用图象表示的变量间关系习题含详细答案
知识点详解北师大版七年级数学下册第三章变量之间的关系综合练习试题(含详细解析)

北师大版七年级数学下册第三章变量之间的关系综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了15,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是()A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x2、某科研小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据下列说法错误的是()A.这个问题中,空气温度和声速都是变量B.空气温度每降低10℃,声速减少6m/sC.当空气温度为20℃时,声音5s可以传播1710mD.由数据可以推测,在一定范围内,空气温度越高,声速越快3、为积极响应党和国家精准扶贫的号召,某扶贫工作队步行前往扶贫点开展入户调查。
队员们先匀速步行一段时间,途中休息几分钟后加快了步行速度,最终按原计划时间到达目的地。
设行进时间为t(单位:min ),行进的路程为s (单位:m ),则能近似刻画s 与t 之间的函数关系的大致图象是( )A .B .C .D .4、下列各情境,分别描述了两个变量之间的关系:(1)一杯越晾越凉的开水(水温与时间的关系);(2)一面冉冉升起的旗子(高度与时间的关系);(3)足球守门员大脚开出去的球(高度与时间的关系);(4)匀速行驶的汽车(速度与时间的关系).依次用图象近似刻画以上变量之间的关系,排序正确的是( )A .③④①②B .②①③④C .①④②③D .③①④②5、在圆周长计算公式2C r π=中,对半径不同的圆,变量有( ) A .,C rB .,,C r πC .,C r πD .,2,C r π6、一列火车从A 站行驶3公里到B 处以后,以每小时90公里的速度前进.则离开B 处t 小时后,火车离A 站的路程s 与时间t 的关系是( ) A .s =3+90tB .s =90tC .s =3tD .s =90+3t7、如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h 与注水时间t 之间的函数关系图象可能是( )A .B .C .D .8、如图是反映两个变量关系的图,下列的四个情境比较合适该图的是( )A .一杯热水放在桌子上,它的水温与时间的关系B .一辆汽车从起动到匀速行驶,速度与时间的关系C .一架飞机从起飞到降落的速度与时晨的关系D .踢出的足球的速度与时间的关系9、下表是某报纸公布的世界人口数据情况:表中的变量( )A .仅有一个,是时间(年份)B .仅有一个,是人口数C .有两个,一个是人口数,另一个是时间(年份)D .一个也没有10、某居民小区电费标准为0.55元/千瓦时,收取的电费y (元)和所用电量x (千瓦时)之间的关系式为0.55y x ,则下列说法正确的是( ) A .x 是自变量,0.55是因变量B .0.55是自变量,x 是因变量C.x是自变量,y是因变量D.y是自变量,x是因变量第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图表示的是某种摩托车的油箱中剩余量y(升)与摩托车行驶路程x(千米)之间的关系.由图象可知,摩托车最多装__升油,可供摩托车行驶___千米,每行驶100千米耗油___升.2、地面温度为15 ºC,如果高度每升高1千米,气温下降6 ºC,则高度h(千米)与气温t(ºC)之间的关系式为___________3、城市绿道串连起绿地、公园、人行横道和自行车道改善了城市的交通环境,引导市民绿色出行截至2019年年底,某市城市绿道达2000千米,该市人均绿道长度y(单位:千米)随人口数x的变化而变化,指出这个问题中的所有变量________________.4、长方形的周长为20,宽为x.若设长方形的面积为S,则面积S与宽x之间的关系是________.5、某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(米)与操控无人机的时间t(分钟)之间的关系如图中的实线所示,根据图象回答下列问题:(1)图中的自变量是_________,因变量是_________;(2)无人机在75米高的上空停留的时间是_________分钟;(3)在上升或下降过程中,无人机的速度为_________米/分;(4)图中a表示的数是_________;b表示的数是_________;(5)图中点A表示_________.三、解答题(5小题,每小题10分,共计50分)1、下表是某报纸公布的世界人口数据情况:(1)表中有几个变量?(2)如果要用x表示年份,用y表示世界人口数那么随着x的变化,y的变化趋势是怎样的?2、如图,是若干个粗细均匀的铁环最大限度的拉伸组成的链条,已知铁环粗0.8厘米,每个铁环长5厘米,设铁环间处于最大限度的拉伸状态.求:(1)2个、3个、4个铁环组成的链条长分别有多少.(2)设n个铁环长为y厘米,请用含n的式子表示y;(3)若要组成2.09米长的链条,需要多少个铁环?3、已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥1 2,且当x=1或x=4时,y的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题: ①当x =34,214,8时,函数值分别为y 1,y 2,y 3,则y 1,y 2,y 3的大小关系为: ;(用“<”或“=”表示)②若直线y =k 与该函数图象有两个交点,则k 的取值范围是 ,此时,x 的取值范围是 .4、某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25min ,于是立即步行回家取票同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.如图中线段AB 、OB 分别表示父子俩送票、取票过程中离体育馆的路程()s m 与所用时间(min)t 之间的图像,结合图像解答下列问题(假设骑自行车和步行的速度始终保持不变):(1)图中O点表示________;A点表示________;B点表示________.(2)从图中可知,小明家离体育馆________m,父子俩在出发后________min相遇.(3)你能求出父亲与小明相遇时距离体育馆还有多远?(4)小明能否在比赛开始之前赶回体育馆?5、光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并释放出氧气的过程.如图是夏季的白天7时~18时的一般的绿色植物的光合作用强度与时间之间的关系的曲线,分析图象回答问题:(1)大约几时的光合作用最强?大约几时的光合作用最弱?(2)说一说绿色植物光合作用的强度从7时到18时是怎样变化的.-参考答案-一、单选题1、D【分析】先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.【详解】解:∵每千米的耗油量为:60×15÷100=0.12(升/千米),∴y=60-0.12x,故选:D.【点睛】本题考查了函数关系式,求出1千米的耗油量是解题的关键.2、B【分析】根据表格中两个变量的数据变化情况,逐项判断即可.【详解】解:这个问题中,空气温度和声速都是变量,因此选项A不符合题意;在一定的范围内,空气温度每降低10℃,声速减少6m/s,表格之外的数据就不一定有这样规律,因此选项B符合题意;当空气温度为20℃时,声速为342m/s,声音5s可以传播342×5=1710m,因此选项C不符合题意;从表格可得,在一定范围内,空气温度越高,声速越快,因此选项D不符合题意;故选:B.【点睛】本题考查变量之间的关系,理解自变量、因变量之间的变化关系是正确判断的前提.3、A【分析】根据行进的路程和时间之间的关系,确定图象即可得到答案.【详解】解:根据题意得,队员的行进路程s(单位:m)与行进时间t(单位:min)之间函数关系的大致图象是故选:A【点睛】本题考查函数图象,正确理解函数自变量与因变量的关系及其实际意义是解题的关键.4、A【分析】根据题干对应图像中变量的变化趋势即可求解.【详解】解:(1)一杯越来越凉的水,水温随着时间的增加而越来越低,故③图象符合要求;(2)一面冉冉上升的旗子,高度随着时间的增加而越来越高,故④图象符合要求;(3)足球守门员大脚开出去的球,高度与时间成二次函数关系,故①图象符合要求;(4)匀速行驶的汽车,速度始终不变,故②图象符合要求;正确的顺序是③④①②.故选:A.【点睛】本题考查用图像表示变量之间的关系,关键是将文字描述转化成函数图像的能力.5、A【分析】在一个变化的过程中,数值发生变化的量称为变量,数值始终不变的量称为常量,进而得出答案.【详解】解:在圆周长计算公式C=2πr中,对半径不同的圆,变量有:C,r.故选:A.【点睛】此题主要考查了常量与变量,正确把握变量的定义是解题关键.6、A【分析】根据路程、速度、时间之间的关系可得关系式.【详解】解:火车离A站的距离等于先行的3公里,加上后来t小时行驶的距离可得:s=3+90t,故选:A.【点睛】本题考查了函数关系式,解题的关键是理解路程、速度、时间之间的关系.7、D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.8、B【分析】根据图象信息可知,是s随t的增大而增大,判断下面的四个选项判断的图象变化规律,即可得到符合此图的即可得到答案.【详解】解:题中给的图象变化情况为先是s随t的增大而增大,A:热水的水温先是随时间的增加而减少的,后不变,故不符合题意;B:汽车启动的过程中,速度是随着时间的增长从0增大的,而后匀速后,速度随时间的增加是不变的,故符合题意;C:飞机起飞的过程中速度是随着时间的增加而增大的,而降落的过程中,速度是随着时间的增加而减少的,故不符合题意;D:踢出的足球的速度是随着时间的增加而减少的,故不符合题意;故选B.【点睛】本题主要考查的是实际生活中图象的变化,要深刻理解两变量之间的变化关系,对于图象的变化要很熟练地画出是解此类题的关键.9、C【分析】根据变量的定义直接判断即可.【详解】解;观察表格,时间在变,人口在变,故C正确;故选:C.【点睛】本题考查了变量的定义,解题关键是明确变量的定义,能够正确判断.10、C【分析】根据自变量和因变量的定义:自变量是指:研究者主动操纵,而引起因变量发生变化的因素或条件,因此自变量被看作是因变量的原因;因变量是指:在函数关系式中,某个量会随一个(或几个)变动的量的变动而变动,进行判断即可.【详解】解:A、x是自变量,0.55是常量,故错误;B、0.55是常量,x是自变量,故错误;C、x是自变量,y是因变量,正确;D、x是自变量,y是因变量,故错误.故选C.【点睛】本题主要考查了自变量和因变量、常量的定义,解题的关键在于能够熟练掌握三者的定义.二、填空题1、10 500 2【分析】根据图象可知,当x=0时,对应y的数值就是摩托车最多装多少升油,当y=0时,x的值就是摩托车行驶的千米数;根据摩托车油箱可储油10升,可以行驶500km即可得出每行驶100千米消耗汽油升数.【详解】解:由图象可知,摩托车最多装10升油,可供摩托车行驶500千米,每行驶100千米耗油2升.故答案为:10,500,2.【点睛】此题主要考查了利用函数图象解决问题,从图象上获取正确的信息是解题关键.2、h=156t-.【分析】升高h(千米)就可求得温度的下降值,进而求得h千米处的温度.【详解】高度h(千米)与气温t(℃)之间的关系式为:h=156t-.【点睛】正确理解高度每升高1千米,气温下降6℃,的含义是解题关键.3、人均绿道长度y,人口数x【分析】根据常量与变量的定义进行填空即可.【详解】解:这个问题中的所有变量是该市人均绿道长度y 与人口数x ,故答案为:人均绿道长度y ,人口数x .【点睛】本题考查了常量与变量,掌握常量与变量的定义是解题的关键.4、210S x x =-【分析】先用x 表示出长方形的长,再根据长方形的面积公式解答即可.【详解】解:因为长方形的周长为20,宽为x ,所以长方形的长为(10-x ),所以长方形的面积S 与宽x 的关系式是:()21010S x x x x =-=-. 故答案为:210S x x =-.【点睛】本题考查了用关系式表示变量之间的关系,准确掌握长方形的周长与面积公式是解题的关键.5、操控无人机的时间t ; 无人机的飞行高度h ; 5; 25; 2; 15; 在第6分钟时,无人机的飞行高度为50米.【分析】(1)根据图象信息得出自变量和因变量即可;(2)根据图象信息得出无人机在75米高的上空停留时间为1275-=分钟即可;(3)根据“速度=路程÷时间”计算即可;(4)根据速速、时间与路程的关系式,列式计算求解即可;(5)根据点的实际意义解答即可.【详解】解:(1)横轴代表的是无人机被操控的时间,纵轴是无人机飞行的高度,所以自变量是操控无人机的时间t ;因变量是无人机的飞行高度h ;(2)无人机在75米高的上空停留时间为1275-=分钟;(3)在上升或下降过程中,无人机的速度为:75502576-=-米/分; (4)图中a 表示的数为:50=225分钟;图中b 表示的数为75121525+=分钟; (5)图中点A 表示,在第6分钟时,无人机的飞行高度为50米.【点睛】本题考查变量之间的关系在实际中的应用,根据图象学会分析是解题重点.三、解答题1、(1)两个变量;(2)用x 表示年份,用y 表示世界人口数,那么随着x 的变化,y 的变化趋势是增大.【分析】(1)年份和人口数都在变化,据此得到;(2)根据人口的变化写出变化趋势即可;【详解】解:(1)表中有两个变量,分别是年份和人口数;(2)用x 表示年份,用y 表示世界人口总数,那么随着x 的变化,y 的变化趋势是增大.【点睛】本题考查了变量与常量的知识,解题的关键是能够了解常量与变量的定义,难度不大.2、(1)2个铁环组成的链条长8.4cm ,3个铁环组成的链条长为11.8cm ,4个铁环组成的链条长15.2cm ;(2) 3.4 1.6y n =+;(3)需要61个铁环【分析】(1)根据铁环粗0.8厘米,每个铁环长5厘米,进而得出2个、3个、4个铁环组成的链条长;(2)根据铁环与环长之间的关系进而得出y 与n 的关系式;(3)由(2)得,3.4n +1.6=209,进而求出即可.【详解】解:(1)由题意可得:2520.810 1.68.4()cm ⨯-⨯=-=,3540.815 3.211.8()cm ⨯-⨯=-=,4560.820 4.815.2()cm ⨯-⨯=-=.故2个铁环组成的链条长8.4cm ,3个铁环组成的链条长为11.8cm ,4个铁环组成的链条长15.2cm ;(2)由题意得:n 个铁环一共有n -1个相接的地方,∴52(1)0.8y n n =--⨯,即 3.4 1.6y n =+;(3)∵2.09米=209cm∴据题意有3.4 1.6209n +=,解得:61n =,答:需要61个铁环.【点睛】本题主要考查了用关系式表示的变量之间的关系,利用链条结构得出链条长的变化规律是解题的关键.3、 (1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k ≤134,12≤x ≤8. 【解析】【分析】(1)根据题意设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+-,即可解答 (2)将表中数据代入2112y x x =+-,即可解答(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答②观察图象得:x ≥12,图象最低点为(2,1),再代入即可【详解】(1)设11k y x = ,y 2=k 2(x ﹣2),则12(2)k y k x x =+- , 由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩, ∴该函数解析式为2112y x x =+- , 故答案为2112y x x =+-,(2)①根据解析式,补全下表:②根据上表在平面直角坐标系中描点,画出图象.(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y随x增大而减小;在该点右侧y随x 增大而增大,∴y2<y1<y3,故答案为y2<y1<y3,②观察图象得:x≥12,图象最低点为(2,1),∴当直线y=k与该图象有两个交点时,1<k≤134,此时x的范围是:12≤x≤8.故答案为1<k≤134,12≤x≤8.【点睛】此题考查待定系数法求反比例函数的解析式,列出方程式解题关键4、(1)体育馆,小明家,小明与他父亲相遇的地方;(2)3600,15;(3)父亲与小明相遇时距离体育馆还有900m;(4)小明能在比赛开始之前赶回体育馆.【分析】(1)观察图象得到图中线段AB、OB分别表示父、子送票、取票过程,于是得到O点表示体育馆,A点表示小明家;B点表示小明与他父亲相遇的地方;(2)观察图象得到小明家离体育馆有3600米,小明到相遇地点时用了15分钟,则得到父子俩在出发后15分钟相遇;(3)设小明的速度为x米/分,则他父亲的速度为3x米/分,利用父子俩在出发后15分钟相遇得到15×x+3x×15=3600,解得x=60米/分,则父亲与小明相遇时距离体育馆还有15x=900米;(4)由(3)得到从B点到O点的速度为3x=180米/秒,则从B点到O点的所需时间=900180=5(分),得到小明取票回到体育馆用了15+5=20分钟,小于25分钟,可判断小明能在比赛开始之前赶回体育馆.【详解】解:(1)∵图中线段AB、OB分别表示父、子送票、取票过程,∴O点表示体育馆,A点表示小明家;B点表示小明与他父亲相遇的地方;(2)∵O点与A点相距3600米,∴小明家离体育馆有3600米,∵从点O点到点B用了15分钟,∴父子俩在出发后15分钟相遇;(3)设小明的速度为x米/分,则他父亲的速度为3x米/分,根据题意得15×x+3x×15=3600,解得x=60米/分,∴15x=15×60=900(米)即父亲与小明相遇时距离体育馆还有900米;(4)∵从B点到O点的速度为3x=180米/秒,∴从B点到O点的所需时间=900180=5(分),而小明从体育馆到点B用了15分钟,∴小明从点O到点B,再从点B到点O需15分+5分=20分,∵小明从体育馆出发取票时,离比赛开始还有25分钟,∴小明能在比赛开始之前赶回体育馆.故答案为:体育馆,小明家,小明与他父亲相遇的地方;3600,15;900;小明能在比赛开始之前赶回体育馆.【点睛】本题考查了函数图象:函数图象反映两个变量之间的变化情况,结合图象信息,读懂题目意思,从复杂的信息中分离出数学问题即相遇问题是解决本题的关键.5、 (1)大约10时的光合作用最强,大约7时和18时的光合作用最弱;(2)绿色植物的光合作用从7时至10时逐渐增强,从10时至12时逐渐减弱,从12时至14时30分左右逐渐增强,从14时30分至18时逐渐减弱.【解析】【分析】(1) 观察函数的图象,找出最高点和最低点表示的时间即可;(2) 在函数的图象上找出光合作用强度上升和下降的部分即可;【详解】(1) 函数的图象可得:大约10时的光合作用最强,大约7时和18时的光合作用最弱;(2)绿色植物的光合作用从7时至10时逐渐增强,从10时至12时逐渐减弱,从12时至14时30分左右逐渐增强,从14时30分至18时逐渐减弱.【点睛】此题考查了函数的图象,属于基础题,关键是能读懂函数图象,从函数图象中获得有关信息.。
北师大数学七年级下册 第三章3.3 用图像表示的变量间关系 《板块专题20道—期中真题-能力培养》

用图像表示的变量间关系1.(2019春•罗湖区期中)小芳离开家不久,发现把作业忘在家里,于是返回家里找到了作业本再去学校;在如图所示的三个图象中,能近似地刻画小芳离开家的距离与时间的关系的图象是()A.①B.②C.③D.三个图象都不对2.(2019春•罗湖区期中)小明和小华是同班同学,也是邻居,某日早晨,小明7:00先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和小明所用时间t(分钟)的关系图.则下列说法中正确的个数是()①小明吃早餐用时5分钟;②小华到学校的平均速度是240米/分;③小明跑步的平均速度是100米/分;④小华到学校的时间是7:05.A.1B.2C.3D.43.(2019春•定安县期中)张老师从甲镇去乙村,一开始沿公路乘车,后来沿小路步行到达乙村,下列图中,横轴表示从甲镇出发后的时间,纵轴表示张老师与甲镇的距离,则较符合题意的图形是()A.B.C.D.4.(2019春•成都期中)下列各图象所反映的是两个变量之间的关系,表示匀速运动的是()A.①②B.②C.①③D.无法确定5.(2019春•建宁县期中)如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是()A.B.C.D.6.(2019春•灵石县期中)小明看到了一首诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还”,读完后,他想用图象描述这首诗的内容,如果用纵轴表示父亲与儿子行进中离家的距离,横轴表示父亲离家的时间,那么下列图象中大致符合这首诗含义的是()A.B.C.D.7.(2019春•中山市校级期中)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是()A.小亮骑自行车的平均速度是12 km/hB.妈妈比小亮提前0.5 h到达姥姥家C.妈妈在距家12 km处追上小亮D.9:30妈妈追上小亮8.(2019春•叙州区期中)周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离家的距离s(千米)与时间t(时)之间的函数关系可以用图中的折线表示.现有如下信息:(1)小李到达离家最远的地方是14时;(2)小李第一次休息时间是10时;(3)11时到12时,小李骑了5千米;(4)返回时,小李的平均车速是10千米/时.其中,正确的信息有()A.1个B.2个C.3个D.4个9.(2019秋•岑溪市期中)一辆客车从霍山开往合肥,设客车出发t(h)后与合肥的距离为S(km),则下列图象中能大致反映S与t之间的函数关系是()A.B.C.D.10.(2019春•璧山区期中)小红骑自行车到离家为2千米书店买书,行驶了5分钟后,遇到一个同学因说话停留10分钟,继续骑了5分钟到书店.下图中的哪一个图象能大致描述她去书店过程中离书店的距离s(千米)与所用时间t(分)之间的关系()A.B.C.D.11.(2019春•郫都区期中)小王周末骑电动车从家出发去商场买东西,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往商场,如图是他离家的距离与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小王在新华书店停留了多长时间?(2)买到书后,小王从新华书店到商场的骑车速度是多少?12.(2019春•靖远县期中)张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)在这个变化过程中,自变量、因变量分别是、.(2)体育场离张阳家千米.(3)体育场离文具店千米.(4)张阳在文具店逗留了时间.(5)张阳从文具店到家的速度是.13.(2019春•槐荫区期中)已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E ﹣F﹣A的路径运动,记△ABP的面积为S(cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC=cm,CD=cm,DE=cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.14.(2019秋•高州市期中)某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图所示是小明从家到学校这一过程中所走的路程s(米)与时间t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?15.(2019春•长春期中)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?16.(2019春•济南期中)小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米,小明在书店停留了分钟;(2)本次上学途中,小明一共行驶了米,一共用了分钟;(3)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分;(4)小明出发多长时间离家1200米?17.(2019春•锦江区校级期中)如图①,在长方形ABCD中,AB=10 cm,BC=8 cm,点P从A出发,沿A、B、C、D路线运动,到D停止,点P的速度为每秒1 cm,a秒时点P的速度变为每秒bcm,图②是点P出发x秒后,△APD的面积S1(cm2)与y(秒)的函数关系图象:(1)根据图②中提供的信息,a=,b=,c=.(2)点P出发后几秒,△APD的面积S1是长方形ABCD面积的四分之一?18.(2019春•邛崃市期中)如图反映的是小华从家里跑步去体育馆,在那里锻炼了一阵后又走到文具店去买笔,然后走回家,其中x表示时间,y表示小华离家的距离.根据图象回答下列问题:(1)小华在体育场锻炼了分钟;(2)体育场离文具店千米;(3)小华从家跑步到体育场、从文具店散步回家的速度分别是多少千米/分钟?19.(2019春•城关区校级期中)如图描述了一辆汽车在某一直路上的行驶过程,汽车离出发地的距离s(km)和行驶时间t(h)之间的关系,请根据图象回答下列问题:(1)汽车共行驶的路程是多少?(2)汽车在行驶途中停留了多长时间?(3)汽车在每个行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回用了多长时间?20.(2019春•雨城区校级期中)A、B两地相距50km,甲于某日骑自行车从A地出发驶往B 地,乙也于同日下午骑摩托车从A地出发驶往B地,在这个变化过程中,甲和乙所行驶的路程用变量s(km)表示,甲所用的时间用变量t(时)表示,图中折线OPQ和线段MN分别表示甲和乙所行驶的路程s与t的变化关系,请根据图象回答:(1)直接写出:甲出发后小时,乙才开始出发;(2)求乙行驶几小时后追上甲,此时两人距B地还有多少千米?(3)请分别求出甲、乙的行驶速度?。
变量之间的关系用图像表示变量间的关系

纵轴
横轴Leabharlann 议一议:骆驼被称为“沙漠之舟”,它的体温随时 间的变化而发生较大的变化.
(1)一天中,骆驼的体温 的变化范围是什么? 它的体温从最低上升 到最高需要多少时间?
(2)从16时到24时,骆 驼的体温下降了多少?
议一议:
骆驼被称为“沙漠之舟”,它的体温随时 间的变化而发生较大的变化.
(3)在什么时间范围内 骆驼的体温在上升? 在什么时间范围内 骆驼的体温在下降?
(4)你能看出第二天8时 骆驼的体温与第一天 8时有什么关系吗? 其他时刻呢?
议一议:
骆驼被称为“沙漠之舟”,它的体温随时 间的变化而发生较大的变化.
(5)A点表示的是什么? 还有几时的温度与A点 所表示的温度相同?
(6)你还知道哪些关于 骆驼的趣事? 与同伴进行交流.
海水受日月的引力而产生潮汐现象,早晨海水上涨叫做 潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活 有着密切的联系.下面是某港口从0时到12时的水深情况.
第三章 变量之间的关系 用图像表示变量间的关系
青铜峡市回民中学 李德鸿
图象是我们表示变量之间关系的又一种方法, 它的特点是可以直观的表示出自变量与因变量的 变化过程和变化趋势.
在用图象表示变量之间的关系时,通常用水平 方向的数轴(称为横轴)上的点表示自变量, 用竖直方向的数轴(称为纵轴)上的点表示因变量.
5
A
B (5)A,B两点分
4
别表示什么?还有
3
几时水的深度与A点
2
所表示的深度相同
1
0
(6)说一说这个港
0
1
2
3
4
5
(北师大版)七年级数学下:3.3《用图像表示的变量关系》同步练习及答案

3.3用图像表示的变量关系课后拓展训练1.如图6—13所示的是一游泳池断面图,分为深水区和浅水区,排空池里的水进行清理后,打开进水阀门连续向该池注水(此时已关闭排水阀门).则游泳池的蓄水高度h(米)与注水时间t (时)之间的关系的大致图象是(如图6—14所示) ( )2.打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间满足某种变量关系,其图象(如图6—15所示)大致为( )3.早晨小强从家出发,以v1的速度前往学校,途中在一饮食店吃早点,之后以v2的速度向学校行进.已知v1> v2,如图6—16所示的图象中表示小强从家到学校的时间t(分钟)与路程s(千米)之间的关系的是( )4.如图6—17所示的是一位护士统计某病人的体温变化图,这位病人中午12时的体温约为( )A.39.0℃B.38.5℃C.38.2℃D.37.8℃5.小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还”.如果用纵轴y表示父亲与儿子行进中离家的距离,横轴x表示父亲离家的时间,那么如图6—18所示的图象中与上述诗的含义大致吻合的是( )6,如图6-19所示,向高为h的圆柱形水杯注水,已知水杯底面半径为2,那么水深y与注水量x之间关系的图象是( )7.甲、乙两个水桶内水面的高度y(cm)与放水(或注水)的时间x(分)之间关系的图象如图6-20所示,当两个水桶内水面的高度相同时,x约为分.(精确到0.1分)8.城镇人口占总人口比例的大小表示城镇化水平的高低,如图6-21所示,可知城镇化水平提高最快的时期是.9.四个容量相等的容器形状如图6—22所示,用同一流量的水管分别向这四个容器注水,所需时间都相同,如图6—23所示的是容器水位(h)与时间(t)的关系的图象.请把适当的图象序号与相应容器形状的字母代号用线段相连接.10.如图6—24所示的图象记录了某地一月份某天的温度随时间变化.的情况,请你仔细观察图象回答下面的问题:(1)20时的温度是℃,温度是0℃时的时刻是时,最暖和的时刻是时,温度在-3℃以下的持续时间为时;(2)从图象中还能获取哪些信息?(写出1~2条即可)11.如图6—25所示的是甲、乙两人在争夺冠军中的比赛图,其中t表示赛跑时所用时间,s表示赛跑的距离,根据图象回答下列问题:(1)图象反映了哪两个变量之间的关系?(2)他们进行的是多远的比赛?(3)谁是冠军?(4)乙在这次比赛中的速度是多少?参考答案1.D[提示:根据图形分析全部注水的过程是关键.]2.D[提示:洗衣机内原本无水,水量从0开始逐渐增加,清洗过程中,洗衣机中的水量不变,排水时,排出的水小于进入的水.故选D.]3.A4.C[提示:看图估计比38℃略高些.]5.C6.A7.2.7[提示:答案属于估算,是近似值,2.6或2.8也可以.]8.1990年~2002年9.解:如图6—26所示.10.(1)-l 12,18 8 (2)解:从图象中还能获取:从4时到14时,温度逐渐升高;最低气温约为-4.5℃;最高气温是2℃;温度在0℃以上的时刻是在12时到18时等信息. 11.解:(1)反映了赛跑距离s 与时间t 之间的关系. (2)他们进行的是200 m 赛跑的比赛. (3)甲是冠军. (4)825200==乙v (m/s).。
七年级数学北师大版下册知识点强化3.3用图像表示的变量间关系

三、解答题。 1.如图是某水库的蓄水量V(万米3)与干旱持续时间t(天)之间的关系图,根据图象回答下列问题: (1)该水库原蓄水量为多少?持续干旱10天后,水库蓄水量为多少? (2)若水库的蓄水量小于400万米3时,将发生严重干旱警报,那么持续干旱多少天后,将发生严重 干旱警报? (3)按此规律,持续干旱多少天时,水库将干涸? 解:(1)该水库原蓄水量为1 000万米3,持续干旱10天后, 水库蓄水量为800万米3.
5 h和4 h时与家相距20 km.
(4)请你根据图象上的数据,分别求出乙骑摩托车的速度和甲骑
自行车在全程的平均速度.
(2)求当y=0, 3时,对应的x的值;
①甲、乙中,
先完成40 个零件的生产任务;在生产过程中,
因机器故障停止生产
h.
解:从图象中还能获取:从4时到14时,温度逐渐升高;最低气温约为-4.
(2)
比
更早到达B地,早
时;
①甲、乙中,
先完成40 个零件的生产任务;在生产过程中,
因机器故障停止生产
h.
①甲、乙中,
先完成40 个零件的生产任务;在生产过程中,
因机器故障停止生产
h.
3.小明早上步行去车站,然后坐车去学校.如图象中,能近似的刻画小明离学校的距离随时间变 化关系的图象是 ④ .(填序号)
(2)从图象中还能获取哪些信息?(写出1~2条即可).
解:从图象中还能获取:从4时到14时,温度逐渐升高;最低气温约为-4.5 ℃;最高 气温是2 ℃;温度在0 ℃以上的时刻是在12时到18时等信息.
2.周六上午,小亮去图书馆查资料,图书馆离家不远,他步行去图书馆,查完资料后他又边走边 转去书店买书,在书店停留了几分钟后骑共享单车回家.已知小亮离家的距离s(米)与离开家的 时间t(分)之间的关系如图所示.请根据图象回答下列问题: (1)小亮出发几分钟后到达图书馆? (2)小亮查完资料后步行的速度是多少? (3)小亮10:00离开图书馆,几点回到家?
新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (46)

一、选择题(共10题)1.甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是( )A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点2.对圆的周长公式C=2πr的说法正确的是( )A.C,r是变量,π,2是常量B.π,r是变量,2是常量C.r是变量,2,π,C是常量D.C是变量,2,π,r是常量3.用每张长6cm的纸片,重叠1cm粘贴成一条纸带,如图,纸带的长度y(cm)与纸片的张数x之间的函数关系式是( )A.y=6x−1B.y=6x+1C.y=5x+2D.y=5x+14.如果某函数的图象如图所示,那么y随x的增大而( )A.增大B.减小C.不变D.有时增大有时减小5.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度ℎ与时间t之间的关系的图象是( )A.B.C.D.6.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为( )A.B.C.D.7.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误的是( )A.4月份的利润为50万元B.治污改造完成前后共有4个月的利润低于100万元C.治污改造完成后每月利润比前一个月增加30万元D.9月份该厂利润达到200万元8.下列函数中y不是x的函数的是( )B.y=x C.y=−x D.y2=x A.y=1x9.下列图象中,y是x的函数的是( )A.B.C.D.10.如图,是一种古代计时器--“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用x表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)( )A.B.C.D.二、填空题(共7题)11.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是千米.12.物体自由下落的高度ℎ(单位:m)与下落时间t(单位:s)的关系是ℎ=4.9t2,在一次实验中,一个物体从490m高的建筑物上自由落下,到达地面需要的时间为s.13.已知某地的地面气温是20∘C,如果每升高1000m气温下降6∘C,则气温t(∘C)与高度ℎ(m)的函数关系式为.14.某商店售货时,在进价基础上加一定利润,其数量x与售价y如下表所示:数量x(千克)1234⋯则售价y与数量x之间的函数关系式售价y(元)8+0.416+0.824+1.232+1.6⋯为.15.一天学生小明早上从家去学校,已知小明家离学校路程为2280米(小明每次走的路程),小明从家匀速步行了10.5分钟后,爸爸发现小明的一科作业忘带,爸爸立刻拿起小明忘带的作业匀速跑步追赶小明,追上小明后爸爸立即将作业交给小明,小明继续以原速向学校行走(假定爸爸将作业交给小明的时间忽略不计),爸爸将作业带给小明后,原地接了2分钟的电话后,立即以更快的速度匀速返回家中.小明和爸爸两人相距的路程y(米)与小明出发的时间x(分钟)之间的关系如图所示,则爸爸到达家时,小明与学校相距的路程是米.16.若f(x)=2x2+x,g(x)=3x−1,则f(2)⋅g(−1)=.17.经科学家研究,蝉在气温超过28∘C时才会活跃起来,此时边吸树木的汁液边鸣叫,如图是某地一天的气温变化图象,在这一天中,听不到蝉鸣的时间是小时.三、解答题(共8题)18. 已知某易拉罐厂设计一种易拉罐,在设计过程中发现符合要求的易拉罐的底面半径与铝用量有如下关系:底面半径x (cm ) 1.6 2.0 2.4 2.8 3.2 3.6 4.0用铝量y (cm 3) 6.9 6.0 5.6 5.5 5.7 6.0 6.5(1) 上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2) 当易拉罐底面半径为 2.4 cm 时,易拉罐需要的用铝量是多少?(3) 根据表格中的数据,你认为易拉罐的底面半径为多少时比较适宜?说说你的理由. (4) 粗略说一说易拉罐底面半径对所需铝质量的影响.19. 将长为 30 cm ,宽为 10 cm 的长方形白纸按图所示的方法黏合起来,黏合部分的宽为 3 cm .(1) 求 5 张白纸黏合后的长度;(2) 设 x 张白纸黏合后的总长度为 y cm ,写出 y 与 x 之间的关系式,并求 x =20 时 y 的值及 y =813 时 x 的值;(3) 设 x 张白纸黏合后的总面积为 S cm 2,写出 S 与 x 之间的关系式,并求 x =30 时 S 的值及 S =5430 时 x 的值.20. 中国联通在某地的资费标准为包月 186 元时,超出部分国内拨打 0.36 元/分,由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准.时间/分12345⋯电话费/元0.360.72 1.08 1.44 1.8⋯(1) 这个表反映了哪两个变量之间的关系?哪个是自变量?(2) 如果用 x 表示超出时间,y 表示超出部分的电话费,那么 y 与 x 的表达式是什么? (3) 如果打电话超出 25 分钟,需付多少电话费?(4) 某次打电话的费用超出部分是 54 元,那么小明的爸爸打电话超出几分钟?21. 希望中学学生从 2018 年 12 月份开始每周喝营养牛奶,单价为 2 元/盒,总价 y 元随营养牛奶盒数 x 变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.22. 小明从 A 地出发向 B 地行走,同时晓阳从 B 地出发向 A 地行走,小明、晓阳离 A 地的距离y(千米)与已用时间x(分钟)之间的函数关系分别如图中l1,l2所示.(1) 小明与晓阳出发几分钟时相遇?(2) 求晓阳到达A地的时间.23.小张同学尝试运用课堂上学到的方法,自主研究函数y=1x2的图象与性质.下面是小张同学在研究过程中遇到的几个问题,现请你来完成:(1) 函数y=1x2的定义域是;(2) 下表列出了y与x的几组对应值:x⋯−2−32m−34−1212341322⋯y⋯144911694416914914⋯表中m的值是;(3) 如图,在平面直角坐标系xOy中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;(4) 结合函数y=1x2的图象,写出这个函数的性质:.(只需写一个)24.小南一家到某度假村度假,小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发,爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村,(取东西的时间忽略不计),如下图是他们离家的距离s(km)与小南离家的时间t(h)的关系图,请根据图回答下列问题:(1) 图中的自变量是 ,因变量是 ,小南家到该度假村的距离是 km .(2) 小南出发 小时后爸爸驾车出发,爸爸驾车的平均速度为 km/h ,图中点 A 表示 . (3) 小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离约是 km .25. 某电视机厂要印制产品宣传材料,甲印刷厂提出:每份材料收 1 元印制费,另需收取所有印制材料的制版费 1500 元;乙印刷厂提出:每份材料收 2.5 元印制费,不收制版费. 设该电视机厂在同一个印刷厂一次印刷的数量为 x 份 (x >0).(1) 根据题意填表:一次印刷数量(份)3005001500⋯甲印刷厂花费(元) 2000 ⋯乙印刷厂花费(元)1250⋯(2) 设在甲印刷厂花费 y 1 元,在乙印刷厂花费为 y 2 元.分别求 y 1,y 2 为关于 x 的函数解析式;(3) 根据题意填空:①若电视机厂在甲印刷厂和在乙印刷厂一次印制宣传材料的数量相同,且花费相同,则该电视机厂在同一个印刷厂一次印制材料的数量为 份; ②印制 800 份宣传材料时,选择 印刷厂比较合算;③电视机厂拟拿出 3000 元用于印制宣传材料,在 印刷厂印制宣传材料可以多一些.答案一、选择题(共10题)1. 【答案】C【知识点】用函数图象表示实际问题中的函数关系2. 【答案】A【知识点】常量、变量3. 【答案】D【知识点】解析式法4. 【答案】A【知识点】图像法5. 【答案】D【解析】根据题意和图形的形状,可知水的最大深度ℎ与时间t之间的关系分为两段,先慢后快,所以D选项是正确的.【知识点】图像法6. 【答案】B【知识点】用函数图象表示实际问题中的函数关系7. 【答案】B【知识点】用函数图象表示实际问题中的函数关系8. 【答案】D中,y是x的函数,故此选项不合题意;【解析】A.y=1xB.y=x中,y是x的函数,故此选项不合题意;C.y=−x中,y是x的函数,故此选项不合题意;D.y2=x中,y不是x的函数,故此选项符合题意.【知识点】函数的概念9. 【答案】D【知识点】函数的概念10. 【答案】B【解析】由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、D;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C选项;所以B选项正确.故选:B.【知识点】用函数图象表示实际问题中的函数关系二、填空题(共7题)11. 【答案】1.5【知识点】用函数图象表示实际问题中的函数关系12. 【答案】10【解析】当ℎ=490时,4.9t2=490,∴t=±10,∵t≥0,∴t=10,答:有一个物体从490m高的建筑物上自由落下,到达地面需要10s.【知识点】解析式法13. 【答案】t=−0.006ℎ+20【解析】∵每升高1000m气温下降6∘C,∴每升高1m气温下降0.006∘C,∴气温t(∘C)与高度ℎ(m)的函数关系式为t=−0.006ℎ+20.【知识点】解析式法14. 【答案】y=8.4x【知识点】解析式法15. 【答案】270【解析】由题意知,图形的纵坐标表示为两人相距的路程,横坐标表示为小明的出发时间,从0∼10.5分钟时,小明自己走,爸爸还没有出发,∴小明的速度v1=630÷10.5=60米/分钟,从10.5∼21分钟时,爸爸开始从家出发,并在时间t=21分钟时追上小明,∴此时小明的路程为:60×21=1260米,∴爸爸的速度为v2=1260÷(21−10.5)=120米/分钟,设爸爸返回时的速度为v,根据题意得,4v+60×6=920,∴v=140米/分钟,∴等爸爸送完作业返回家时所用时间为21×60÷140=9分钟,∴等爸爸到家小明总用时:21+9+2=32,∴此时小明与学校相距的距离为:2280−32×60=360米.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】−40【知识点】解析式法17. 【答案】12【解析】图象不超过28∘C的时间是10−0=10,24−22=2,10+2=12小时,故答案为:12.【知识点】用函数图象表示实际问题中的函数关系三、解答题(共8题)18. 【答案】(1) 易拉罐底面半径和用铝量的关系,易拉罐底面半径为自变量,用铝量为因变量.(2) 当底面半径为2.4cm时,易拉罐的用铝量为5.6cm3.(3) 易拉罐底面半径为2.8cm时比较合适,因为此时用铝较少,成本低.(4) 当易拉罐底面半径在1.6∼2.8cm变化时,用铝量随半径的增大而减小,当易拉罐底面半径在2.8∼4.0cm间变化时,用铝量随半径的增大而增大.【知识点】函数的概念、列表法19. 【答案】(1) 30×5−4×3=138cm.(2) y=27x+3(x为正整数),当x=20时,y=543;当y=813时,x=30.(3) S=270x+30(x为正整数),当x=30时,S=8130;当S=5430时,x=20.【知识点】一次函数的应用20. 【答案】(1) 国内拨打时间与电话费之间的关系,打电话时间是自变量、电话费是因变量.(2) 由题意可得:y=0.36x.(3) 当x=25时,y=0.36×25=9(元),即如果打电话超出25分钟,需付186+9=195(元)的电话费.=150(分钟).(4) 当y=54时,x=540.36答:小明的爸爸打电话超出150分钟.【知识点】解析式法、函数的概念21. 【答案】y=2x;常量:2;变量:x,y;自变量:x;y是x的函数.【知识点】函数的概念、常量、变量22. 【答案】(1) 由图象可得,小明的速度为4÷30=215(千米/分钟),1.6÷215=1.6×152=12(分钟),即小明与晓阳出发12分钟时相遇;(2) 晓阳的速度为:(4−1.6)÷12=0.2(千米/分钟),4÷0.2=20(分钟),即晓阳到达A地用时20分钟.【知识点】用函数图象表示实际问题中的函数关系23. 【答案】(1) x≠0的实数(2) −1(3) 图(略);(4) 图象关于y轴对称【解析】(4) 图象在x轴的上方;在对称轴的左侧函数值y随着x的增大而增大,在对称轴的右侧函数值y随着x的增大而减小;函数图象无限接近于两坐标轴但永远不会和坐标轴相交等.【知识点】函数关系式为分式的自变量的取值范围、图像法、自变量与函数值24. 【答案】(1) 时间t;距离s;60(2) 1;60;2.5小时后小南和妈妈离家距离为50千米(3) 30或45【解析】(1) 图中一共两个变量:时间、距离,其中自变量是时间t,因变量是距离s.由图可知,距离家最远的位置为度假村,距离为60km.(2) 爸爸出发的晚,由图可知晚出发1小时,爸爸第一次到达度假村时,时间为2小时,即爸爸走了1个小时,爸爸的速度为60÷1=60(km/h).点A表示2.5小时后小南和妈妈离家距离为50千米.(3) 由图象可知,爸爸第一次去时,当小南与爸爸相遇时,离家的速度是30km,爸爸往回返时,两个相距20千米,小南速度;60÷3=20(km/h),20÷(60+20)=14(h),=15(km).60×1460−15=45(km),综上,当小南与爸爸相遇时,离家的距离约是30km或45km.【知识点】用函数图象表示实际问题中的函数关系、自变量与函数值25. 【答案】(1) 1800;3000;750;3750;(2) 由题意可得,y1=x+1500,y2=2.5x;(3) 1000;乙;甲【解析】(1) 由题意可得,当印制300份材料时,甲印刷厂的花费为:300×1+1500=1800(元),乙印刷厂的花费为:300×2.5=750(元),当印制1500份材料时,甲印刷厂的花费为:1500×1+1500=3000(元),乙印刷厂的花费为:1500×25=3750(元).(3) ①由题意可得,x+1500=2.5x,解得,x=1000,故答案为:1000;②当x=800时,y1=1500+800=2300,y2=2.5×800=2000,∵2300>2000,∴选择乙家印刷厂,故答案为:乙;③当y=3000时,选择甲印刷厂时,3000=x+1500,得x=1500,选择乙印刷厂时,3000=2.5x,得x=1200,∵1500>1200∴电视机厂拟拿出3000元用于印制宣传材料,在甲印刷厂印制宣传材料可以多一些,故答案为:甲.【知识点】列表法、方案问题。
新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (32)

一、选择题(共10题)1.星期六,小亮从家里骑自行车到同学家去玩,然后返回如图是他离家的路程y(km)与时间x(min)的图象,根据图象信息,下列说法不一定正确的是( )A.小亮到同学家的路程是3kmB.小亮在同学家逗留的时间是1hC.小亮去时走上坡路,回家时走下坡路D.小亮回家时用的时间比去时用的时间少2.如图,在△ABC中,∠B=90∘,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动.若P,Q 两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t 的函数关系图象大致是( )A.B.C.D.3.如图,在Rt△ABC中,∠ACB=90∘,AC=BC=2√2,CD⊥AB于点D.点P从点A出发,沿A→D→C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是( )A.B.C.D.4.如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发做匀速运动,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x的函数关系的是( )A.B.C.D.5.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是( )A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢6.甲、乙两人分别从A,B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③ b=960;④ a=34.以上结论正确的有( )A.①②B.①②③C.①③④D.①②④7.如图a,甲、乙两人沿湟水河滨水绿道同向而行,甲步行的速度为100米/分,乙骑公共自行车的速度为v米/分,起初甲在乙前a米处,两人同时出发,当乙追上甲时,两人停止前行.设x 分钟后甲、乙两人相距y米,y与x的函数关系如图b所示,有以下结论:①图a中a为1000;②图a中EF表示1000−200x;③乙的速度为200米/分;④若两人在相距a米处同时相向而行,10分钟后相遇.其中正确的结论是( )3A.①②B.③④C.①②③D.①③④8.已知小强家、体育馆、文具店在同一直线上如图中的图象反映的过程是:小强从家跑步去体育馆,在那里锻炼了一阵后又走到文具店去买笔,然后散步回家.下列信息中正确的是( )A.小强在体育馆花了20分钟锻炼B.小强从家跑步去体育场的速度是10km/hC.体育馆与文具店的距离是3kmD.小强从文具店散步回家用了90分钟9.某校在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A.经过5min集中喷洒药物,室内空气中的含药量最高达到10 mg/m3B.室内空气中的含药量不低于8 mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5 mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2 mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2 mg/m3开始,需经过59min后,学生才能进入室内10.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度二、填空题(共7题)11.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止,在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止,两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD−DE−EF所示.其中点C 的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.12.甲、乙两地相距300km,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图所示,线段OA和折线BCDE,分别表示货车和轿车离开甲地的距离y(km)与货车离开甲地的时间x(h)之间的函数关系.小明根据图象,得到下列结论:①轿车在途中停留了半小时;②货车从甲地到乙地的平均速度是60km/h;③轿车从甲地到乙地用的时间是4.5小时;④轿车出发后3小时追上货车.则小明得到的结论中正确的是(只填序号).13.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t(h)之间的函数图象如图所示,则慢车从甲地出发又回到甲地,一共行驶了km.14.甲,乙两车分别从A,B两地同时出发,匀速相向而行,两车相遇后甲车停下来休息了2小时,然后以原速继续向B行驶,到达后立即掉头向A行驶,乙车没有休息,以原速继续向A行驶,到达后立即掉头向B行驶,假设掉头时间忽略不计,掉头后速度保持不变,两车到第一次相遇地点的路程之和S(千米)与甲车出发的时间t(小时)的部分函数图象如图所示,则当乙车到达A地时,甲车与B地相距千米.15.星期一升旗仪式前,李雷和韩梅梅两位数学课代表因为清查作业耽搁了时间,打算匀速从教室跑到600米外的中心广场参加升旗仪式,出发时李雷发现鞋带松了,停下来系鞋带,韩梅梅继续跑往中心广场,李雷系好鞋带后立即沿同一路线开始追赶韩梅梅,李雷在途中追上韩梅梅后,担心迟到继续以原速度往前跑,李雷到达操场时升旗仪式还没有开始,于是李雷站在广场等待,韩梅梅继续跑往中心广场.设李雷和韩梅梅两人相距s(米),韩梅梅跑步的时间为t(秒),s关于t 的函数图象如图所示,则在整个运动过程中,李雷和韩梅梅第一次相距80米后,再过秒钟两人再次相距80米.16.甲乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲乙两人间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,请求出甲乙两人相距8米时,甲出发秒.17.甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1800米,当甲第一次超出乙300米时,甲停下来等候乙.甲、乙会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息,在整个跑步的过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(s)之间的关系如图所示,则当甲到达终点时,乙跑了米.三、解答题(共8题)18. 如图,在平面直角坐标系 xOy 中,直线 y =x +3 与函数 y =kx(x >0)的图象交于点A (1,m ),与 x 轴交于点B .(1) 求 m ,k 的值;(2) 过动点 P (0,n )(n >0)作平行于 x 轴的直线,交函数 y =kx (x >0)的图象于点 C ,交直线 y =x +3 于点 D .①当 n =2 时,求线段 CD 的长;②若 CD ≥OB ,结合函数的图象,直接写出 n 的取值范围.19. 如图所示是由若干个点组成的形如三角形的图案,每条边(包括两个顶点)有 n (n ≥2,n 为整数)个点,每个图案中点的总数是 S .(1) 请按上述规律推断出 S 与 n 的关系式,S 可以看成 n 的函数吗? (2) 当 n =15 时,S 的值是多少?20. 上网费包括网络使用费(每月 38 元)和上网通信费(每小时 2 元).某电信局对拔号上网的用户实行分时段优惠,具体政策如下表(包括最大值,不包括最小值):每月上网总时间优惠标准0∼30 h 无优惠30∼50 h 通信费优惠30%50∼100 h 通信费优惠40%100 h 以上通信费优惠60%例如:某户某月上网总时间为 42 h ,则他应缴上网费为:38+2×30+(42−30)×(1−30%)×2=114.8 元.你能根据上面提供的例子完成下表吗?每月上网总时间应缴上网费20 h 40 h 60 h 21. 已知 A ,B 两地之间有一条 270 千米的公路,甲、乙两车同时出发,甲车以 60 千米/时的速度沿此公路从 A 地匀速开往 B 地,乙车从 B 地沿此公路匀速开往 A 地,两车分别到达目的地后停止.甲、乙两车相距的路程 y (千米)与甲车的行驶时间 x (时)的函数关系如图所示.(1) 乙车的速度为 千米/时,a = ,b = ; (2) 求甲、乙两车相遇后,y 与 x 之间的函数关系式;(3) 当甲车到达距 B 地 70 千米处时,求甲、乙两车之间的路程.22. 问题:探究函数的图象与性质.小华根据学习函数的经验,对函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:在函数 y =∣x ∣−2 中,自变量 x 可以是任意实数.(1) 下表是 y 与 x 的几组对应值.x ⋯−3−2−10123⋯y ⋯10−1−2−10m⋯① m = ; ②若 A (n,8),B (10,8) 为该函数图象上不同的两点,则 n = ;(2) 如下图,在平面直角坐标系 xOy 中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;根据函数图象可得: ①该函数的最小值为 ;②已知直线 y 1=12x −12 与函数 y =∣x ∣−2 的图象交于 C ,D 两点,当 y 1>y 时 x 的取值范围是 .23.如图,点C是以点O为圆心,AB为直径的半圆上的动点(不与点A,B重合),AB=6cm,过点C作CD⊥AB于点D,E是CD的中点,连接AE并延长交AB⏜于点F,连接FD.小腾根据学习函数的经验,对线段AC,CD,FD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整.(1) 对于点C在AB⏜上的不同位置,画图、测量,得到了线段AC,CD,FD的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8AC/cm0.10.5 1.0 1.9 2.6 3.2 4.2 4.9CD/cm0.10.5 1.0 1.8 2.2 2.5 2.3 1.0FD/cm0.2 1.0 1.8 2.8 3.0 2.7 1.80.5在AC,CD,FD的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2) 在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3) 结合函数图象,解答问题:当CD>DF时,AC的长度的取值范围是.24.如图,半圆O的直径AB=6cm,点M在线段AB上,且BM=1cm,点P是AB⏜上的动点,过点A作AN⊥直线PM,垂足为点N.小东根据学习函数的经验,对线段AN,MN,PM的长度之间的关系进行了探究.下面是小东的探究过程,请补充完整:(1) 对于点P在AB⏜上的不同位置,画图、测量、得到了线段AN,MN,PM的长度的几何值,如表:位置1位置2位置3位置4位置5位置6位置7AN/cm0.00 3.53 4.58 5.00 4.58 4.000.00MN/cm 5.00 3.53 2.000.00 2.00 3.00 5.00PM/cm 1.00 1.23 1.57 2.24 3.18 3.74 5.00在AN,MN,PM的长度这三个量中,确定的长度是自变量,和的长度都是这个自变量的函数;(2) 在同一直角坐标系xOy中,画出(1)中所确定的函数的图象.(3) 结合函数图象,解决问题:当AN=MN时,PM的长度约为cm.25.甲,乙两辆汽车先后从A地出发到B地,甲车出发1小时后,乙车才出发,如图所示的l1和l2表示甲,乙两车相对于出发地的距离y(km)与追赶时间x(h)之间的关系:(1) 哪条线表示乙车离出发地的距离y与追赶时间x之间的关系?(2) 甲,乙两车的速度分别是多少?(3) 试分别确定甲,乙两车相对于出发地的距离y(km)与追赶时间x(h)之间的关系式.(4) 乙车能在1.5小时内追上甲车吗?若能,说明理由.若不能,求乙车出发几小时才能追上甲?答案一、选择题(共10题)1. 【答案】C【知识点】用函数图象表示实际问题中的函数关系2. 【答案】C【解析】根据题意表示出△PBQ的面积S与t的关系式.【知识点】图像法、解析式法3. 【答案】A【知识点】用函数图象表示实际问题中的函数关系4. 【答案】C【解析】通过已知条件可知,当点P与点E重合时,△CPE的面积为0;当点P在EA上运动时,△CPE的EP边上的高BC不变,则其面积是x的一次函数,面积随x的增大而增大,当x=2时,有最大面积为4;当点P在AD边上运动时,△CPE的底边EC不变,其上的高越来越大,则其面积是x的一次函数,且面积随x的增大而增大,当x=6时,有最大面积为8;当点P在DC边上运动时,△CPE的CP边上的高(点E到CD的距离,即BC的长)不变,底边CP越来越小,则其面积是x的一次函数,面积随x的增大而减小,当x=10时,有最小面积为0.【知识点】用函数图象表示实际问题中的函数关系5. 【答案】C【解析】A选项,由函数图象可知,甲队走完全程需要82.3秒,乙队走完全程需要90.2秒,甲队率先到达终点,本选项错误;B选项,由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C选项,由函数图象可知,在47.8秒时,两队所走路程相等,均为174米,本选项正确;D选项,由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误.【知识点】用函数图象表示实际问题中的函数关系6. 【答案】D【解析】①当x=0时,y=1200,∴A,B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24−4)=60(m/min),甲的速度为1200÷12−60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③ b=(60+40)×(24−4−12)=800,结论③错误;④ a=1200÷40+4=34,结论④正确.【知识点】用函数图象表示实际问题中的函数关系7. 【答案】A【解析】由题图可知,a=100,故①正确;=300(米/分),故③错误;乙的速度为1000+100×3−4003题图中EF表示1000+100x−300x=1000−200x,故②正确;令1000=300x+100x,得x=2.5,即两人在相距a米处同时相向而行,2.5分钟后相遇,故④错误.故选A.【知识点】用函数图象表示实际问题中的函数关系8. 【答案】B【解析】A.小强在体育馆花了60−30=30分钟锻炼,错误;=10km/h,正确;B.小强从家跑步去体育场的速度是50.5C.体育馆与文具店的距离是5−3=2km,错误;D.小强从文具店散步回家用了200−130=70分钟,错误.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】C【知识点】用函数图象表示实际问题中的函数关系10. 【答案】C【解析】A.根据图象可得,乙前4秒的速度不变,为12米/秒,则行驶的路程为12×4=48米,故A正确;B.根据图象得:在0到8秒内甲的速度是一条过原点的直线,即甲的速度从0均匀增加到32=4米/秒,故B正确;米/秒,则每秒增加328C.由于甲的图象是过原点的直线,斜率为4,所以可得v=4t(v,t分别表示速度、时间),将v=12m/s代入v=4t得t=3s,则t=3s前,甲的速度小于乙的速度,所以两车到第3秒时行驶的路程不相等,故C错误;D.在4至8秒内甲的速度图象一直在乙的上方,所以甲的速度都大于乙的速度,故D正确;由于该题选择错误的,故选:C.【知识点】用函数图象表示实际问题中的函数关系二、填空题(共7题)11. 【答案】(4,160)【知识点】用函数图象表示实际问题中的函数关系12. 【答案】①②【解析】由图象可得,轿车在途中停留了2.5−2=0.5(小时),故①正确;货车从甲地到乙地的平均速度是:300÷5=60(km/h),故②正确;轿车从甲地到乙地用的时间是4.5−1=3.5小时,故③错误;在DE段,轿车的速度为(300−80)÷(4.5−2.5)=110(km/h),令60t=80+110(t−2.5),解得,t=3.9,即轿车出发后3.9−1=2.9小时追上货车,故④错误.【知识点】用函数图象表示实际问题中的函数关系13. 【答案】390【知识点】用函数图象表示实际问题中的函数关系14. 【答案】40【解析】将图中各段标上字母a,b,c,d,e,f,如图所示:根据题意:t=0时S=120,则A,B两地相距120千米,t=127时,S=0,则甲、乙两相遇,故甲乙两车的速度和为120127=70千米/小时,bc段S均匀增大,则该段只有乙车在运动向A地,cd段S增大比bc段大,则乙车向A地运动,甲车向B地运动,d点时乙车到达A地,并开始折回向B地,de段S增大速度放缓,则甲车向B地运动,乙车向B地运动,且甲车速度大于乙车,ef段S减小,则甲向A地运动,乙车向B地运动,则e点时即t=5时,甲到达B地,∵甲在t=127时,停下来休息2小时,∴甲由A地到B地需用5−2=3小时,∴甲的速度为1203=40千米/小时,∴乙的速度为70−40=30千米/小时,∴乙从两车第一次相遇到达A地所用的时间为12030−127=167小时,∴甲车此时共走了40×127+40×(167−2)=80千米,此时甲车与B地相距120−80=40千米.【知识点】用函数图象表示实际问题中的函数关系15. 【答案】60【解析】根据题意,前10秒李雷没跑,韩梅梅跑了40米,∴韩梅梅的速度为40÷10=4米/秒.10秒至30秒,20秒中,李雷在追韩梅梅,设李雷的速度为x米/秒,则(x−4)⋅20=40,解得x=6.李雷和韩梅梅相遇后,距离越来越远,当距离为80米时,需要时间为80÷(6−4)=40秒.此时韩梅梅跑步的时间为40+30=70秒.李雷在韩梅梅出发后110秒到达目的地之后李雷到达,韩梅梅继续前进,当她距目的地80米时,就是距离李雷80米,此时距离她出发(600−80)÷4=120秒.∴李雷和韩梅梅第一次相距80米后,再过120−70=60秒钟两人再次相距80米.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】2,16,123【解析】由图象,得甲的速度为:8÷2=4米/秒,乙的速度为:500÷100=5米/秒,乙走完全程时甲乙相距的路程为:b=500−4(100+2)=92米,乙追上甲的时间为:a=8÷(5−4)=8秒,乙出发后甲走完全程所用的时间为:c=500÷4−2=123秒.当甲出发2秒时;甲在乙前面8米;在跑步途中,乙在甲前面8米,5t−4t=2×4+8,解得t=16,即甲出发16秒时,乙在甲前面8米;当乙到达终点,甲还在跑时,(500−8)÷4=123秒,即甲出发123秒时,甲乙相距8米.综上所述,甲乙两人相距8米,甲出发2秒、16秒或123秒.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】1380【解析】乙的速度18001200=1.5m/s,甲的速度1.5+300300=2.5m/s,甲、乙相遇时甲跑2.5×300=750m,离终点1050=1800−750,=420s,甲到终点还需10502.5乙跑420s跑了420×1.5=630m,∴甲到终点,乙一共跑了750+630=1380m.【知识点】用函数图象表示实际问题中的函数关系三、解答题(共8题)18. 【答案】(1) ∵直线y=x+3经过点A(1,m),∴m=4.的图象经过点A(1,4),又∵函数y=kx∴k=4.(2) ①当n=2时,点P的坐标为(0,2),∴点C的坐标为(2,2),点D的坐标为(−1,2).∴CD=3.② 0<n≤2或n≥3+√13.【知识点】反比例函数与方程、不等式、反比例函数的解析式19. 【答案】;(1) 当n=2时,S=3=2×32当n=3时,S=6=3×4;2当n=4时,S=10=4×5;⋯.2所以S=n(n+1)(n≥2,n为整数).2S可以看成n的函数.=120.(2) 当n=15时,S=15×(15+1)2【知识点】解析式法20. 【答案】78元;112元;138元.【解析】20h时:38+2×20=78元;40h时:38+2×30+(40−30)×(1−30%)×2=112元;60h时:38+2×30+20×(1−30%)×2+10×(1−40%)×2=138元.【知识点】列表法21. 【答案】(1) 75;3.6;4.5(2) 如图,根据(1)可得 A (2,0),B (3.6,216),C (4.5,270).设当 2<x ≤3.6 时,线段 AB 的解析式为 y =k 1x +b 1(k 1≠0),将 A (2,0),B (3.6,216) 分别代入 y =k 1x +b 1,得{2k 1+b 1=0,3.6k 1+b 1=216, 解得 {k 1=135,b 1=−270, ∴ 当 2<x ≤3.6 时,y =135x −270.设当 3.6<x ≤4.5 时,线段 BC 的解析式为 y =k 2x +b 2,将 B (3.6,216),C (4.5,270) 分别代入 y =k 2x +b 2,得{3.6k 2+b 2=216,4.5k 2+b 2=270, 解得 {k 2=60,b 2=0, ∴ 当 2<x ≤3.6 时,y =60x . ∴y ={135x −270,2<x ≤3.660x, 3.6<x ≤4.5.(3) ∵ 甲车的速度为 60 千米/时,∴ 当甲车到达距 B 地 70 千米时行驶的时间为 270−7060=103时,由(2)知当 2<x ≤3.6 时,y =135x −270, ∴ 将 x =103代入 y =135x −270,得 y =135×103−270,∴y =180.答:当甲车到达距 B 地 70 千米处时,甲、乙两车之间的路程为 180 千米. 【解析】(1) 设乙车的速度为 v 千米/时,根据题图中的图象可知甲、乙两车在行驶 2 小时后相遇,可得 2×60+2v =270,解得 v =75, ∴ 乙车的速度为 75 千米/时, ∴a =27075=3.6,b =27060=4.5.【知识点】用函数图象表示实际问题中的函数关系、行程问题22. 【答案】(1) 1;−10 (2) 如图. −2;−1≤x ≤3 【解析】(2) 解方程组 {y 1=12x −12,y =−x −2, 得 {x =−1,y =−1.解方程组 {y 1=12x −12,y =x −2,得 {x =3,y =1,所以 C (−1,−1),D (3,1). 【知识点】图像法、解析式法23. 【答案】(1) AC;CD;FD(2) 如图所示.(3) 3.5cm<x<5cm【知识点】列表法、图像法24. 【答案】(1) PM;AN;MN(2) 如图所示:(3) 1.23或4.06【知识点】常量、变量、图像法25. 【答案】(1) 由函数图象,得l2表示乙车离出发地的距离y与追赶时间x之间的关系.(2) 甲车的速度为180−602=60km/h,乙车的速度为901=90km/h.(3) 甲车的函数的关系式为:y1=60x+60.乙车的函数关系式为:y2=90x.(4) 设乙车行驶a小时可以追上甲车,由题意,得90a=60+60a,解得:a=2.∵1.5<2,∴乙车不能在1.5小时内追上甲车.乙车追上甲车时,乙车行驶了2小时.【知识点】用函数图象表示实际问题中的函数关系。
专题03用图像表示的变量间关系(解析版)-2020-2021学年七年级数学下册常考题专练(北师大版)

专题03用图像表示的变量间关系知识点解析本节的教学重点是使学生能够理解变量与常量,并能与实际结合举出相应的变量关系的例子。
在充分理解常量与变量的意义的基础上再去学习变量之间关系的三种表示方法,能将三种表示方法进行转换,并能进行简单的计算。
学生学习本节时可能会在以下三个方面感到困难:1.变量与常量的意义;2.两个变量之间的关系;3.两个变量之间的三种表示方法。
题型与方法一、选择题1. 如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.【答案】B【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小;故选:B.2.如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0 B.1 C.2 D.3【答案】C【解析】解:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,故①与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为:1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,故②符合函数图象;③如图所示:当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5;当点P在CD上运动时,S△ABP不变,这段时间为4;当点P在DA上运动时,S△ABP减小,这段时间为3,故③符合函数图象;综上可得符合图中所示函数关系的问题情境的个数为2.故选:C.3.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()A.凌晨4时气温最低为-3℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降【答案】C【解析】试题分析:A.℃由图象可知,在凌晨4点函数图象在最低点﹣3,℃凌晨4时气温最低为﹣3℃,故本选项正确;B.℃由图象可知,在14点函数图象在最高点8,℃14时气温最高为8℃,故本选项正确;C.℃由图象可知,从4时至14时,气温随时间增长而上上升,不是从0点,故本选项错误;D.℃由图象可知,14时至24时,气温随时间增长而下降,故本选项正确.故选C.4.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是()A.B.C.D.【答案】D【详解】开始一段时间内,乙不进行水,当甲的水到过连接处时,乙开始进水,此时水面开始上升,速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升,故选D.5.下列各情景分别可以用哪一幅图来近似的刻画?正确的顺序是()①汽车紧急刹车(速度与时间的关系)②人的身高变化(身高与年龄的关系)③跳过运动员跳跃横杆(高度与时间的关系)④一面冉冉上升的红旗(高度与时间的关系)A.abcd B.dabc C.dbca D.cabd【答案】C【解析】解:A、人的身高随着年龄的增加而增大,到一定年龄不变,故与②符合;B、红旗升高随着时间的增加而增大,到一定时间不变,故与④符合;C、运动员跳跃横杆时高度在上升到最大高度然后上升到最大高度之后高度减小,与③符合;D、汽车紧急刹车时速度随时间的增大而减小,与①符合.故选C.二、填空题6.李小勇的爸爸让他去商店买瓶酱油,下图近似地描述了李小勇和家之间的距离与他离家后的时间之间的关系,则(1)李小勇去买瓶酱油共花了___min,其中在路上行走了____min,他走路的平均速度是_____;(2)李小勇在买酱油的过程中有_______次停顿,其中第_____次是因为买酱油付钱而停顿的;(3)李小勇在途中另一处停顿的原因是_____________.(只要写得合理都对)【答案】(1)8,6,150米/分;(2)2,2;(3)略【解析】根据图象分析判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《用图象表示的变量间关系》习题1.洗衣机在洗涤衣服时,每洗涤一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与洗涤一遍的时间x(分)之间关系的图象大致为( )2.如图,图象记录了某地一月份某天的温度随时间变化的情况,请你仔细观察图象,根据图中提供的信息,判断不符合图象描述的说法是( )时的温度约为-1℃B.温度是2℃的时刻是12时C.最暖和的时刻是14时D.在-3℃以下的时间约为8小时3.如图是邻居张大爷去公园锻炼及原路返回时离家的距离y(千米)与时间t(分钟)之间的图象,根据图象信息,下列说法正确的是( )A.张大爷去时所用的时间少于回家所用的时间B.张大爷在公园锻炼了40分钟C.张大爷去时走上坡路,回家时走下坡路D.张大爷去时速度比回家时的速度慢4.在体育测试女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程s(米)与所用时间t(秒)之间的图象分别为线段OA和折线OBCD.下列说法正确的是( )A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50 秒时,小梅在小莹的前面5.一辆行驶中的汽车在某一分钟内速度的变化情况如下图,下列说法正确的是( )A.在这一分钟内,汽车先提速,然后保持一定的速度行驶B.在这一分钟内,汽车先提速,然后又减速,最后又不断提速C.在这一分钟内,汽车经过了两次提速和两次减速D.在这一分钟内,前40s速度不断变化,后20s速度基本保持不变6.一个苹果从180m的楼顶掉下,它距离地面的距离h(m)与下落时间t(s)之间关系如上图,下面的说法正确的是( )A.每相隔1s,苹果下落的路程是相同的;B.每秒钟下落的路程越来越大C.经过3s,苹果下落了一半的高度;D.最后2s,苹果下落了一半的高度7.一个三角形的面积始终保持不变,它的一边的长为x cm,这边上的高为y cm,y 与x的关系如下图,从图像中可以看出:(1)当x越来越大时,y越来越________;(2)这个三角形的面积等于________cm2.(3)可以想像:当x非常大非常大时,y一定非常小非常小,这个三角形显得很“扁”,但无论x多么的大,y总是_______零(填“大于”、“小于”、“大于或等于”之一).8.某商店出售茶杯,茶杯的个数与钱数之间的关系,如图所示,由图可得每个茶杯_______元.9.甲、乙两人在一次赛跑中,路程s与时间t的关系如图所示,根据图象回答:这是一次____米赛跑;先到达终点的是____;乙的速度是________.10.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是______(只需填序号).11.美国自1982~1987年已经减少了25 875 000英亩农田,农场平均面积增加33英亩,但却有200000多家农场关闭了,下面的图(一)、(二)分别刻画了农场平均面积增加情况和农场个数减少情况.根据这两幅图提供的信息回答:(1)1985年农场数是多少个农场平均面积是多少英亩全美国有农场多少英亩(2)在1982年,全美国共有农场多少英亩到1987年呢12.根据图回答下列问题.(1)图中表示哪两个变量间的关系(2)A、B两点代表了什么(3)你能设计一个实际事例与图中表示的情况一致吗13.下面是一位病人的体温记录图,看图回答下列问题:(1)护士每隔几小时给病人量一次体温(2)这位病人的最高体温是多少摄氏度最低体温是多少摄氏度(3)他在4月8日12时的体温是多少摄氏度(4)图中的横线表示什么(5)从图中看,这位病人的病情是恶化还是好转14.小明、爸爸、爷爷同时从家里出发到达同一目的地后立即返回,小明去时骑自行车,返回时步行;爷爷去时是步行,返回时骑自行车;爸爸往返都是步行.三人步行速度不等,小明和爷爷骑自行车的速度相等,每个人的行走路程与时间的关系用如图三个图象表示.根据图象回答下列问题:(1)三个图象中哪个对应小明、爸爸、爷爷(2)家距离目的地多远(3)小明与爷爷骑自行车的速度是多少爸爸步行的速度是多少15.如图表示玲玲骑自行车离家的距离与时间的关系.她9点离开家,15点回到家,请根据图象回答下列问题:(1)玲玲到达离家最远的地方是什么时间她离家多远(2)她何时开始第一次休息休息了多长时间(3)第一次休息时,她离家多远(4)11点~12点她骑车前进了多少千米参考答案1.答案:D解析:【解答】注水阶段,洗衣机内的水量从0开始逐渐增多;清洗阶段,洗衣机内的水量不变且保持一段时间;排水阶段,洗衣机内的水量开始减少,直至排空为0,纵观各选项.故选:D.【分析】根据题意对浆洗一遍的三个阶段的洗衣机内的水量分析得到水量与时间的函数现象,然后即可选择.2.答案:B解析:【解答】20时的温度约为-1 ℃,A正确;温度是2 ℃的时刻是14时,B错误;14时温度最高,最暖和,C正确;在-3 ℃以下的时间约为8-0=8(小时),D正确故选:B.【分析】横轴表示时间,纵轴表示温度.温度是2℃时对应图象上最高点,最暖和的时刻指温度最高的时候,温度在-3℃以下的持续时间为0-8.3.答案:D解析:【解答】由图可知张大爷去公园时用15分钟,在公园锻炼的时间是25分钟,回来的时间是5分钟,所以张大爷去时的速度比回家时的速度慢,但不能确定是上坡路还是下坡路.故选D.【分析】根据图象可以得到张大爷去时所用的时间和回家所用的时间,在公园锻炼了多少分钟,也可以求出去时的速度和回家的速度,根据可以图象判断去时是否走上坡路,回家时是否走下坡路.4.答案:D解析:【解答】通过图象可以看出,小莹的速度是匀速,所以A错;小梅用的时间比小莹的多,所以她的平均速度比小梅的平均速度小,因此B错;两人在起跑50秒至180秒之间相遇,C错;在起跑后50秒时,小梅在小莹的前面,D正确.故选D.【分析】由图象可知,小莹以不变的速度用180秒跑完全程,并且比小梅提前40秒到达终点,前50秒小梅的速度大于小莹的速度,跑在前面,在50秒~180秒时小梅的速度慢下来,到最后40秒小梅加速冲刺.5.答案:D解析:【解答】由图象可得,在这一分钟内,汽车先提速,然后又减速,最后又不断提速由前40s速度不断变化,后20s速度基本保持不变.故选D【分析】仔细分析图象特征再依次分析各项即可判断.6.答案:B解析:【解答】由图可以看出每相隔1s,苹果下落的路程是不相同的;弧线越来越竖直,说明每秒钟下落的路程越来越大;经过3s,苹果落到了140米处,下落了不到一半的高度,最后2s,苹果下落了了80米,不到一半的高度.故选B【分析】解答本题的关键是读懂题意,得到图象的特征及规律,再根据这个规律解决问题8.答案:2.解析:【解答】2÷1=2元【分析】横轴表示茶杯个数,纵轴表示钱数.当横轴对应1的时候,钱数相对应的是2,由此即可求出答案.9.答案:100 甲 8米/秒解析:【解答】由图象可知,甲、乙的终点坐标的纵坐标均为100,所以这是一次100米赛跑;因为甲到达终点所用的时间较少,所以甲、乙两人中先到达终点的是甲;因为乙到达终点时,横坐标t=,纵坐标s=100,所以v=s÷t=100÷=8(米/秒),所以乙在这次赛跑中的速度是8米/秒.【分析】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论10.答案:④②解析:【解答】因为小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速返回,所以表示母亲离家的距离与时间之间的关系的图象是②;因为父亲看了10分钟报纸后,用了15分钟返回家,所以表示父亲离家的距离与时间之间的关系的图象是④.【分析】由于小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回,所以表示母亲离家的时间与距离之间的关系的图象在20分钟的两边一样,由此即可确定表示母亲离家的时间与距离之间的关系的图象;而父亲看了10分报纸后,用了15分返回家,由此即可确定表示父亲离家的时间与距离之间的关系的图象.11.答案:见解答过程.解析:【解答】(1)1985年农场数是2 300 000个,农场的平均面积是450英亩,•全美国有农场面积: 450×2 300 000=×109(英亩)(2)1982年农场数是2401000个,农场的平均面积是428英亩,•所以全美国有农场面积: 428×2401000=×109(英亩)【分析】农场的亩数和个数分别看两幅图的纵轴,时间是横轴.12.答案:(1)时间与价钱;(2)A点表示250元,B点表示150元;(3)这可以表示某户人家在“五一”长假中的消费情况:5月1日花150元 5月2日花100元 5月3日花250元 5月4日花200元5月5日花300元 5月6日花150元 5月7日花250元解析:【解答】(1)时间与价钱间关系;(2)A点表示250元,B点表示150元;(3)这可以表示某户人家在“五一”长假中的消费情况:5月1日花150元 5月2日花100元 5月3日花250元 5月4日花200元5月5日花300元 5月6日花150元 5月7日花250元【分析】解答本题的关键是读懂图象,得到图象的特征及规律,再根据这个规律解决问题.13.答案:见解答过程.解析:【解答】(1)由折线统计图可以看出:护士每隔6小时给病人量一次体温.(2)这位病人的最高体温是摄氏度,最低体温是摄氏度.(3)他在4月8日12时的体温是摄氏度.(4)图中的横线表示正常体温.(5)从图中看,这位病人的病情是好转了.【分析】(1)由折线统计图可以看出:护士每隔12-6小时给病人量一次体温;(2)折线图中最高的点表示温度最高,最低的点表示温度最低,由此即可求出答案;(3)从折线统计图可以看出:他在4月8日12时的体温是37.5摄氏度;(4)37摄氏度表示的是人的正常体温,由此即可求出答案;(5)从图中看,曲线呈现下降的趋势,则这个病人的病情是好转了.14.答案:见解答过程解析:【解答】(1)由图象可以看出,A对应爷爷,去时耗时长;B对应爸爸,去时和返回时耗时一样;C对应小明,去时用时短返回用时长.(2)从图象可以看出,家距离目的地1 200 m.(3)小明与爷爷骑自行车的速度是1 200÷6=200 (m/min),爸爸步行的速度是1 200÷12=100 (m/min).【分析】(1)由A、B、C图象可以看出,A去时用时长返回用时短,对应爷爷;B 去时和返回用时一样长,对应爸爸;C去时用时短返回用时长,对应小明.(2)由图象可以明显看出,距离为1200m(3)分别从A、B、C图象中求出小明、爸爸、爷爷的速度(速度=路程/时间).15.答案:见解答过程解析:【解答】(1)玲玲到达离家最远的地方的时间是12点,离家30千米.(2)10时30分开始第一次休息,休息了半小时.(3)第一次休息时,离家千米.(4)11点~12点她骑车前进了千米.【分析】判断一幅图象是不是函数图象,关键是看对给定的定义域内的任意一个x 是否都有唯一确定的函数值y与之对应.若存在一个x对应两个或两个以上y的情况,就不是函数图象.函数图象是数形结合的基础..。