汞的形态分析

汞的形态分析
汞的形态分析

液相色谱-原子荧光光谱联用测定鱼样中甲基汞的含量

——LC-AFS法

1、目的

建立一个前处理操作方便,准确可靠的测定鱼类样品中甲基汞的方法

2、主题内容及适应性

本方法规定了鱼类中甲基汞测定的液相色谱-原子荧光光谱法,本法适用于鱼类中甲基汞的测定。

3、原理

样品中的甲基汞用提取液提取后,通过C18色谱柱,由于C18柱对无机汞、甲基汞和乙基汞的吸附能力不同,流动相将无机汞、甲基汞和乙基汞依次洗脱,洗脱的溶液首先和氧化剂混合,再和空气混合,通过紫外光照射,将有机汞都氧化成无机汞,最后混合还原剂和盐酸发生氢化反应,进入原子化器,与原子荧光联用进行数据收集和处理。

4、试剂与材料

除非另有说明,所用试剂均为分析纯,水为蒸馏水或相当者;液相色谱流动相所用溶剂均为色谱纯并经过0.45μm滤膜过滤。

4.1 试剂

4.1.1 流动相:5%乙腈jing(HPLC级)+0.5%乙酸胺+0.1%半胱氨酸,经溶剂过滤器过滤后,放在超声波清洗器中超声20min,除去气泡。

4.1.2 载流:7%HCl(优级纯)

4.1.3 还原剂:0.5%KOH +1.5% KBH4

4.1.4 氧化剂:0.5%KOH +1%K2S2O8

4.1.5 清洗液:CH3OH-H2O(1+1)

4.1.6 提取液:10%HCl+1%硫脲+0.15%KCl

4.2 标准溶液

4.2.1 标准储备溶液:用水配制1000μg/L的Hg2+-MeHg-EtHg的混合标准溶液100mL,保存于4℃冰箱。

4.2.2 标准工作溶液:标准工作液根据需要用混合液逐级稀释配置(混合液包括提取液:流动相:水=3:4:3)

5、仪器与设备

5.1 岛津高压液相泵-SAP10形态分析预处理装置-原子荧光光谱仪

5.2 溶剂过滤器

5.3 超声波清洗仪

5.4 旋涡混合器

5.5 离心机

6、样品处理

称取0.25g鱼样,加入2mL的提取液,旋涡混合5min,然后离心沉淀取上清液,再加2mL 提取液提取一次,两次提取液合并,再用过滤头过滤,然后用氨水中和PH至2-8(加氨水0.7mL),过C18小柱净化处理,再用4mL流动相分两次洗脱,每次2mL,最后定容至10mL 测定,为保护色谱柱再离心一次。

测定

7.1 仪器条件

7.1.1 液相色谱条件

色谱柱:C18柱150×4.6mm(i.d),5μm

流速:1mL/min

进样量:100μL

7.1.2形态分析预处理装置条件

泵速:50转/分

紫外灯(UV):开

液体进样流程:氧化剂---空气---还原剂----载流

7.1.3 色谱-原子荧光联用条件

总电流:30mA负高压:270V

载气流速:600mL/min 屏蔽气流速:1000mL/min

7.2 样品测定

将处理好的样品溶液用进样针吸取0.3-0.5mL,采用手动进样器进行测定

8、定性标准

8.1.1 保留时间

待测样品中甲基汞的色谱峰保留时间与标准溶液相比变化范围应在±5%之内。

9 结果计算和表达

定量测定

用数据处理软件中的外标法,绘制标准工作曲线,将标准工作曲线保存,然后将样品峰分析处理,用外标校正,即可得到待测溶液中的甲基汞浓度,按式(1)计算可得试样中甲基汞

的浓度:

c= c0×V/m (1)

c—样品中甲基汞的浓度,μg/kg;

c0—待测液中甲基汞的浓度,μg/L;

m—取样量,g;

V—测定液体积,mL;

10 相对标准偏差、最小检出浓度与回收率

10.1 相对标准偏差(RSD)

将配好的标准混合溶液连续进样7针,然后用数据分析软件处理后分别得到无机汞、甲基汞、

乙基汞的相对标准偏差,要求三种汞形态的RSD<5%

RSD Hg2+ = 4.3% ;RSD MeHg = 3.4% ;RSD EtHg= 2.5%

10.2最小检测浓度

最小检出浓度的定义为:2倍的基线噪音乘以汞形态的浓度,然后除以汞形态的峰高,如公式(2)所示:

C最小检出浓度= 2σC0/H (2)

σ—基线噪音值

C0—待测液中汞形态的浓度,μg/L;

H—汞形态的峰高

三种汞形态的C

=0.2μg/L

最小检出浓度

10.3 甲基汞加标回收率

添加浓度为3.9μg/L时,回收率为:87%

添加浓度为7.8μg/L时,回收率为:88%

汞性质简介

土壤中汞的背景值为0.01~0.15 μg/g。除来源于母岩以外,汞主要来自污染源,如含汞农药的施用、污水灌溉等,故各地土壤中汞含量差异较大。来自污染源的汞首先进入土壤表层。土壤胶体及有机质对汞的吸附作用相当强,汞在土壤中移动性较弱,往往积累于表层,而在剖面中呈不均匀分布。土壤中的汞不易随水流失,但易挥发至大气中,许多因素可以影响汞的挥发。土壤中的汞按其化学形态可分为金属汞、无机汞和有机汞,在正常的pE和pH 范围内,土壤中汞以零价汞形式存在。在一定条件下,各种形态的汞可以相互转化。进入土壤的一些无机汞可分解而生成金属汞,当土壤在还原条件下,有机汞可降解为金属汞。一般情况下,土壤中都能发生Hg2+===Hg2++HgO反应,新生成的汞可能挥发。在通气良好的土壤中,汞可以任何形态稳定存在。在厌氧条件下,部分汞可转化为可溶性甲基汞或气态二甲基汞。 阳离子态汞易被土壤吸附,许多汞盐如磷酸汞、碳酸汞和硫化汞的溶解度亦很低。在还原条件下,Hg2+与H2S生成极难溶的HgS;金属汞也可被硫酸还原细菌变成硫化汞;所有这些都可阻止汞在土壤中的移动。当氧气充足时,硫化汞又可慢慢氧化成亚硫酸盐和硫酸盐。以阴离子形式存在的汞,如HgCl3-、HgCl42-也可被带正电荷的氧化铁、氢氧化铁或黏土矿物的边缘所吸附。分子态的汞,如HgCl2,也可以被吸附在Fe,Mn的氢氧化物上。Hg(OH)2溶解度小,可以被土壤强烈的保留。由于汞化合物和土壤组分间强烈的相互作用,除了还原成金属汞以蒸气挥发外,其他形态的汞在土壤中的迁移很缓慢。在土壤中汞主要以气相在孔隙中扩散。总体而言,汞比其他有毒金属容易迁移。当汞被土壤有机质螯合时,亦会发生一定的水平和垂直移动。 汞是危害植物生长的元素。土壤中含汞量过高,它不但能在植物体内积累,还会对植物产生毒害。通常有机汞和无机汞化合物以及蒸气汞都会引起植物中毒。例如,汞对水稻的生长发育产生危害。中国科学院植物研究所水稻的水培实验表明,采用含汞为0.074 μg/mL 的培养液处理水稻,产量开始下降,秕谷率增加;以0.74 μg/mL浓度处理时,水稻根部已开始受害,并随着试验浓度的增加,根部更加扭曲,呈褐色,有锈斑;当介质含汞为7.4 μg/mL时,水稻叶子发黄,分蘖受抑制,植株高度变矮,根系发育不良。此外,随着浓度的增加,植物各部分的含汞量上升。介质浓度为22.2 μg/mL时,水稻严重受害,水培水稻受害的致死浓度为36.5μg/mL。但是,在作物的土培实验中,即使土壤含汞达18.5 μg/g,水稻和小麦产量也未受到影响。可见,汞对植物的有效性和环境条件密切相关。不同植物对汞的敏感程度有差别。例如,大豆、向日葵、玫瑰等对汞蒸气特别敏感;纸皮桦、橡树、常青藤、芦苇等对汞蒸气抗性较强;桃树、西红柿等对汞蒸气的敏感性属中等。 汞进入植物主要有两条途径:一是通过根系吸收土壤中的汞离子,在某些情况下,也可吸收甲基汞或金属汞;其次是喷施叶面的汞剂、飘尘或雨水中的汞以及在日夜温差作用下土壤所释放的汞蒸气,由叶片进入植物体或通过根系吸收。由叶片进入到植物体的汞,可被运转到植株其他各部位,而被植物根系吸收的汞,常与根中蛋白质发生反应而沉积于根上,很少向地上部分转移。 植物吸收汞的数量不仅决定于土壤含汞量,还决定于其有效性。汞对植物的有效性和土壤氧化还原条件、酸碱度、有机质含量等有密切关系。不同植物吸收积累汞的能力是有差异的,同种植物的各器官对汞的吸收也不一样。植物对汞的吸收与土壤中汞的存在形态有关。 土壤中不同形态的汞对作物生长发育的影响存在差异。土壤中无机汞和有机汞对水稻生长发育影响的盆栽实验表明,当汞浓度相同时,汞化合物对水稻生长和发育的危害为:醋酸苯汞>HgCl2>HgO>HgS。HgS不易被水稻吸收。即使是同一种汞化合物,当土壤环境条件变化时,可以不同的形态存在,对作物的有效性也就不一样。

高分子结构和形态特点

1. 结构 高聚物是由许多巨大的分子构成的。这些大分子有许多重复的结构单元组成。某些高聚物的结构单元是完全一致的(均聚),但另一些则是由两种以上的结构单元混合组成(共聚),同时大分子之间又有各种联系。因此必须从微观、亚微观直到宏观不同的结构层次来描述高聚物分子结构、形态和聚集态等。 高聚物主要分为以下结构:一次结构(近程结构)、二次结构(远程结构)、三次结构(聚集态结构)和高次结构的层次。 一次结构式是指大分子的化学组成,均聚或共聚,大分子的相对分子量,链状分子的形状如直链、支化、交联。此外还包括大分子的立体构型如全同立构、间同立构、无规立构、顺式、反式的等的区别。 二次结构指的是单个大分子的形态(微观),如无规线团、折叠链、螺旋链等。 三次结构指的是具有不同二次结构的单个大分子聚集在一起形成的不同的聚集态结构。如:无规线团构成的线团胶团、缨束状结构、片晶和超螺旋结构。 高次结构指三次结构以及与其他物质构成尺寸更大的结构,如由折叠链形成的片晶构成球晶。 2.高聚物结构的测定方法 测定结构的方法有X射线衍射法(大角),电子衍射法、中心散射法、裂解色谱-质谱、紫外吸收光谱、红外吸收光谱、拉曼光谱、微波分析法、核磁共振法、顺磁共振法、荧光光谱、偶极矩法、旋光分光法、电子能谱等。 测定聚集态结构的方法有X射线小角散射、电子衍射法、电子显微镜、光学显微镜、原子力显微镜、固体小角激光光散射等。 测定结晶度的方法有X射线衍射法、电子衍射法、核磁共振吸收(宽线)、红外吸收光谱,密度法,热分析法。 3.高聚物分子运动(转变与松弛)的测定 了解高聚物多重转变与运动的各种方法,主要有四种类型:体积的变化、热力学性质及力学性质的变化和电磁效应。测定体积的变化包括膨胀计法、折射系数测定法等;测定热学性质的方法包括差热分析方法(DTA)和差式扫描量热法(DSC)等;测定力学性质的变化的方法包括热机械法、应力松弛法等;还有动态测量法如动态模量和内耗等;电磁效应包括测定介电松弛、核磁共振等。 4.高聚物性能的测定 高聚物的力学性能主要是测定材料的强度和模量以及变形。试验的方法有很多种,有拉伸、压缩、剪切、弯曲、冲击、蠕变、应力松弛等。静态力学性能试验机有静态万能材料试验机,专用应力松弛仪、蠕变仪、摆锤冲击机、落球冲击机等,动态力学试验机有动态万能材料试验机、动态粘弹谱仪、高低频疲劳试验机。 材料本体的粘流行为主要是测定粘度和切变速率的关系、剪应力与切变速率的关系等,采用的仪器有旋转粘度计、熔融指数测定仪、高压电击穿试验机等。 材料的电学性能主要有电阻、介电常数、介电损耗角正切、击穿电压,采用仪器有电阻计,电容电桥介电性能测定仪、高压电击穿试验机等。 材料的热性能,主要有导热系数、比热、热膨胀系数、耐热性、耐燃性、分解温度等。测定仪器有高低温导热系数测定仪、差示扫描量热仪、量热计、线膨胀和体膨胀测定仪、马丁耐热仪和维卡耐热仪、热失重仪、硅碳耐燃烧试验机等。

汞分析方法的研究进展

汞分析方法的研究进展 化学(化学工程方向)2007级2班袁宇 2007060263 摘要:汞在现代人们的生活中已经是不容忽视的污染物,是影响人们健康的一种可积累性重金属。其毒性作用涉及神经、肾脏、消化等系统。本文评述了汞对人体的危害,环境中汞的污染以及汞的测定方法的研究进展。 关键词:汞;危害;测定方法;研究进展 引言 汞是在常温下唯一的液体金属,银白色,易流动。比重13.59,熔点-38.9℃,沸点356.6℃。蒸气比重6.9[1]。它有三种基本的形态以液态或气态形式存在的金属汞、无机汞化合物(包括氯化亚汞、氯化高汞、乙酸汞和硫化汞) 以及有机汞化合物(如苯基汞、烷基汞等) 。地壳中约含80ug·kg.L-1汞[2]。空气中汞主要来源于岩石的风化、火山爆发及水中汞的蒸发等;水中的汞来自大气及工农业生产的污染 ,如氯碱工业用汞作阴极电解食盐,除汞蒸气的挥发外,大量的汞和氯化汞从废水中排出;食物中的汞,通常以甲基汞的形式存在,甲基汞能积聚在水生生物中,参加食物链,使汞在鱼体内富集浓缩,达到极高浓度。汞及其化合物都是剧毒物质。无机汞化合物通过食物链进入人体,在肝,肾,脑等器官组织中富集,Hg2+可与蛋白质的巯基集合,抑制酶的活性,使细胞代谢受到阻碍;有机汞的毒性大于无机汞,其中甲基汞的毒性最大。汞对人体的毒性很大程度上取决于其存在形式[3]。由此可以看出汞对人类的危害很大,所以汞的检测在环保部门有着很重要的意义。多年来,分析者对汞的测定方法进行了大量的研究工作,且建立了很多种方法,本文从汞的原子吸光光谱法(AAS),原子荧光光谱法(AFS),色谱法,电化学分析法,分光光度法等方法作出了综述。 1 原子吸收光谱法 原子吸收光谱法是微量汞分析中应用最广的方法。虽然原子吸收光谱法不能直接用于元素的形态分析,只能检测元素的总量,但是利用它们简便,快速,灵敏度高的特点,常将其与其他富集分离技术相集合测量元素的不同形态。其中,冷原子吸收法(CVASS),极大地提高了测定的灵敏度,适合进行10-9级汞的分析,是目前汞分析中最主要和普及的方法之一。Yin[4]等使用在线固相萃取预富集—流动注射—HPLC—CVAAS分析技术,直接测定样品中MeHg,EtHg,PhHg, Hg2+。操作简易,自动化程度高,对MeHg,EtHg,PhHg, Hg2+检出限分别为9.6,10.5ng.L-1,相对标准偏差为3.6%,5.5%,10.4%,7.6%。

底泥中汞的存在形态.

实验八底泥中汞的存在形态 一. 实验目的 1.了解形态分析的意义,学习测定底泥样品中各种形态汞的方法。 2.学习冷原子荧光测汞仪的使用方法。 二.实验原理 根据各种形态汞在不同浸提液中的溶解度,采用连续化学浸提法测定底泥中汞存在的水溶态,酸溶态(包括无机汞和甲基汞),碱溶态,过氧化氢溶态及王水溶残渣态. 由于汞沸点很低,易挥发,同时汞离子能定量地被亚锡离子还原为金属汞,因而可以使用测汞仪,在常温下利用汞蒸气对253.7 nm汞共振线的强烈吸收来测定溶液中的汞含量,吸收强度的大小与汞原子蒸气浓度的关系符合比耳定律。 三. 仪器与试剂 1. 仪器 (1) 测汞仪. (2) 恒温振荡器. (3) 离心机. (4) 酸度计. (5) 细口反应瓶:100mL. (6) 玻璃注射器:20mL. 2.试剂 (1) 汞标准溶液:准确称取0.1354 g氯化汞(分析纯)溶于50mL 10%H2SO4及10mL 1% K2Cr2O7溶液中,用去离子水稀释至1000mL,得到0.1mg/mL的汞标准储备液.吸取此标准储备液5.0mL,加入50mL 10%H2SO4及10 mL 1%K2Cr2O7溶液,用去离子水稀释至1000mL,得0.5mg/L的汞标准溶液. (2) 溴化剂:溴酸钾(0.1mol/L)-溴化钾(1%)溶液. (3) 盐酸羟胺(12%)-氯化钠(12%)溶液. (4) 10%SnCl2溶液. (5) 盐酸溶液:0.2mol/L. (6) 1%硫酸铜溶液. (7) 1%氢氧化钾溶液. (8) 30%过氧化氢. (9) 王水. (10) 5%硝酸. (11) 盐酸:1:1. (12) 浓盐酸. 四. 实验步骤 1. 标准曲线的绘制 取0.5mg/L的汞标准溶液0.2,0.3,0.4,0.5,0.6mL分别加到100mL细口反应瓶中,再加入5%的HN03溶液使体积为19mL,然后加入1.0mL 10%SnC12溶液,加盖橡胶反口塞,摇动10 min后,用20mL注射器取出10mL气体,注入吸收池中,测定透光率.根据汞含量与透光率的关系,绘制标准曲线. 2. 不同形态汞的浸提方法 (1) 水溶态汞(氯化物,硝酸盐和硫酸盐)的浸提方法:准确称取19风干泥样品于50mL离心管中,加入10mL去离子水,在恒温振荡器上振荡30 min,离心分离,吸取上清液于25mL容量瓶中.

煤矸石中汞和砷的赋存形态研究

第45卷 第1期 煤田地质与勘探 Vol. 45 No.1 2017年2月 COAL GEOLOGY & EXPLORA TION Feb . 2017 收稿日期: 2015-12-18 基金项目: 国家自然科学基金项目(41372350) Foundation item :The General Program of the National Natural Science Foundation of China (41372350) 第一作者简介: 曹艳芝(1980—),女,河北沧州人,硕士研究生,讲师,从事煤中微量元素的研究工作. E-mail :caoyz@https://www.360docs.net/doc/635100980.html, 通讯作者:郭少青(1972—),女,山西晋城人,博士,从事煤中汞等微量元素在煤转化过程中的迁移规律研究. E-mail :guosq@https://www.360docs.net/doc/635100980.html, 引用格式: 曹艳芝,郭少青,翟晋栋. 煤矸石中汞和砷的赋存形态研究[J]. 煤田地质与勘探,2017,45(1):26–30 CAO Yanzhi ,GUO Shaoqing ,ZHAI Jindong. The mode of occurrence of mercury and arsenic in coal gangues[J]. Coal Geology & Exploration ,2017,45(1):26–30. 文章编号: 1001-1986(2017)01-0026-05 煤矸石中汞和砷的赋存形态研究 曹艳芝,郭少青,翟晋栋 (太原科技大学环境与安全学院,山西 太原 030024) 摘要: 对煤矸石中汞、砷的赋存形态进行研究,可以为煤矸石发电过程中汞、砷的脱除提供理论 依据。采用逐级化学浸提法将3个不同产地煤矸石中汞、砷的赋存形态分为可交换态、碳酸盐结 合态、铁锰结合态、硫化物结合态、有机结合态和残渣态。采用不同的浸提溶液得到对应结合态 的测试结果。结果表明,煤矸石中汞、砷的赋存形态具有一定的相似性。煤矸石中汞、砷主要以 硫化物结合态为主,其质量分数占总汞的67.66%~72.68%,占总砷的56.71%~79.36%;其次为残 渣态,其质量分数占总汞的23.70%~28.06%,占总砷的11.47%~18.02%。另外在煤矸石中砷还以 少量有机结合态形式存在。 关 键 词:煤矸石;汞;砷;赋存形态 中图分类号:TD 984 文献标识码:A DOI: 10.3969/j.issn.1001-1986.2017.01.005 The mode of occurrence of mercury and arsenic in coal gangues CAO Yanzhi, GUO Shaoqing, ZHAI Jindong (School of Environment and Safety , Taiyuan University of Science and Technology , Taiyuan 030024, China ) Abstract: In this paper, the modes of occurrence of Hg and As in three coal gangues were analyzed by sequential extraction procedure (SEP), aiming to provide the theoretical basis of removing mercury and arsenic in the process of power generation using coal gangue. The occurrence modes of As and Hg could be characterized as ion-exchangeable, carbonate-bound, iron-manganese oxide-bound, sulfides-bound, organic-bound and residual forms. The corresponding forms were obtained by adding different extraction solutions sequentially. The experi- mental results show that the sulfides-bound Hg and As are dominant form, accounting for 67.66%~72.68% and 56.71%~79.36% of the total Hg and As in the coal gangues respectively. The residual Hg and As are the second most abundant form, accounting for 23.70%~28.06% and 11.47%~18.02% of the total Hg and As in the coal gangues respectively. In addition, the content of the organic-bound As found in coal gangue is rare. Keywords: coal gangue; mercury; arsenic; modes of occurrence 煤矸石是采煤和洗煤过程中排放的一种工业固 体废弃物。随着煤炭的大量开采,产生的大量煤矸 石露天堆放,不仅占用大量土地,其淋滤液中含有 的有害可溶物会渗入土壤和含水层,污染周围土壤 和地下水[1]。同时,煤矸石中含有一定的可燃物, 其发生自燃后会排放出有害气体进入大气环境[2]。 为了有效利用资源,保护环境,对煤矸石的综合利 用日益引起人们的重视。其中利用煤矸石发电可将 煤矸石中的有效热成分充分利用,使其转化为能源,是将煤矸石变废为宝,同时解决煤矸石在堆放过程中造成污染的一种有效途径[3]。但是,在煤矸石发电过程中,煤矸石中含有的汞、砷等有害微量元素伴随着煤矸石的燃烧会释放到环境中。 汞是一种毒性很强的重金属元素,在自然界中呈现出不同的形态,其中甲基汞具有高神经毒性、致癌性、生殖毒性等效应,是毒性最强的汞化合物;无机汞的毒性较甲基汞相对弱。虽然通常向环境排放的为无机汞,但无机汞进入环境后将经历一系列的转化最万方数据

郑州市城市形态及空间结构分析

城市形态及空间结构分析 ——以郑州市为例 城市规划0902 祝相科200917020215 城市形态是城市建设和规划的重要依据,城市规划者的城市形态理念直接决定了城市规划的效果,以致影响城市的总体布局、城市发展的综合效果、交通组织和城镇群的合理分布,甚至关系到城市生产、生活质量、城市改造、城市合理发展方向等一系列重大问题。 城市空间是各种人类活动与功能组织在城市地域上的空间投影,是城市建设与发展的载体,城市空间结构的研究是城市发展战略规划的核心内容,城市的区域分析、定位研究以及发展目标的实现等研究最终均要落实到空间上。因此,城市空间结构的合理性对城市的可持续发展也尤为重要。 有学者认为城市结构与城市形态互为表里,城市结构表现为城市发展中的内在的动力支撑要素,城市形态则表现为城市发展的外部显性的状态和形式。城市空间结构只是城市结构的一部分,表达的是要素在空间组合上的关系,这种关系即为城市相互作用。城市结构实际上既决定了城市形态,也最终决定了城市空间结构。也就是说,城市空间结构就是能够通过城市相互作用体现为城市形态的那部分城市结构。 其实,目前对城市形态并没有形成统一的概念。纵观学者们对城市形态的理解和表述,从横的方面来看,城市形态具有物质和非物质两种表现形式,物质方面主要指城市各有形要素的空间布置方式,包括街道网的结构形式,各种功能的地域分异、城市土地利用模式和建筑环境以及中心城市和相邻城镇群组之间的空间位置关系和结构变化特征等;非物质的主要包括城市生活方式、文化观念和价值观念等所形成的城市社会精神面貌和城市文化特色。从纵的方面来看,城市形态并不是单一的,而是拼贴式的,是各个历史时期的文化积淀的汇合;城市形态不是一成不变的,它会随历史的变化而产生渐进式、碎片式的变化,通过这种渐变,既可以保持城市文化的延续,又能不断地更新。不过每一个不同时期,都会有一种反映时代特色的占主体的城市形态。 郑州市城市形态演变过程: 郑州市的城市形态经历 了“块状发展一点轴延伸一组 团分散-一体两翼”的过程, 城市的内部填充主要发生于 老城区与京广铁路线之间,井 向南北方向蔓延。而近20年 则是组团分散-一体两翼的转 变。并且随着城市规模的扩大, 两翼“生长臂”的不断延长, 中心城区的中心功能尤其需 要不断强化才能满足两翼生 长的要求。

食品中汞的存在形态及其毒性研究进展1

食品中汞的存在形态及其毒性研究进展 摘要:随着汞在工业、农业、医药等方面的广泛应用,由汞及其化合物所造成的环境汞污染问题日益严重,已成为人类生存环境的一大公害。其中汞的化合物通过食物进入人体中,造成含汞化合物在人体各个脏器的聚集,从而产生各种急性、慢性中毒。为了更好的了解汞在食品中的存在形态及其毒性,本文就此研究的新进展进行综述。 关键词:食品;汞化合物;存在形态;毒性 Advances inspeciationand toxicityof mercuryin food Abstract:With themercuryis widely used inindustry, agriculture, medicine and otherfields,mercury pollutionenvironmentalproblems caused bymercury and its compoundswith the benefit ofa serious, has become a majorhazardto human survivalenvironment.Mercury compoundswhichenter the bodythrough food, causing the mercury-containing compoundsgathered invarious organsof the body,resulting ina variety of acuteand chronicpoisoning.In order to betterunderstand the newprogressin thepresenceof mercury in theform offoodand toxicity, thisstudyreviewedin this article. Keywords: Food; mercury compounds; speciation; Toxicity 环境中的汞污染除自然因素释放并因生态环境的改变而引起迁移外,绝大部分是由人为因素所致。随着城市工业的发展与城市化进程的加快,含汞工业废水使河水日益受到污染,通过生物链富集到水生动物体内,土壤用污水灌溉、污泥施肥及施用含汞农药,最终对人体健康产生严重的影响。汞的复杂的生物地球生物化学行为和生态毒性效应已经引起人类的广泛关注,尤其是不同形态的汞有不同的化学行为、生物积累特性和毒性。在所有有毒金属中汞最为人们所关注,也是研究最集中的金属。为了今后更深入地进行研究,现对食品中汞的存在形态及其毒性做一概述。 1.食品中汞的污染来源 地球经一系列的自然过程如火山活动、地热活动及地壳放气作用等将汞释放入大气[1]。姚学良等人[2]通过对成都平原的基底断裂特征进行探索,初步认为我国成都平原的汞污染除人为来源之外,还可能与平原基底断裂的地球放气作用有关,这是造成该区大气汞污染的主要原因。气相汞的转移归宿是土壤,全球通过降水从气相中转入固相或液相的汞平均为33×109mg/d,土壤中的汞污染主要由于汞矿采掘与汞杀虫剂的大量使用有关[3]。土壤中汞及其化合物的存在不仅影响作物生长,减少作物产量,降低作物品质,造成经济损失,而且还会通过食物链在人体内积累,直接危害人体健康。蔬菜是每日必须摄人的一类产品,在汞污染比较严重的地区,居民摄入的不合格蔬菜对其健康存在着很大的隐患。 汞在进一步迁移转化中,特别是在嫌气条件下,无机汞可以被生物甲基化为甲基汞和二甲基汞,并通过水生生物的食物链而富集,给汞的环境污染带来更严重问题[4]。鱼类和贝类含有人体所需的丰富的蛋白质和微量元素,但是它们却极容易吸收汞,居民摄入水体污染严重的水产品,会对其健康存在着很大的隐患[5]。历史上发生在日本和瑞典两起大规模中毒事件都与甲基汞有关。 2.汞的代谢途径

根的形态与结构教案

华师大版《科学》八(上)第六章《植物的新陈代谢》 第一节绿色植物的营养器官(第一课时:“根的形态和结构”) 宁海县教育局教研室邵万亮 一、教材分析: 1、本节内容的地位:是学习营养器官、新陈代谢的重要基础。 2、教学目标的确立: 知识与技能:了解根的形态与结构,知道根的结构与功能相适应的辩证关系。 过程和方法:通过对不同根形态的观察、根内部结构的显微图片的观察和讨论、新培养的生有大量根毛的根尖的观察,培养学生的观察、对比、分析、归纳和协作等能力。 情感和态度:通过结构与功能相适应的关系、从根形态的一般到特殊等教育,使学生形成辩证思想;通过观察、分析讨论,激发学习兴趣,逐步形成协作精神;通过根尖的感性认识,激发学生的探究兴趣。 3、教学重点:根尖的结构及其功能是学习新陈代谢的重要基础,因此是本节教学的重点。 4、教学难点:根的伸长过程、识别根尖各部分的细胞特点,因内容抽象,故是本节教学的难点。 5、教科书内容编排:①由表及里(形态→结构→功能);②由一般到特殊、共性到个性;③重视观察、对比、分析、归纳、辩证思维等能力的培养;④了解根的一般知识。 二、课前准备 1、布置学生采集不同类型的根,教师再准备一些学生不易带来的变态根; 2、培养学生分组观察用的根尖(带根毛); 3、分组实验有关的仪器:放大镜、显微镜、根尖纵切永久切片、镊子等 三、教学过程 (一)复习引入 师:青菜是同学们熟知的植物,你们知道它有哪些器官吗? 生:根、茎、叶。 师:知道哪部分是茎吗?(展示处于营养生长期的青菜图片)。 生:指认图片上的根、茎、叶。 师:青菜还有其它器官吗? 生:花、果实、种子。 师(展示处于生殖生长期的青菜图片,认学生再认植物的整体结构,并对学生回答给予肯定,):青菜的这些器官如何分类? 生:根、茎、叶是营养器官,花、果实、种子是生殖器官。 师:这节课我们开始学习“§6-1绿色植物的营养器官”(板书)。 设计意图:复习初一知识,为引入新课作铺垫。 (二)新课教学 师:植物含有人体必须的多种营养,我们天天都要与食用一些植物,你们能各举出一种分别食用某一种器官的植物名称吗? 生:花生主食种子、黄花菜主食花、西瓜主食果实、甘蔗主食茎、萝卜主食根、菠菜主食叶(学生回答活跃,需要教师进行调控,并对答案进行评价,当教师无法评价时,可问学生“你是怎么知道它是ΧΧ器官的?”) 师:看来同学们已经认识了不少的植物,接下来认我们对植物作进一步的了解。 活动1、同学间交换观察并比较课前采集的不同根的形态和组成,根据根的形态和组成的特

形态结构分析另篇蝴蝶

蝴蝶理论 蝴蝶理论最早出现在1935年一个叫H。M。GARTLEY(加特利)所著《股市利润》里面。之后在1999年SCOCTT。M.CARNEY出版的《和谐交易》一书中做出了详细的讨论。分析界对该理论有很高的评价,号称是波浪理论,周期理论之后又一经典理论。美中不足的是其操作要求较高,必须形态以及行情精度达到相应的标准。 认识蝴蝶理论 经典的蝴蝶理论有六种形态,包括:1,CRAB螃蟹;2,BUTTERFLY蝴蝶;3,BAT蝙蝠;4,GARTLY加特利;5,THREE DRIVES三角;6,AB=CD菱形(又称经典螃蟹)。 每种形态包括二种划分-——-BULLISH(看涨信号),BEARISH (看跌信号) 1,AB=CD菱形(又称经典螃蟹) 这一形态是蝴蝶形态里面的核心部分,即简单,又最重要,所以被称为经典螃蟹。该形态的运用往往可以忽略X点的存在直接将形态看做是AB=CD形态

上图的四个数字是一一对应的,也就是(0.786/1.27),(0。618/1。618)这样的对应关系。1?.ab 必须等于cd的长度,公差0。152?。时间上ab 和cd的形成差不多一样 3。a必须是最高或最低点 4.角的形态必须明显的对称 5。c必须在ab的0。618到0。718 之间,这是书中的介绍,但好多实例说明,c在0。382-0.786上都可以的。 6.d必须在ab的1。27到1。618之间,这也是书中的介绍,但事实上, d可以去到1.27—2。24这个范围上的。 7。在好的市场,也就是强势市场,d的目标是1.618,最大可以去到2.618。 2, GARTLY加特利形态 加特利形态是所有蝴蝶形态中最经典的形态,俗称“222”形态

汞和砷元素形态及其价态测定法

汞和砷元素形态及其价态测定法 本法系采用高效液相色谱-电感耦合等离子质谱法测定供试品中汞或砷元素形态及其价态。 由于元素形态及其价态分析的前处理方法与样品密切相关,供试品溶液的制备方法如有特殊要求应在品种项下进行规定。 一、汞元素形态及其价态测定法 照高效液相色谱法-电感耦合等离子体质谱测定法(通则 0412)测定。 色谱、质谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂;以甲醇 -0.01mol/L乙酸铵溶液(含0.12%L-半胱氨酸,氨水调节pH值至7.5)(8:92)为流动相;流速为1.0ml/min。以同轴雾化器的电感耦合等离子体质谱(具碰撞反应池)进行检测;测定时选取的同位素为202Hg,根据干扰情况选择正常模式或碰撞池反应模式。3种不同形态汞的分离度应大于1.5。汞元素形态及价态示意图 对照品贮备溶液的制备 分别取氯化汞、甲基汞、乙基汞对照品适量,精密称定,加8%甲醇制成每1ml各含100ng(均以汞计)的溶液,即得。 标准曲线溶液的制备 精密吸取对照品贮备溶液适量,加8%甲醇分别制成每1ml各含0.5ng、1ng、5ng、10ng、20ng(均以汞计)系列浓度的溶液,即得。 供试品溶液的制备 除另有规定外,取供试品适量,精密称定,加人工胃液或人工肠液适量,置37℃水浴中超声处理适当时间,摇匀,取适量,静置约24小时,吸取中层溶液适量,用微孔滤膜(10μm)滤过,精密量取续滤液适量,用0.125mol/L盐酸溶液稀释至一定体积,即得。同法制备空白溶液。 测定法 分别吸取系列标准曲线溶液和供试品溶液各20~100μl,注入液相色谱仪,测定。以系列标准曲线溶液中不同形态汞或价态汞的峰面积为纵坐标,浓度为横坐标,绘制标准曲线,计算供试品溶液中不同形态或价态汞的含量,即得。

汞的形态分析

液相色谱-原子荧光光谱联用测定鱼样中甲基汞的含量 ——LC-AFS法 1、目的 建立一个前处理操作方便,准确可靠的测定鱼类样品中甲基汞的方法 2、主题内容及适应性 本方法规定了鱼类中甲基汞测定的液相色谱-原子荧光光谱法,本法适用于鱼类中甲基汞的测定。 3、原理 样品中的甲基汞用提取液提取后,通过C18色谱柱,由于C18柱对无机汞、甲基汞和乙基汞的吸附能力不同,流动相将无机汞、甲基汞和乙基汞依次洗脱,洗脱的溶液首先和氧化剂混合,再和空气混合,通过紫外光照射,将有机汞都氧化成无机汞,最后混合还原剂和盐酸发生氢化反应,进入原子化器,与原子荧光联用进行数据收集和处理。 4、试剂与材料 除非另有说明,所用试剂均为分析纯,水为蒸馏水或相当者;液相色谱流动相所用溶剂均为色谱纯并经过0.45μm滤膜过滤。 4.1 试剂 4.1.1 流动相:5%乙腈jing(HPLC级)+0.5%乙酸胺+0.1%半胱氨酸,经溶剂过滤器过滤后,放在超声波清洗器中超声20min,除去气泡。 4.1.2 载流:7%HCl(优级纯) 4.1.3 还原剂:0.5%KOH +1.5% KBH4 4.1.4 氧化剂:0.5%KOH +1%K2S2O8 4.1.5 清洗液:CH3OH-H2O(1+1) 4.1.6 提取液:10%HCl+1%硫脲+0.15%KCl 4.2 标准溶液 4.2.1 标准储备溶液:用水配制1000μg/L的Hg2+-MeHg-EtHg的混合标准溶液100mL,保存于4℃冰箱。 4.2.2 标准工作溶液:标准工作液根据需要用混合液逐级稀释配置(混合液包括提取液:流动相:水=3:4:3) 5、仪器与设备 5.1 岛津高压液相泵-SAP10形态分析预处理装置-原子荧光光谱仪

鸟类飞行的形态结构特征

鸟类飞行的形态结构特征 厦门市林业局邱春荣 鸟类的运动方式有飞翔、攀缘、步行、奔跑、跳跃、游泳和潜水等,而飞翔运动使鸟类在自然选择中占了优势。飞翔可以避开陆地上的捕食者,也可以又快又广阔地迁飞到新的越冬区和繁殖区,春秋季节的南北迁徒,还能得到整年的有利气候条件。 为什么鸟类适于在空中飞行呢?因为鸟类的身体有与飞行相适应的各种形态结构: 1、外形与羽毛,鸟类的身体呈梭形,构成流线型的外廊,体表被覆着一种奇特的自然构造——羽毛,它重量极轻而结构甚精巧,在受到损坏时易于修理和更换,比蝙蝠的皮膜有更好适应飞行的能力。 2、翼,鸟类的飞羽着生于前肢,形成能够伸缩与折叠的两翼,翼的前缘厚,后缘薄,穿过空气时阻力小并能产生升力。而后缘上着生的飞羽(初级飞羽和次级飞羽)则扩大了翼的表面积,产生了强大的浮力和飞行动力。 3、骨骼和肌肉,鸟类的骨骼薄、空(骨腔大,腔内还充满了空气)、轻的特点,非常适于空中飞行,由脊柱和肋骨、胸骨构成的胸廊连同腰带是全身(包括两翼)的主要支持结构,并且鸟类的胸、腰、荐、尾各部脊椎适度愈合成块,支撑机体,使飞行时身体平稳,

生在胸骨上的龙骨突,附着有特别发达的飞行肌肉——胸肌,约占体重的1/5,它能发出强大的动力,牵引翼的扇动。 4、消化系统,鸟口中无牙,也无牙床,上下颌骨及其他与取食有关的骨骼退化,减轻头骨的重量,达到合理的身体配重。鸟类的嗉囊、腺胃、肌胃是鸟类快速取食与消化的另一种适应。鸟类飞行要消耗大量的能量,有的鸟一天消耗的食物约等于它的体重,有的鸟则超过本身体重的好几倍(人为财死,鸟为食亡)。这样大的取食量,若通过牙齿咀嚼吞咽,来从食物中获得营养就难以维持飞行时的能量消耗。因此鸟类在取食时,总是把食物直接快速吞咽,再由消化系统的各部分继续消化。 5、呼吸系统,鸟类有一个十分特别的呼吸系统,表现在具有非常发达气囊和气管。气囊广布于内脏、骨腔和肌肉之间,这些气囊使鸟类在吸气及呼气过程中,肺内均有富含氧气的空气流过,在吸气和呼气时肺叶都能进行气体交换,是谓双重呼吸,从而提高鸟类的呼吸效率。鸟类的新陈代谢快,又没有散热的汗腺,所以气囊又兼有调节体温、降低鸟体的比重、减小飞翔运动引起的内脏间及肌肉间的磨擦。 6、内脏特化,鸟类心脏的相对大小在所有脊椎动物中居首位,约占体重的0.4%-1.5%,心脏容量大,心跳频率快,一般为300-500次/分钟,血流速度快,有利于氧气、营养物质及代谢废物的交换与

形态结构分析另篇蝴蝶

蝴蝶理论 蝴蝶理论最早出现在1935年一个叫H.M.GARTLEY(加特利)所著《股市利润》里面。之后在1999年SCOCTT.M.CARNEY出版的《和谐交易》一书中做出了详细的讨论。分析界对该理论有很高的评价,号称是波浪理论,周期理论之后又一经典理论。美中不足的是其操作要求较高,必须形态以及行情精度达到相应的标准。 认识蝴蝶理论 经典的蝴蝶理论有六种形态,包括:1,CRAB螃蟹;2,BUTTERFLY 蝴蝶;3,BAT蝙蝠;4,GARTLY加特利;5,THREE DRIVES三角;6,AB=CD菱形(又称经典螃蟹)。 每种形态包括二种划分----BULLISH(看涨信号),BEARISH(看跌信号)1,AB=CD菱形(又称经典螃蟹) 这一形态是蝴蝶形态里面的核心部分,即简单,又最重要,所以被称为经典螃蟹。该形态的运用往往可以忽略X点的存在直接将形态看做是AB=CD形态

上图的四个数字是一一对应的,也就是(0.786/1.27),(0.618/1.618)这样的对应关系。 1.ab 必须等于cd的长度, 公差0.15 2.时间上ab和cd的形成差不多一样 3.a必须是最高或最低点 4.角的形态必须明显的对称 5.c必须在ab的0.618到0.718 之间,这是书中的介绍,但好多实例说明,c在0.382-0.786上都可以的。 6.d必须在ab的1.27到1.618 之间,这也是书中的介绍,但事实上,d可以去到1.27-2.24这个范围上的。 7.在好的市场,也就是强势市场,d的目标是1.618,最大可以去到2.618。

2, GARTLY加特利形态 加特利形态是所有蝴蝶形态中最经典的形态,俗称“222”形态

污泥中汞的存在形态

污泥中汞的存在形态 1 引言 在污水净化处理过程中,污水中的汞(Hg)与其它重金属一起通过细菌表面和矿物颗粒表面吸附、或以氧化汞和硫化汞共沉淀等多种方式,最终被浓缩在污泥中.与其它重金属相比,污泥中的汞虽然在含量上偏低,通常在0.1~10.0 mg · kg-1的范围波动.但由于金属汞易挥发,并具有强烈毒性的特性,因此,即使污泥中的汞含量较低,在污泥处理处置过程中仍需要给予高度重视,以便防止汞对环境可能带来的危害. 污水处理厂污泥经过机械脱水,污泥的含水率一般在80%左右,由于污泥含有大量的水分,使得污泥体积庞大,这为污泥的堆放、运输和处置带来了极大的困难.污泥要得到安全彻底的处理,首先必须对污泥进行深度脱水.实践表明,热干化是污泥深度脱水实现减量最有效的方法.在热干化过程中,污泥的物性随含水率降低会发生明显的改变,这必然对污泥中汞的含量及其存在形态产生重要的影响,然而我们对这种影响发生的过程和原因,以及它的影响程度等却知之甚少.而这对于评价污泥中汞的稳定性及其对污泥最终的安全处理恰恰是至关重要的,因为相同总量的重金属汞因存在形态不同,其生物效应和环境效应有较大的差异. 因此,本文选择代表性的污泥类型为研究对象,定量分析污泥中汞的含量及其存在形态的分布特征.同时在模拟污泥干化的条件下,揭示污泥在干化过程中汞含量及其存在形态的动态变化,并分析造成污泥中汞含量和各存在形态发生变化的原因.这不仅对深入了解汞的环境地球化学行为具有重要的理论意义,而且也为污泥的无害化、减量化和资源化的综合处理提供科学依据. 2 材料与方法 2.1 实验材料 本次研究的实验材料为3种不同类型的新鲜污泥:市政污泥、印染污泥和造纸污泥,分别采自杭州城市污水处理厂、江阴印染污水处理厂和富阳造纸污水处理厂. 2.2 实验方法 污泥含水率测定:将50 mL瓷蒸发皿置于烘箱内,105 ℃烘2 h,取出后放在干燥器内冷却0.5 h,用万分之一天平称重,记录质量W1;取20 g左右污泥置于烘干后的蒸发皿中,称重记录为W2,然后放入105 ℃的烘箱中烘2 h,取出后放入干燥器内冷却0.5 h,用万分之一天平称重,记录重量后,再放回烘箱中烘2 h,取出后于干燥器中冷却至室温,称重,反复操作,直至恒重,记录最终的质量W3.蒸发的水质量(W2-W3)除以初始污泥质量(W2-W1),得到污泥的含水率. 污泥的pH测定:称取5.00 g污泥样品置于150 mL具塞锥形瓶中,加入50 mL无二氧化碳水浸泡,密封后置于水平往复式振荡器上,在室温下振摇4 h,离心,取上清液用pH 计进行测定.

土壤样品中汞的形态分析研究进展 (1)

文章编号:1006 446X(2010)11 0019 06 土壤样品中汞的形态分析研究进展 胡一珠1 邓天龙1,2 胡志中3 郭亚飞1,2 (1.成都理工大学核技术与自动化工程学院,四川 成都 610059; 2 天津市海洋资源与化学重点实验室,天津科技大学, 天津 300457;3 成都地质矿产研究所,四川 成都 610081) 摘 要:土壤中汞的活性及其生物有效性因其赋存形态不同而存在差异,汞赋存形态分析已成为 环境科学领域研究的热点之一。归纳总结了近年来土壤环境中汞赋存形态分类、样品预处理技术 和汞形态分析技术研究进展,指出了未来的发展方向。 关键词:土壤;汞;赋存形态;预处理;形态分析 中图分类号:O656 5 O614 24 文献标识码:A 汞作为常温下唯一呈液态的重金属元素,因其具有污染持久性、生物富集性和剧毒性等特点,对环境及人体健康产生巨大的危害。当前汞已被各国政府及UNEP、WHO及FAO等国际组织列为优先控制且最具毒性的环境污染物之一[1]。目前研究已发现汞在大气、土壤和水环境中的毒性及环境行为,随其所在自然环境中的赋存形态、迁移活性及生物有效性等的不同而有所差异,因而汞的形态分析已成为当前全球环境科学研究的热点之一[2]。本文主要归纳总结了近年来土壤环境中汞的赋存形态、预处理和形态分析的研究进展,这有助于揭示土壤环境污染现状和土壤沉积变化规律。 1 土壤环境中汞赋存形态分类 汞在自然环境中主要以H g0、H g2+2、H g2+、有机汞这4种化学形式存在。而在土壤环境中的汞存在形态主要受p H、有机、无机配体及Eh等因素的影响,如在正常的Eh和p H范围内,汞就能以零价形式存在[3]。研究进一步发现,在一定的环境条件和微生物作用下,土壤中汞的存在形态间可以发生相互转化,外源汞进入土壤后的不同形态汞将逐渐向惰性汞转化[4]。 传统土壤环境中汞赋存形态是根据物理、化学性质不同分类,随着研究的深入,汞的形态分类方法多按其提取方式不同而分类[5]。LET I C I A等[6]将土壤中的汞分为可交换态汞、碳酸汞、铁锰结合态汞、有机汞和残留汞,并用5步法将其从墨西哥流域底泥样品中成功提取。郑冬梅等[7]在传统浸提技术的基础上采用连续化学浸提法,将土壤沉积物中的汞分为水溶性及可交换态、酸溶态、碱溶态、过氧化氢溶态、王水溶态5个部分。纵观土壤样品中汞的形态研究进展,以陈丽萍等[8]提出的连续提取土壤/沉积物中汞的相态分类法(将汞的形态分为可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态和残渣态)最为卓著,应用最为广泛。 收稿日期:2010 10 09 基金项目:国家自然科学基金项目(40573044、40773045)资助 作者简介:胡一珠(1983),地球化学专业硕士生。 通讯作者:邓天龙,博导。E m ai:l tl deng@i sl ac cn ! ! 19

汞形态分析中的前处理技术

第21卷第1期分析测试学报V ol.21N o.1 2002年1月FENXI CESHI XUE BAO(Journal of Instrum ental Anal y sis)Jan.2002 综述 汞形态分析中的前处理技术 何滨,江桂斌 (中国科学院生态环境研究中心环境分析化学与生态毒理学开放实验室,北京100085)摘要:对近二十年来汞的分离富集技术进行了回顾,并对不同基体样品的分离富集方法进行了总结。 关键词:汞;前处理;分离;富集 中图分类号:O614.243文献标识码:A文章编号:1004-4957(2002)01-0089-06 自然和人类活动导致大量的汞进入大气、水圈和生物圈,随着汞在各种环境中的循环,其化学形态也在不断转化。虽然在环境和生物样品中汞的形态不很复杂,但由于样品基体的复杂性及汞化合物的毒性,使得汞的形态分析越来越受到人们的重视。由于样品中汞的浓度一般较低,在进行形态分析前对样品进行分离富集是必不可少的。 形态分析最理想的方法是对样品中待研究的形态进行“原位”分析,即尽量避免对样品进行任何形式的预处理,以保持待研究形态的原始特性不变。但到目前为止,由于缺少高灵敏的选择性检测技术,还不能解决实际样品中的直接“原位”形态分析问题,在进行最后的形态测定前还需要对样品进行富集、分离等预处理。 1汞化合物的萃取富集方法 从环境样品中萃取富集汞化合物的技术大致可以分为以下6种。 1.1酸解溶剂萃取 这种萃取技术以20世纪60年代W estoo[1]提出的在HC l介质中用苯从鱼肉中萃取甲基汞为代表,这一萃取过程需要分几次进行才能得到纯净的甲基汞苯溶液。在此基础上Padber g[2]和Bulska[3]分别在HC l中加入了NaC l,Rezende等[4]在HC l中加入了K Br,而Lansen等[5]则向HC l中加入碘乙酸,再用苯[6]、甲苯[7]、氯仿[4]或二氯甲烷[8]等有机溶剂连续萃取,可从样品中选择性地萃取甲基汞。试验表明,当甲基汞的含量低于0.5n g/L时,苯不能达到完全萃取[9],用半胱氨酸或硫代硫酸钠从苯或甲苯萃取剂中反萃取,可富集汞的化合物[1,10]。但用微波等离子体原子发射光谱(MIP-AES)测定时,甲苯萃取剂会导致背景值的增加[11]。研究认为,加入络合剂有助于提高氯仿萃取甲基汞的萃取率[4],而加入H g C l2[12]或CuC l2[13]可将固体样品中的甲基汞与复合的—SH基团分离。 1.2碱消化萃取 K OH-甲醇[8,14]和NaOH-半胱氨酸溶液[15]均可将甲基汞从底泥中萃取出来,而不破坏其H g—C键。但与酸相比,由于不易获得较纯的碱溶液,碱萃取法易导致样品的沾污。此外,碱消化萃取法还会导致样品基体中的有机物、硫化物或有色金属离子与汞化合物的共萃取,给后续的预富集、分离和测定带来严重的干扰[13]。 1.3酸挥发预富集 这是一种将待测的汞化合物形态转化成挥发性的衍生物,从而避免用有机溶剂萃取的分离富集方法[5,13]。将均化的固体样品溶于含过量NaC l的稀H2SO4中,用150℃的空气或氮气流蒸馏是分离H g(Ⅱ)和甲基汞的有效方法。所形成的CH3H g C l被蒸馏出来并收集于一密闭试管中,经水冷后储存于黑暗之处以防甲基汞的降解,然后再用原子光谱检测器测定[16]。 目前尚无人将这3种萃取方法对同一样品的萃取率进行比较。H orvat等[13]研究了这3种萃取方法对两种底泥参考物的萃取效率,他们发现,在145℃条件下,用60m L/m in的氮气流从含K I的8 收稿日期:2001-03-14;修回日期:2001-07-11 基金项目:国家自然科学基金资助项目(29825114) 作者简介:何滨(1967-),女,湖南桃源人,副研究员;江桂斌,联系人.

相关文档
最新文档