管壳式热交换器设计全解1.ppt

合集下载

管壳式换热器 ppt课件

管壳式换热器  ppt课件
超声检测:电能-超声能-电能,一般1~10MHZ常 用1~5MHZ,设备为数字式和模拟式。
磁粉检测:通过磁场使焊接接头磁化,在工件表 面均匀撒上磁粉,有缺陷的位置会出现磁粉聚集 现象。
渗透检测:一般探测出的缺陷深度0.02mm宽度约 0.001mm,利用带有荧光染料或红色染料的渗透 剂的渗透作用,经过渗透、清洗、显示处理后用 目视法观察。
对于铬钼钢的材料,在焊接后需进行焊后热处理。
热处理目的:1、对焊缝消除应力,防止焊缝延迟 裂纹的出现。2、对焊缝消氢处理,防止氢腐蚀、 氢脆的出现。
加热方式主要有通过电加热带加热,用保温防火 棉覆盖保温。加热温度大约在200-300℃。消除 应力热处理时间在16-24h以内,消氢热处理保温 时间不少于0.5h。或用火焰加热处理。
双壁(双壁—单影、双壁—双影) 照相成像质量 :对比度、清晰度和颗粒度 像质计应用 :评定底片的灵敏度 底片评定 :判定缺陷合格与否
设备无损检测主要方法:
无损检测:包括射线透照检测、超声检测、表面检 测:(包括磁粉检测、渗透检测、涡流检测)前 两种主要用于探测被检物的内部缺陷,表面检测 用于探测被检物的表面和近表面缺陷。
折流板:提高壳程流体的流速,增加湍动程度并 使壳程流体垂直冲刷管束,以改善传热,增大传 热系数,并且起支持管束的作用。分为弓形和圆 环-圆盘形两种。
管板加工过程:
折流板加工过程:
车床加工管板
管板划线及打点
钻床管板钻孔
换热管预制
换热管分类:
U型换热器换热管弯管:
弯管机弯管(冷弯)
补强圈
接管法兰
补强圈信号孔通压缩空气检漏
信号孔:1、用来检验补强圈焊缝的密封性能。2、 排放补强圈和筒体间气体。

《管壳式换热器设计》PPT课件

《管壳式换热器设计》PPT课件

精选PPT
5
1.3 管壳式换热器介绍
管壳式换热器具有可靠性高,适应性广泛等优点,在各工 业领域中得到最为广泛在应用。
1.3.1 基本类型 根据管壳式换热器的结构特点,可分为固定管板式、浮
头式、U形管式、填料函式和釜式沸器五类,如图示。 1.3.1.1 固定管板式换热器 固定管板式换热器管束连接在管板上,管板与壳体焊接。 1.3.1.1.1 优点: 1)传热面积比浮头式换热器大20%-30%; 2)旁路漏流较水; 3)锻件使用较少; 4)没有内漏。
4
1.2.1.3 间壁式换热器
1.2.1.3.1 间壁式换热器分类 管式换热器、板式换热器及其它形式的换热器。
管式换热器都是通过管子壁面进行传热的换热器。按传热 管的结构形式不同大致可分为蛇管式换热器、套管式换热 器、缠绕管式换热器和管壳式换热器。
其中管壳式换热器是目前应用最为广泛的换热设备。 它占换热器总量的90%。它是典型的间壁式换热器.
足要求的场合.
精选PPT
11
二、 管壳式换热器的设计参数及材料
2.1 设计参数
是指用于确定换热器施工图设计、制造、检验及验收 的参数。 它主要包括设计压力P、设计温度T、厚度δ、 焊接接头系数φ、试验压力PT、公称直径DN、公称长度 LN、换热面积A、容器类别等。
2.1.1 设计压力:
指设定的换热器管、壳程顶部的最高压力,与相应
计温度。
在任何情况下,金属元件的表面温度不得超过金属材料的允许使用温 度。
2.1.3 厚度
2.1.3.1 计算厚度---- 按规范的公式计算得到的厚度。
2.1.3.2 设计厚度-----设计时必须考虑腐蚀裕量C2,计算厚度与腐蚀裕量 之和为设计厚度。

管壳式热交换器设计全解

管壳式热交换器设计全解
两流体的流程中通道数不一定相等 习惯上以(流程×通道数)来表示流程板片的组合
1 4 1 4
23 23
1 4 2 2
44
1 4 2 2
1×4表示甲流体为单流程、四通道 2×2表示乙流体为两流程、两通道
b 密封垫圈
密封作用,防止介质漏出(外漏)
在两板片间造成一定的间隙,形成介质的流道(内漏)
高效就是换热效率高,结构紧凑 即在增加换热器的传热面积的同 时,也要减小换热器的体积 “紧凑性”—热交换器的单位体 积中所包含的传热面积的大小, m2/m3 紧凑式热交换器:>700m2/m3 非紧凑性热交换器:<700m2/m3
3
第一节 螺旋板式热交换器
螺旋板式换热器
螺旋板式换热器由两块金属薄板焊接在一块分隔板上并卷制成螺 旋状而构成的。卷制后,在器内形成两条相互隔开的螺旋形通道, 在顶、底部分别焊有封头和两流体进出口接管。其中有一对进出 口接管是设在园周边上,而另一对进出口则设在圆鼓的轴心上。 换热时,冷、热流体分别进入两条通道,在器内作严格的逆流流 动。 4
具有的共同特点
位缺口; ⑥板片组装后保持流道一定的间 隙、并使流层“网状”化的触点, 可使板片在两侧介质有压差情况 下减少板片的变形; ⑦使介质能均匀沿板片流道宽度 分布的导流槽;
37
介质在板片间的流动
单边流 对角流
单边流
对角流
换向板片:根据流程的需要,相应不冲出某些角孔,介质遇 到盲孔即拐弯,进行换向,增加介质的流程
操作压力和温度不能太高,尤其是所能承受的压力比较低,操作 压力只能在20atm以下,操作温度约在300-400℃以下。
不易检修,整个换热器已被卷制焊接为一个整体,一旦发生中间 泄漏或其他故障,设备即告报废。

管壳式热交换器设计常见问题浅析PPT详细介绍课件

管壳式热交换器设计常见问题浅析PPT详细介绍课件
2 换热管沿长度平均温差等于管程介质进/出口温度的平均值
二、管壳式换热器设计参数确定
GB/T151-2104附录B P120:
二、管壳式换热器设计参数确定
2、设计压力和设计温度
1)热交换器为多腔容器,其设计压力和设计温度 的确定:
按“各管各”原则,即分别按各自最苛刻的工作 压力、工作温度确定其设计压力、设计温度。
管壳式热交换器 设计常见问题浅析
主要内容
管壳式热交换器是工业中应用最为广泛的一种换热 器,而设计是其质量保证的首要环节,故提高换热器的 设计质量,对于行业发展来说至关重要。
针对管壳式热交换器设计过程中,以下五个方面的 常见问题及注意事项,在此与在座各位同仁进行交流和 探讨。
一、不同结构型式换热器特点
(计算时应注意大小端厚度减去腐蚀裕量,但常常带来结果不合格。处理: 选用标准设备法兰可不计算,但需要保留基本计算数据,如:螺柱材质、规格及 数量,垫片材质等)
d. 换热管、钩圈、浮头螺栓、纵向隔板一般不考虑腐蚀裕量。
TEMA标准关于腐蚀裕量的条文中明确规定,钩圈及其内部螺栓连接件,是不 必考虑腐蚀裕量。钩圈是一个非受压件,且是可拆卸件,按TEMA规定,对其不 考虑腐蚀裕量是合理的。
为了检查换热管与管板连接接头的质量,可能遇到下列4种情况: 1)管壳程均为正压,且壳程试验压力高于管程试验压力。
处理:管壳程按各自设计压力、设计温度、材料分别确定其耐压试验 的试验压力值。
2)管壳程均为正压,且壳程试验压力低于管程试验压力。 处理:将壳程试验压力提高至管程试验压力,并应对壳程圆筒进行校 核。 在此,往往会忽视其他受压元件的强度和结构等问题,下面分别讨论:
参照GB/T151-2014附录B中B3.4 结构参数(P115)

管壳式热交换器(PPT课件)

管壳式热交换器(PPT课件)

管外纵流条件下,管外传热系数为光管的1.6倍.
传递热量相同,泵功率相同,取代光管,节约材 料30%-50%
螺旋槽

主要用于强化管内气体或液体的传热,强化管内液
体的沸腾或管内外蒸气的冷凝,管内传热系数为光管 传热系数的1.5-2.0倍;管外传热系数为光管传热系数 的1.5倍.
缩放管
波纹管


波纹管优点
(4)填料函式换热器
填料函式换热器 1.纵向隔板;2.浮动管板;3.活套法兰;4.部分剪切环;5.填 料压盖;6.填料;7.填料函
填料函式密封
缺点:填料处易泄漏。 优点:结构简单,加工制造方便,造价低,管内和管
间清洗方便 适用场合:4MPa 以下,且不适用于易挥发、易燃、易 爆、有毒及贵重介质,使用温度受填料的物性限制。

带膨胀节的固定管板式换热器 图7-3 带补偿器的固定管板式换热器
(2) U形管式换热器
U形管式换热器 1.中间挡板;2.U形换热管;3.排气口;4.防冲板;5.分程隔板
U形管式换热器
U型管式换热器 图7-6 U形管式换热器 优点:结构简单,价格便宜,承受能力强,不会产生热应力。 缺点:布板少,管板利用率低,管子坏时不易更换。 适用场合:特别适用于管内走清洁而不易结垢的高温、高压、 腐蚀性大的物料。
第二章 管壳式热交换器
间壁式热交换器

管式热交换器
管壳式、套管式、螺旋管式等

板式热交换器


延伸表面热交换器
蓄热式热交换器
管壳式换热器
2.1 管壳式换热器的分类
基本类型 固定管板式换热器
U形管式换热器 浮头式换热器 填料函式换热器
(1)固定管板式换热器

管壳式换热器设计和选型PPT课件

管壳式换热器设计和选型PPT课件
一般流体易结垢液体易结垢液体气体气体流速流速ms管程管程0530105030053010503002150530150215053015管壳式换热器中丌同粘度液体的常用流速管壳式换热器中丌同粘度液体的常用流速液体粘度液体粘度mpas150015005005001001003535150015005005001001003535最大流速最大流速06075111518060751115182424表表3管壳式换热器中易燃易爆液体的安全允许速度管壳式换热器中易燃易爆液体的安全允许速度液体名称液体名称乙醚二硫化碳苯乙醚二硫化碳苯甲醇乙醇汽油甲醇乙醇汽油丙酮丙酮安全允许速度安全允许速度ms10第12页共28页33管子的规栺和管间距管子的规栺和管间距管子规格管子规格的选择包括管径和管长
②管间距管子的中心距 称为管间距,管间距小, 有利于提高传热系数,且设备紧凑。但由于制造 上的限制。常用对比关系见表4。
表4管壳式换热器外径与中心距 的关系 换热管外径 , mm 10 14 19 25 32 38 45 57 换热管中心距 , mm 14 19 25 32 40 48 57 72
第13页/共28页
第6页/共28页
管壳式换热器的设计与选型 换热器的设计是通过计算,确定经济合理的传热面积及换热器的其它有关
尺寸,以完成生产中所要求的传热任务。
第Hale Waihona Puke 页/共28页第8页/共28页
• 1.设计的基本原则 (1)流体流径的选择流体流径的选择是指在管程和
壳程各走哪一种流体,此问题受多方面因素的制约, 下面以固定管板式换热器为例,介绍一些选择的原 则:
(2)流体流速的选择流体流速的选择涉及到传热 系数、流动阻力及换热器结构等方面。 流速↑加大对流传热系数,减少污垢的形成,使 总传热系数增大; 但同时使流动阻力加大,动力消耗增多; 选择高流速,使管子的数目减小,对一定换热面 积,不得不采用较长的管子或增加程数,管子太 长不利于清洗,单程变为多程使平均传热温差下 降。

《管壳式换热器设计》课件

《管壳式换热器设计》课件

支撑结构设计要点
考虑支撑结构的承载能力、稳定性 、防腐和防震等方面,以确保支撑 结构在各种工况下的安全性和可靠 性。
有限元分析
利用有限元分析方法对支撑结构进 行强度和稳定性分析,优化结构设 计,降低成本并提高设备性能。
密封设计
01
02
03
密封类型选择
根据工艺操作条件和介质 特性,选择合适的密封类 型,如垫片密封、机械密 封、磁力密封等。
计算公式法
根据传热基本方程和物性参数,通过计算公式计算传热系数。
热平衡计算
热平衡方程
换热器入口和出口的流体温度满足一定的关系,可以根据热 平衡方程计算换热器的效率。
效率计算
根据热平衡方程和实验数据,可以计算出换热器的效率,从 而评估换热器的性能。
05
管壳式换热器的强度设计
压力设计
压力等级
根据工艺要求和操作条件,确 定管壳式换热器的压力等级, 确保设备在正常操作和异常工 况下的安全性和可靠性。
密封设计要点
考虑密封性能、耐腐蚀性 、寿命和维护性等方面, 以确保密封装置在长期运 行中的可靠性和安全性。
密封失效预防措施
为防止密封失效,采取相 应的预防措施,如定期检 查、更换密封元件、加强 设备维护等。
06
管壳式换热器的制造与检验
制造工艺
制造流程
01
管壳式换热器的制造流程包括材料准备、切割、焊接、组装等
THANK YOU
感谢聆听
多个环节。
关键工艺参数
02
在制造过程中,需要严格控制关键工艺参数,如焊接温度、压
力、时间等,以确保产品质量。
质量标准
03
制造完成后,应按照相关质量标准进行检验,确保产品符合设

【精品课件】管壳式热交换器设计全解

【精品课件】管壳式热交换器设计全解
方法 作图
牛顿迭代法。
在某一钢制立式管壳式热交换器中用饱和温度ts=111.38℃ 的蒸汽加热某种溶液,已知其管径为Φ32×2mm,管高l=1.5m, 材料的导热系数λ=52w/(m ℃),管内溶液的平均温度t2=68 ℃, 换热系数α2=3348w/(m2 ℃) 求蒸汽侧的管壁温度tw1。
解 溶液侧单位传热面的传热量
1.5 wn2
2
气体非等温流动 附加阻力△Pa
总阻力
内阻力△Ps
△P=△Pi+△Pl+△Pa + △Ps
对于多管程换热器,流体总阻力应等于各程直管阻力、
回弯阻力及进、出口阻力之和(通常忽略进、出口阻力):
p i p 1 p 2 F tN s N p
p1—流体流经直管的压力降,N/m2; p2—流体流经回弯管时的压力降,N/m2; Ft—结垢修正系数,25×2.5mm1.4,
T1,T2——两辐射物体的绝对温度
三、壁温的计算
放热侧壁温 吸热侧壁温
tw 1t1K 1rs,1 tmt1q 1rs,1
1
1
tw 2t2K 1rs,2 tmt2q 1rs,2
2
2
式中:
rs,1,rs,2——分别为放热侧、吸热侧污垢热阻
注意: K,α应在同一基准表面计算
进出口连接管阻力△PN
沿程阻力△Pi
Pi
L di
wt 2
2
i
式中: λ——莫迪圆管摩擦系数
wt——管内流体流速
φi——管内流体粘度校正因子
当Re>2100 φi=(μ/μw)-0.14
当Re<2100 φi=(μ/μw)-0.25
回弯阻力△Pr
Pr
4 wt2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dt1
dt2
1 qm1c1
d kdA t
1 qm2c2
d d 1 1
qm1c1 qm2c2
dt d kdAt
dt kdA
t
tx dt k Ax dA
t t
0
ln
tx t
k Ax
tx texp( kAx )
可见,当地温差随换热面呈指数变化,则沿整个换热面的平
均温差为:
tm
Q
Q
M 2c2
M
t2
1
t
t21
C1dt1 M 2 C2dt2
M 2c2t2t2 W2t2
Q W1t1 W2t2 ③
t1 热流体在热换器内的温降值,也称冷却度,℃
t2 冷流体在热交换器内的温升值,也称加热度,℃
c1
c2
分别为热、冷流体在进、出口温度范围内的平
均定压质量比热,J/(Kg·℃)
dF 微元传热面积, m2
K 整个传热面上的平
均传热系数,w/ (m2·℃)
F 传热面积, m2
t 在此微元传热面处两种 tm 两种流体之间的平
流体之间的温度差,℃
均温差,℃
Q 热交换器的热负荷,W
想求得 F ,必须已知 K 、tm 、Q 。
2、热平衡方程:
Q M1i1 i1 M 2 i2 i2
qm2C2 t2'' t2' W2 t2'' t2'
t1
t1 dt1 t1
W qmCBiblioteka t2 dt2 t2t2
W : 流体热容量
意义:单位温度变化下产生的流动流体的能量储存
速率。
微元传热面传递的热流量: d K (t1 t2 )dA
A Kt1 t2 dA
工程上: Kmtm A
流体1的放热量 流体2的吸热量
qm1C1 t1' t1''
qm2C2 t2'' t2'
热交换器的传热热量
A kt1 t2 dA
不考虑热交换器向外界散热热量
流体1的放热量 流体2的吸热量 热交换器的传热热量
qm1C1 t1' t1'' W1 t1' t1''
3 由 W1t1= W2t2 =Q,还可以知道,在热交换器内,热容量
越大的流体,温度变化值越小,热容量越小的流体,温度变
化值越大
4 计算流体的热容量时,M与c的单位必须一致
5 已知热交换器热负荷的条件下,热平衡方程可用于确定 流体的流量
2.2热交换器传热计算的基本方法:
平均温差法 效率(效能)-传热单元数法(η-NTU) 一、平均温差法
t t1 t2 dt dt1 dt2
t1 t1 dt1 t1
在固体微元面dA内,两种流体的换 热量为:
d kdA t
t2 dt2 t2
t2
对于热流体: 对于冷流体:
1 d qm1c1dt1 dt1 qm1c1 d
1 d qm2c2dt 2 dt2 qm2c2 d
dt
冷流体2
进口温度 t 2 流量 M 2 比热容 c 2
热流体1
进口温度t1 流量 M1 比热容 c1
热交换器的换热面积F
出口温度 t 2
出口温度 t1
两流体的进口温差 t
两流体的出口温差 t
1、传热方程式:
F
Q o ktdF
工程上
Q KFtm ①
k 热交换器任一微元传
热面处的传热系数, w/(m2·℃)
1 A
A 0
t xdAx
1 A
A 0
texp(kAx )dAx
tm
1 A
A 0
texp( kAx )dAx
t exp( kA) -1
(1)
k A
ln
tx t
k Ax
Ax A
ln t kA
t
(2)
t exp(kA)
(3)
t
(2)、(3)代入(1)中
对数平均温差
tm
t ln t
t t
以及比热容C2,C1是常数;
(2)传热系数是常数;
t1
(3)换热器无散热损失;
(4)换热面沿流动方向的导热量可
以忽略不计。
要想计算沿整个换热面的平均温差,
t2
首先需要知道当地温差随换热面积的
变化,然后再沿整个换热面积进行平均。
t1 dt1 t1 t2 dt2 t2
在假设的基础上,并已知冷热流体的 进出口温度,现在来看图中微元换热 面dA一段的传热。温差为:
第二节 热交换器传热计算的 基本方法
本章要求掌握的内容:
传热过程的计算;对数平均温差的计算; 间壁式换热器的设计计算及校核计算。
热交换器热计算的基本原理
1.1 热计算基本方程 1.2平均温差法 1.3 效率—传热单元数法(传热有效度) 1.4热交换器热计算方法的比较 1.5流体流动方式的选择
1.1 热计算基本方程式
② 适用于任何流体
t1
t2
Q M1 C1dt1 M 2 C2dt2
t1
t2
适用于无相变流体
M1 M 2 分别为热流体与冷流体的质量流量 ,Kg/s
i1 i2 分别为热流体与冷流体的焓,J/Kg
C1 C2 分别为两种流体的定压质量比热,J/(Kg·℃)
Q M1c1 t1 t1t1 M1c1 t1 t2t1 M1c1t1 W1t1
W1 W2 分别为热、冷流体的热容量,W/K
对应单位温度变化产生的流动流体的能量存储速率
讨论:
1 考虑热损失的情况下:Q1 Q2 QL 或 Q1L Q2
L 以放热热量为准的对外热损失系数,通常为0.97-0.98
2
由式③可以知道 W1 W2
t 2 t1
冷流体的加热度 热流体的冷却度
可见 :两种流体在热交换器内的温度变化与他们的热容量成反比
-1
t t ln t
t t ln t
t
t
t
顺流时:
u 1 1 1 1 qm1c1 q2c2 W 1 W2
u 0 tx t
表明:热流体从进口到出口方向上,两流体间的温 差总是不断降低的。
13
三、换热器中传热过程对数平均温差的计算
1 简单顺流及逆流换热器的对数平均温差 流动形式不同,冷热流体温差沿换热面的变化规律也不同.
传热方程的一般形式: kAtm
换热器中冷流体温度沿换热面是不断变化的,因此,冷却 流体的局部换热温差也是沿程变化的。
以顺流情况为例,作如下假设:
(1)冷热流体的质量流量qm2、qm1
平均传热系数Km 平均温差△tm
Km
1 A
KdA
A
1 1 d
tm
t1 t2
tm
1 A
A t1 t2 dA
二、 平均温差
流体的温度分布 1、等温有相变的传热 2、热流体等温冷凝、冷流体温度不断上升
冷流体等温沸腾、热流体温度不断下降。 3、没有相变顺流逆流 4、冷凝器(蒸发器)内温度变化情况 5、可凝蒸气和非凝结气体组成的热流体.
相关文档
最新文档