创新和产品都是面向数据分析的,而且是大规模数据分析的,也可以说是大数据分析的。 在这些面向数据分析的创新和产品中,除了基于Hadoop环境下的各种NoSQL外,还有一类是基于Shared Nothing架构的面向结构化数据分析的新型数据库产品(可以叫做NewSQL),如:Greenplum(EMC收购),Vertica(HP 收购),Asterdata(TD 收购),以及南大通用在国内开发的GBase 8a MPP Cluster等。目前可以看到的类似开源和

分布式操作系统的互斥算法

[摘要] 本文主要介绍了分布式操作系统中的分布式互斥算法和令牌环互斥算法,并着重针对几种不同的令牌环算法分析了它们算法的正确性,最后还讨论了各个算法的性能并加以比较。 [关键词] 分布式操作系统令牌环互斥算法 引言 分布式互斥是随着分布式系统的出现而出现的,并随着分布式系统理论发展而发展。因此,和分布式系统的体系结构发展史类似,分布式互斥的发展经历了如下几个发展阶段。 (1)完全中心式算法。在该类算法中,一个节点被指定为控制(裁决)节点,它控制对所有共享对象的访问。当任何进程请求对一个临界资源进行访问时,就向本地资源控制进程发送一个请求消息,该进程接着向控制节点发送一个请求消息。当共享对象可用时,将返回一个应答消息。当进程结束使用资源后,向控制节点发送一个释放消息。这类算法有两个共同点,其一是只有控制节点能控制资源的分配,其二是所有需要的信息都集中在控制节点中,包括所有资源的实体和位置以及每个资源的分配状态。 完全中心式算法实现简单,控制也很方便,但存在以下缺点:如果控制节点崩溃,则互斥机制终止,同时由于所有请求资源的进程都需与控制节点交换消息,因此,控制节点可能存在通信瓶颈。, (2)局部中心式算法。由于完全中心式算法可能出现的控制节点容错问题与通信瓶颈问题,人们采取了相应措旌以期解决或缓解这些问题给整个系统带来的影响。因此出现了局部中心式算法。局部中心式算法是将各临界资源按一定规则分为几个区域,每个区域包含一定数量的临界资源和一个中心控制点。任何需要请求某临界资源的进程都需向该l晦界资源所在区域的中心控制节点发送请求消息并由该控制节点安排进程访问临界资源的次序。该类算法具有多个控制点,各控制点间互不干涉,每一个控制节点故障只影响系统内节点对该控制节点管理区域内的临界资源访问,不会对非该区域内资源的访问造成影响。因此可以缓解完全中心式算法的控制节点容错问题与通信瓶颈问题。 (3)局部分布式算法。局部中心式算法虽然缓解了其完全中心式算法的控制节点容错及通信瓶颈问题,但并未使这些问题得到解决。特别是随着通信技术的发展,节点间的通信带宽已经能够较大程度满足互斥的消息通信要求,因此使中心式算法的控制节点容错变得更加重要。因此,人们将局部中心式算法中互不干涉的控制节点改为互相备份的方式。当一个控制节点失效时,其控制的资源将转向其备份的控制节点,使得互斥能够继续进行。该类算法继续发展,出现了多点 共同决策的资源访问模式,即任何一次的关键资源访问,不再是由唯一的一个控制节点决定,而是由所有控制节点共同决定。因此申请访问临界资源的节点不再只是向唯一的资源控制节点发送请求消息,而是需要向所有控制节点发送请求消息。当所有控制节点都同意申请节点的请求时,申请节点获得临界资源访问机会。

典型分布式文件系统概述

分布式文件系统概述(一) 杨栋 yangdonglee@https://www.360docs.net/doc/6310897034.html, 2006-12 摘要 文件系统是操作系统用来组织磁盘文件的方法和数据结构。传统的文件系统指各种UNIX平台的文件系统,包括UFS、FFS、EXT2、XFS等,这些文件系统都是单机文件系统,也称本地文件系统。随着网络的兴起,为了解决资源共享问题,出现了分布式文件系统。分布式文件系统是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连。本文1简要回顾了本地文件系统,然后按照发展例程大致介绍了2006年之前各时期主要的分布式文件系统,最后从设计目标、体系结构及关键技术等方面比较了各个分布式文件系统的异同。目前很火的Hadoop文件系统、S3文件系统都是从NFS等早期文件系统一步步演化而来的,了解分布式文件系统的历史,有助于大家更加深刻地领会分布式文件系统的精髓。 1本文写于2006年底,借鉴了别人的大量资料,目的是为了与同学们分享分布式文件系统的发展史。笔者在硕士期间跟随中科院计算所的孟老师、熊老师和唐荣锋进行分布式文件系统的研究和开发。分布式文件系统源远流长,本文只是选择了其发展史上的部分实例进行简单描述,由于笔者水平十分有限,错误之处难免很多,各位同学发现问题之后麻烦回复邮件到yangdonglee@https://www.360docs.net/doc/6310897034.html,,我会尽全力完善,或者请各位同学自行修正。笔者目前在百度进行云计算方面的研究和开发,希望有兴趣的同学一起进行探讨。

目录 1.引言 (5) 2.本地文件系统 (5) 2.1FFS (6) 2.2LFS (6) 2.3Ext3 (7) 3.分布式文件系统 (7) 3.1 发展历程 (7) 3.2分布式文件系统分类 (8) 3.2.1 实现方法 (8) 3.2.2研究状况 (8) 3.3 NFS (9) 3.3.1概述 (9) 3.3.2 体系结构 (9) 3.3.3 通信机制 (10) 3.3.4进程 (10) 3.3.5 命名 (10) 3.3.6 同步机制 (11) 3.3.7 缓存和复制 (11) 3.3.8 容错性 (12) 3.3.9 安全性 (13) 3.4 AFS、DFS、Coda和InterMezzo (13) 3.5 SpriteFS和Zebra (14) 3.6xFS (16) 3.6.1 概述 (16) 3.6.2 体系结构 (16) 3.6.3 通信 (16) 3.6.4 进程 (17) 3.6.5 命名 (18) 3.6.6 缓存 (19)

相关文档
最新文档