粒子群优化算法
粒子群优化算法

粒子群优化算法
粒子群优化算法(PSO)是一种基于群智能的算法,它将仿生学、计算机图形学和优化理论相结合,可以解决复杂的优化问题。
该算法在近年来的应用中受到了广泛关注,并在实际工程中取得了显著的效果,特别是在互联网领域,它能够和其他优化算法一起很好地完成复杂的任务。
粒子群优化算法能够有效地解决多种问题,如:分布式搜索、优化路径规划、模式识别、多优化器混合等等。
该算法利用社会群体同化规律,将算法中的粒子模型作为一种有效的解决优化问题的一种算法,将周期性更新过程中的位置信息和最大值更新来确定粒子的最优位置。
因此,粒子群优化算法在很大程度上可以利用群体行为来最大化和最小化优化目标函数。
此外,粒子群优化算法在互联网领域的应用也得到了很广泛的应用,如入侵检测系统的参数调整、负载均衡的实现以及文本挖掘等技术,都可以利用粒子群优化算法进行优化。
如果把这些参数看做一系列棘手的问题,那么粒子群优化算法就能够有效地帮助解决它们。
作为一种有效的优化算法,粒子群优化技术的发展不断增强,它的应用范围也在快速扩大,特别是在互联网领域,它将能够发挥出更大的作用。
一般来说,粒子群优化算法有较低的时间复杂度,能够尽快找到最优解。
此外,由于粒子群优化可以识别全局最优解,这种技术具有抗噪声能力强、能够适应不断变化的技术参数等特点,值得引起关注。
第6章粒子群优化算法

第6章粒子群优化算法PSO算法的基本原理是通过模拟粒子在空间中的移动,从而找到最优解。
每个粒子代表一个可能的解,并根据自身的经验和群体的经验进行。
粒子的速度和位置的更新使用以下公式:v(t+1) = w * v(t) + c1 * rand( * (pbest - x(t)) + c2 *rand( * (gbest - x(t))x(t+1)=x(t)+v(t+1)其中,v(t)代表粒子的当前速度,x(t)代表粒子的当前位置,w是惯性权重,c1和c2是学习因子,rand(是一个0到1之间的随机数,pbest 是粒子自身的最佳位置,gbest是整个群体的最佳位置。
PSO算法的过程如下:1.初始化粒子的位置和速度。
2.计算每个粒子的适应度值。
3. 更新每个粒子的pbest和gbest。
4.根据公式更新每个粒子的速度和位置。
5.重复步骤2到4,直到达到终止条件。
PSO算法有几个重要的参数需要设置:-群体大小:确定PSO算法中粒子的数量。
较大的群体大小可以增加整个空间的探索能力,但也增加了计算复杂度。
-惯性权重:控制粒子速度变化的因素。
较大的惯性权重可以增加粒子的飞行距离,但可能导致过程陷入局部最优解。
-学习因子:用于调节个体经验和群体经验的权重。
c1用于调节个体经验的权重,c2用于调节群体经验的权重。
较大的学习因子可以增加粒子的探索能力,但也可能增加时间。
PSO算法的优点是简单、易实现,收敛速度较快,对于多维、非线性、离散等问题具有良好的适应性。
然而,PSO算法也存在一些缺点,如易陷入局部最优解、对参数的敏感性等。
总之,粒子群优化算法是一种基于群体智能的优化算法,在求解复杂问题方面具有出色的性能。
它的基本原理是通过模拟粒子的移动来最优解,利用个体经验和群体经验进行自适应。
PSO算法在多个领域都有成功的应用,可以帮助解决实际问题。
粒子群优化算法介绍

粒子群优化算法介绍
粒子群优化算法(Particle Swarm Optimization,PSO)是一种
基于群体智能的优化方法,其中包含了一组粒子(代表潜在解决方案)在n维空间中进行搜索,通过找到最优解来优化某个问题。
在PSO的
过程中,每个粒子根据自身当前的搜索位置和速度,在解空间中不断
地寻找最优解。
同时,粒子也会通过与周围粒子交换信息来寻找更好
的解。
这种信息交换模拟了鸟群或鱼群中的信息交流行为,因此PSO
算法也被称为群体智能算法。
由于其并行搜索和对局部最优解的较好处理,PSO算法在多个领
域均得到了广泛应用。
其中最常用的应用之一是在神经网络和其他机
器学习算法中用来寻找最优解。
此外,PSO算法在图像处理、数据挖掘、机器人控制、电力系统优化等领域也有着广泛的应用。
PSO算法的核心是描述每个粒子的一组速度和位置值,通常使用
向量来表示。
在PSO的初始化阶段,每个粒子在解空间中随机生成一
个初始位置和速度,并且将其当前位置作为当前最优解。
然后,每个
粒子在每次迭代(即搜索过程中的每一次)中根据当前速度和位置,
以及粒子群体中的最优解和全局最优解,更新其速度和位置。
PSO算法的重点在于如何更新各个粒子的速度向量,以期望他们能够快速、准
确地达到全局最优解。
总之, PSO算法是一种群体智能算法,目的是通过模拟粒子在解
空间中的移动来优化某个问题。
由于其简单、有效且易于实现,因此PSO算法在多个领域得到了广泛应用。
粒子群优化算法综述介绍

粒子群优化算法综述介绍PSO算法的基本原理是通过多个个体(粒子)在解空间里的,通过不断更新个体的位置和速度来寻找最优解。
每个粒子都有自己的位置和速度,并根据个体历史最佳位置和群体历史最佳位置进行更新。
当粒子接近最优解时,根据历史最优位置和当前位置的差异进行调整,从而实现相对于当前位置的。
具体而言,PSO算法可以分为以下几个步骤:1.初始化粒子群:定义粒子的位置和速度以及适应度函数。
2.更新每个粒子的速度和位置:根据粒子的历史最佳位置和群体历史最佳位置,以及加权系数进行更新。
可以使用以下公式计算:v(i+1) = w * v(i) + c1 * rand( * (pbest(i) - x(i)) + c2 * rand( * (gbest - x(i))x(i+1)=x(i)+v(i+1)其中,v(i+1)是第i+1次迭代时粒子的速度,x(i+1)是第i+1次迭代时粒子的位置,w是惯性权重,c1和c2是学习因子,rand(是一个随机数,pbest(i)是粒子个体历史最佳位置,gbest是整个群体历史最佳位置。
3.更新每个粒子的个体历史最佳位置和群体历史最佳位置:根据当前适应度函数值,更新每个粒子的个体历史最佳位置,同时更新群体历史最佳位置。
4.判断终止条件:当达到预设的最大迭代次数或者适应度函数值达到预设的误差范围时,停止迭代,输出结果。
PSO算法的优点在于简单易用、易于实现、不需要求导和梯度信息,并且可以灵活地应用于各种问题。
然而,PSO算法也存在一些缺点,如易于陷入局部最优解、收敛速度较慢等。
为了克服这些限制,研究者们提出了各种改进的粒子群优化算法,如自适应权重粒子群优化算法(Adaptive Weight Particle Swarm Optimization, AWPSO)、混合粒子群优化算法(Hybrid Particle Swarm Optimization, HPSO)等。
这些算法通过引入更多的因素或策略来加快收敛速度、改善性能。
粒子群优化算法python

粒子群优化算法python粒子群优化算法(Particle Swarm Optimization,简称PSO)是一种基于群体智能的优化算法,它模拟了鸟群觅食行为,通过不断更新粒子的位置和速度,来寻找最优解。
在本文中,我们将介绍粒子群优化算法的原理及其在Python中的实现。
一、粒子群优化算法原理粒子群优化算法的核心思想是通过模拟鸟群觅食行为来进行优化。
算法中的每个粒子都代表了搜索空间中的一个解,而粒子的位置和速度则代表了解的状态和搜索方向。
在算法开始时,每个粒子都会被随机初始化,并赋予一个随机的速度。
接着,粒子会根据自身当前位置和速度,以及全局最优解和个体最优解的信息,来更新自己的速度和位置。
粒子群优化算法中的速度更新公式如下所示:v(t+1) = w * v(t) + c1 * r1 * (pbest - x(t)) + c2 * r2 * (gbest - x(t))其中,v(t+1)表示粒子在下一时刻的速度,w是惯性权重,c1和c2分别是加速因子,r1和r2是[0,1]之间的随机数,pbest表示粒子的个体最优解,gbest表示全局最优解,x(t)表示粒子的当前位置。
粒子的位置更新公式如下所示:x(t+1) = x(t) + v(t+1)其中,x(t+1)表示粒子在下一时刻的位置,x(t)表示粒子的当前位置,v(t+1)表示粒子在下一时刻的速度。
通过不断迭代更新粒子的位置和速度,粒子群优化算法能够逐渐收敛到全局最优解。
二、粒子群优化算法的Python实现在Python中,我们可以使用numpy库来进行粒子群优化算法的实现。
下面是一个简单的示例代码:```pythonimport numpy as npdef objective_function(x):# 定义目标函数,这里以Rosenbrock函数为例return (1 - x[0])**2 + 100 * (x[1] - x[0]**2)**2def PSO(objective_function, num_particles, num_dimensions, max_iter):# 初始化粒子群particles = np.random.uniform(low=-5, high=5, size=(num_particles, num_dimensions))velocities = np.zeros((num_particles, num_dimensions))pbest = particles.copy()gbest = particles[np.argmin([objective_function(p) for p in particles])]# 设置参数w = 0.5c1 = 1c2 = 1# 迭代更新粒子位置和速度for _ in range(max_iter):for i in range(num_particles):r1 = np.random.uniform()r2 = np.random.uniform()velocities[i] = w * velocities[i] + c1 * r1 * (pbest[i] - particles[i]) + c2 * r2 * (gbest - particles[i])particles[i] = particles[i] + velocities[i]if objective_function(particles[i]) < objective_function(pbest[i]):pbest[i] = particles[i]if objective_function(pbest[i]) < objective_function(gbest):gbest = pbest[i]return gbest# 使用粒子群优化算法求解目标函数的最小值gbest = PSO(objective_function, num_particles=30, num_dimensions=2, max_iter=100)print("最优解:", gbest)print("最优解对应的目标函数值:", objective_function(gbest))```在上述代码中,我们首先定义了一个目标函数`objective_function`,这里以Rosenbrock函数为例。
粒子群优化算法原理

粒子群优化算法原理粒子群优化算法(Particle Swarm Optimization,PSO)是一种被启发自鸟群觅食行为的群体智能优化算法。
它最早由Kennedy和Eberhart于1995年提出,通过模拟鸟群追踪食物的行为,以期得到问题的最优解。
PSO的原理如下:1.初始化粒子群的位置和速度:每个粒子代表问题的一个解,其位置和速度表示解的位置和移动方向。
粒子的初始位置和速度通常是在问题解空间中的随机位置和速度。
2.计算粒子的适应度值:根据问题的目标函数,计算出每个粒子的适应度值,用于评估解的好坏程度。
3.更新粒子的位置和速度:根据粒子当前位置、速度和当前最优解(全局最优解和个体最优解),更新粒子的下一个位置和速度。
粒子的速度受到当前速度、向当前最优解的距离和向全局最优解的距离的影响。
4.评估是否需要更新最优解:根据当前适应度值和历史最优适应度值,评估是否需要更新全局最优解和个体最优解。
5.重复更新直到达到停止条件:重复执行步骤3-4,直到达到预设的停止条件,如达到最大迭代次数、达到目标适应度值等。
在PSO算法中,粒子的移动被认为是通过相互合作和信息共享来实现全局的。
每个粒子通过“记忆”当前得到的最优解和“经验”当前的方向,来更新下一次的位置和速度。
同时,粒子也通过“邻居”之间的信息共享来获得更多的能力。
PSO算法具有以下特点和优势:1.简单而高效:PSO算法的原理简单,易于理解和实现。
它不需要求解目标函数的梯度信息,可以应用于连续和离散优化问题。
2.全局能力强:PSO算法通过全局最优解和个体最优解的更新,能够有效地进行全局,在解空间中找到问题的最优解。
3.并行计算能力强:PSO算法的并行计算能力强,可以快速地处理大规模和高维问题。
4.适应度函数的简单性:PSO算法对问题的适应度函数的形式和计算复杂性没有要求,适用于各种类型的优化问题。
PSO算法已经被广泛应用于各种领域,如机器学习、神经网络、信号处理、图像识别、经济学、工程等。
粒子群优化算法课件

实验结果对比分析
准确率
01
在多个数据集上,粒子群优化算法的准确率均高于对比算法,
表明其具有较强的全局搜索能力。
收敛速度
02
粒子群优化算法在多数数据集上的收敛速度较快,能够更快地
找到最优解。
鲁棒性
03
在不同参数设置和噪声干扰下,粒子群优化算法的性能表现稳
定,显示出良好的鲁棒性。
结果讨论与改进建议
讨论
其中,V(t+1)表示第t+1次迭代 时粒子的速度,V(t)表示第t次迭 代时粒子的速度,Pbest表示粒 子自身的最优解,Gbest表示全 局最优解,X(t)表示第t次迭代时
粒子的位置,w、c1、c2、 rand()为参数。
算法优缺点分析
优点
简单易实现、参数少、收敛速度快、 能够处理多峰问题等。
03
强化算法的可视化和解释性
发展可视化工具和解释性方法,帮助用户更好地理解粒子群优化算法的
工作原理和结果。
THANKS
感谢观看
粒子群优化算法的改进与扩展
动态调整惯性权重
惯性权重是粒子群优化算法中的一个 重要参数,它决定了粒子的飞行速度 。通过动态调整惯性权重,可以在不 同的搜索阶段采用不同的权重值,从 而更好地平衡全局搜索和局部搜索。
VS
一种常见的动态调整惯性权重的方法 是根据算法的迭代次数或适应度值的 变化来调整权重值。例如,在算法的 初期,为了更好地进行全局搜索,可 以将惯性权重设置得较大;而在算法 的后期,为了更好地进行局部搜索, 可以将惯性权重设置得较小。
并行粒子群优化算法
并行计算技术可以提高粒子群优化算法的计算效率和收敛 速度。通过将粒子群分成多个子群,并在不同的处理器上 同时运行这些子群,可以加快算法的收敛速度。
《粒子群优化算法》课件

CONTENTS
• 粒子群优化算法概述 • 粒子群优化算法的基本原理 • 粒子群优化算法的改进与变种 • 粒子群优化算法的参数选择与
调优 • 粒子群优化算法的实验与分析 • 总结与展望
01
粒子群优化算法概述
定义与原理
定义
粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智 能的优化算法,通过模拟鸟群、鱼群等生物群体的觅食行为,寻找最优解。
限制粒子的搜索范围,避免无效搜索。
参数选择与调优的方法
网格搜索法
在参数空间中设定网格, 对每个网格点进行测试, 找到最优参数组合。
经验法
根据经验或实验结果,手 动调整参数。
贝叶斯优化法
基于贝叶斯定理,通过不 断迭代和更新参数概率分 布来找到最优参数。
遗传算法
模拟生物进以进一步深化对粒子群优化算法的理 论基础研究,探索其内在机制和本质规律,为算 法设计和改进提供更科学的指导。
为了更好地处理大规模、高维度和复杂问题,未 来研究可以探索更先进的搜索策略和更新机制, 以增强粒子群优化算法的局部搜索能力和全局搜 索能力。
随着人工智能技术的不断发展,粒子群优化算法 的应用领域也将不断扩展,未来研究可以探索其 在机器学习、数据挖掘、智能控制等领域的新应 用和新方法。
04
粒子群优化算法的参数选择与调优
参数对粒子群优化算法性能的影响
粒子数量
惯性权重
粒子数量决定了算法的搜索空间和搜索速 度。过少可能导致算法过早收敛,过多则 可能导致计算量增大。
影响粒子的全局和局部搜索能力,过大可 能导致算法发散,过小则可能使算法过早 收敛。
加速常数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PSO算法1. 引言粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。
源于对鸟群捕食的行为研究。
PSO同遗传算法类似,是一种基于叠代的优化工具。
系统初始化为一组随机解,通过叠代搜寻最优值。
但是并没有遗传算法用的交叉(crossover)以及变异(mutation),而是粒子在解空间追随最优的粒子进行搜索。
详细的步骤以后的章节介绍同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。
目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域。
2. 背景: 人工生命"人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的内容1. 研究如何利用计算技术研究生物现象2. 研究如何利用生物技术研究计算问题我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的.现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信息从而可能产生不可预测的群体行为例如floys 和boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计.在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上.粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的过程. 但后来发现PSO是一种很好的优化工具.3. 算法介绍如前所述,PSO模拟鸟群的捕食行为。
设想这样一个场景:一群鸟在随机搜索食物。
在这个区域里只有一块食物。
所有的鸟都不知道食物在那里。
但是他们知道当前的位置离食物还有多远。
那么找到食物的最优策略是什么呢。
最简单有效的就是搜寻目前离食物最近的鸟的周围区域。
PSO从这种模型中得到启示并用于解决优化问题。
PSO中,每个优化问题的解都是搜索空间中的一只鸟。
我们称之为“粒子”。
所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。
然后粒子们就追随当前的最优粒子在解空间中搜索PSO 初始化为一群随机粒子(随机解)。
然后通过叠代找到最优解。
在每一次叠代中,粒子通过跟踪两个“最优值”来更新自己。
第一个就是粒子本身所找到的最优解。
这个解叫做个体最优值pBest。
另一个最优值是整个种群目前找到的最优解,这个最优值是全局最优值gBest。
另外也可以不用整个种群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。
在找到这两个最优值后, 粒子根据如下的公式来更新自己的速度和新的位置:v[k+1] = w * v[k] + c1 * r1 * (pbest[k] - present[k]) + c2 * r1* (gbest[k] - present[k])(a)present[k+1] = persent[k] + v[k+1] (b)其中:w:速度惯性权重;v[k]:粒子k时刻的速度;persent[k]:粒子k时刻的位置;pbest[k]:个体最优值;gbest[k]:全局最优值;r1, r2:介于(0,1)之间的随机数;c1, c2 是学习因子;通常取c1 = c2 = 2。
(a)式中第二项是“认知”部分,代表粒子对自身的学习;第三项是“社会”部分,代表粒子间的协作。
这两部分使粒子具有自我总结和像群体中最优个体学习的能力。
4. 算法流程For each particleInitialize particleENDDoFor each particleCalculate fitness valueIf the fitness value is better than the best fitness value (pBest) in historyset current value as the new pBestEndChoose the particle with the best fitness value of all the particles as the gBestFor each particleCalculate particle velocity according equation (a)Update particle position according equation (b)EndWhile maximum iterations or minimum error criteria is not attained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax。
5. PSO的参数设置从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤: 问题解的编码和适应度函数。
PSO的一个优势就是采用实数编码, 不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作).例如对于问题 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接编码为 (x1, x2, x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误PSO 中并没有许多需要调节的参数,下面列出了这些参数以及经验设置:粒子数: 一般取 20 – 40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或 200粒子的长度: 这是由优化问题决定, 就是问题解的长度粒子的范围: 由优化问题决定,每一维可是设定不同的范围Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子 (x1, x2, x3) x1 属于 [-10, 10], 那么 Vmax 的大小就是 20学习因子: c1 和 c2 通常等于2. 不过在文献中也有其他的取值. 但是一般 c1 等于 c2 并且范围在0和4之间中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.全局PSO 和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO 找到大致的结果,再由局部PSO 进行搜索.6. 参数对PSO 算法性能的影响1). 学习因子c1、c2对算法性能的影响学习因子c1、c2对算法的收敛性影响不大,但如果调整合适的话可以减少局部最优值的干扰,使收敛速度变快。
设粒子限制速度最大值为max v ,最小值设为min v 。
最大值参数max v 被证明对PSO 算法性能影响很重要,max v 值太大会导致粒子跳过最优解,太小的话会导致搜索空间不充分,找不到全局最优解。
在大量试验和应用中得出结论:取max max v z =,即速度最大值为每个粒子在每维位置允许的变化范围时,算法会取得更好优化效果。
2). 惯性权重w 对算法性能的影响当惯性权重较小时(w<0.8),如果PSO 能够找到全局最优解的话,那么它所经历的时间是很短的,即所有的例子趋向于汇集在一起。
如果最优解在初始空间内,PSO 很容易找到全局最优解,否则找不到最优解;当惯性权重较大小时(w>1.2)时,PSO 更像全局最优算法,需更多迭代次数达到全局最优解,且更可能找不到全局最优解;当惯性权重适中时PSO 将会有更大的机会找到全局最优解,迭代次数可能会比第一种情况多。
惯性权重形式通常为:max min max max w w w w iter iter -=-⨯其中:max w 为初始权重,min w 为最终权重,max iter 为最大迭代次数,iter 为当前迭代次数。
通过调整,算法在开始时倾向于开掘,然后逐步转向于开拓,从而在局部区域调整解。
这些改进使PSO 算法性能得到很大提高。
3). 收缩因子γ对算法性能的影响收缩因子γ可以保证算法收敛。
γ是关于参数c1和c2的函数,一个简单的收缩因子定义为:12,4l c c l γ==+≥引入收缩因子后,就不在需要max v 了,但其性能未必比1)中取max max v z =时效果好。
5. PSO 和遗传算法的比较PSO 和GA 有很多共同之处。
两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。
两个系统都不是保证一定找到最优解。
PSO 没有遗传操作如交叉(crossover)和变异(mutation). 而是根据自己的速度来决定搜索。
粒子还有一个重要的特点,就是有记忆。
与遗传算法比较, PSO 的信息共享机制是很不同的. 在遗传算法中,染色体互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动. 在PSO 中, 只有gBest (or lBest) 给出信息给其他的粒子,这是单向的信息流动. 整个搜索更新过程是跟随当前最优解的过程. 与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解。
PSO 和GA 不同点:(1) PSO 有记忆,好的解的知识所有粒子都保存,而GA ,以前的知识随着种群的改变被破坏。
(2) PSO 中的粒子仅仅通过当前搜索到最优点进行共享信息,所以很大程度上这是一种单项信息共享机制。
而GA 中,染色体之间相互共享信息,使得整个种群都向最优区域移动。
(3) GA 的编码技术和遗传操作比较简单,而PSO 相对于GA ,没有交叉和变异操作,粒子只是通过内部速度进行更新,因此原理更简单、参数更少、实现更容易。
(4) 在收敛性方面,GA 已经有了较成熟的收敛性分析方法,并且可对收敛速度进行估计;而PSO 这方面的研究还比较薄弱。
尽管己经有简化确定性版本的收敛性分析,但将确定性向随机性的转化尚需进一步研究。
(5)在稳定性方面,遗传算法稳定性似乎比粒子算法要好。