《算法设计与分析》
《算法设计与分析》实验大纲

《算法设计与分析》课程实验教学大纲Design and Analysis of Computer Algorithm总学时 16 总学分 0.5 实验学时 16一、基本情况1. 课程性质:专业实践2. 设课方式:独立设课3. 适用专业:计算机科学与技术专业4. 开课学期:第5学期5. 实验教材:《算法设计与分析》实验指导书6. 先修课程:高级语言程序设计、离散数学、数据结构二、课程简介算法设计与分析实验将覆盖计算机软件实现中的大部分算法,具有一定的深度和广度,目的是让学生掌握递归与分治策略、动态规划、贪心算法、回溯法、分支限界法等算法思想;能独立运用相关算法策略来分析、解决实际问题并编程实现。
同时,算法设计与分析实验是对学生在软件设计方面的综合训练,包括问题分析,总体结构设计,程序设计基本技能和技巧等,以培养良好的编程风格和科学作风。
通过理论联系实际,最终提高学生动手操作的能力以及分析问题和解决问题的能力,培养对算法的复杂性进行分析的逻辑思维能力。
三、实验目的与任务实验是教学内容的重要一环,其目的一方面是为了让学生掌握算法设计与分析中的一些常用的典型的算法设计思想和方法;另一方面是为了让学生切实掌握各种算法的具体实现方法,培养学生的实际动手能力,加强学生创新思维能力的培养。
四、课程的基本要求(1)了解实验目的,熟悉实验环境。
(2)预习实验,准备好实验题目和操作步骤。
(3)能编译调试源程序,分析错误原因并加以修改,得出正确结果。
(4)能运用所学的知识正确分析程序得出的结果,并能给出改进的方案。
(5)将上述各项要求及实验结果编写成实验报告。
实验前学生要认真预习实验内容,按要求编写源程序及准备测试数据。
实验中,要按操作规程操作计算机,集中精力调试程序,并认真测试实验数据。
对实验程序的故障应自行分析解决,不拷贝其它人的成果。
对实验得出的结果能加以分析,提出改进的具体措施。
掌握递归与分治策略、动态规划、贪心算法、回溯法、分支限界法等算法思想;能独立运用相关算法策略分析问题、解决实际问题并编程实现。
《算法设计与分析》课件

常见的贪心算法包括最小生成树算法 、Prim算法、Dijkstra算法和拓扑排 序等。
贪心算法的时间复杂度和空间复杂度 通常都比较优秀,但在某些情况下可 能需要额外的空间来保存状态。
动态规划
常见的动态规划算法包括斐波那契数列、背包 问题、最长公共子序列和矩阵链乘法等。
动态规划的时间复杂度和空间复杂度通常较高,但通 过优化状态转移方程和状态空间可以显著提高效率。
动态规划算法的时间和空间复杂度分析
动态规划算法的时间复杂度通常为O(n^2),空间复杂度为O(n)。
04 经典问题与算法实现
排序问题
冒泡排序
通过重复地遍历待排序序列,比较相邻元素的大小,交换 位置,使得较大的元素逐渐往后移动,最终达到排序的目 的。
快速排序
采用分治策略,选取一个基准元素,将比基准元素小的元 素移到其左边,比基准元素大的元素移到其右边,然后对 左右两边的子序列递归进行此操作。
动态规划是一种通过将原问题分解为若干个子 问题,并从子问题的最优解推导出原问题的最 优解的算法设计方法。
动态规划的关键在于状态转移方程的建立和状态 空间的优化,以减少不必要的重复计算。
回溯算法
01
回溯算法是一种通过穷举所有可能情况来求解问题的算法设计方法。
02
常见的回溯算法包括排列组合、八皇后问题和图的着色问题等。
空间换时间 分治策略 贪心算法 动态规划
通过增加存储空间来减少计算时间,例如使用哈希表解决查找 问题。
将问题分解为若干个子问题,递归地解决子问题,最终合并子 问题的解以得到原问题的解。
在每一步选择中都采取当前状态下最好或最优(即最有利)的 选择,从而希望导致结果是最好或最优的。
通过将问题分解为相互重叠的子问题,并保存子问题的解,避 免重复计算,提高算法效率。
《算法设计与分析》(全)

1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论
算法设计与分析

算法设计与分析算法在计算机科学和信息技术领域中起着至关重要的作用。
算法设计与分析是指通过研究和设计不同的算法,以解决特定的计算问题。
在本文中,我们将探讨算法设计与分析的重要性,介绍常见的算法设计策略,并讨论算法性能分析的方法。
一、算法设计的重要性算法是计算机程序的核心,好的算法能够提高程序的执行效率和性能。
在实际应用中,优秀的算法设计所带来的性能改进往往是显著的。
通过深入理解并掌握各种算法设计策略,我们可以更好地解决问题,提高程序的运行效率和响应速度。
二、常见的算法设计策略1.分而治之(Divide and Conquer):将一个复杂问题分解成若干个相似的子问题,逐个解决,最后合并子问题的解得到原问题的解。
典型的应用包括快速排序和归并排序等。
2.贪心算法(Greedy Algorithm):在每一步选择中都采取当前状态下最优的选择,以期望达到全局最优解。
例如,霍夫曼编码和最小生成树算法(Prim算法和Kruskal算法)。
3.动态规划(Dynamic Programming):通过将原问题分解为相互重叠的子问题,将每个子问题的解存储起来,避免重复计算,从而得到最终问题的解。
经典的应用有背包问题和最短路径问题等。
4.回溯法(Backtracking):通过不断尝试所有可能的解,并在不满足条件时进行回溯,直到找到满足条件的解。
典型的应用有八皇后问题和0-1背包问题等。
5.分支限界法(Branch and Bound):通过扩展搜索树并设置界限函数来减少搜索空间,从而有效地找到最优解。
典型的应用有旅行商问题和迷宫求解问题等。
三、算法性能分析的方法算法性能分析是评估算法效率的重要手段,常用的方法有以下几种:1.时间复杂度分析:衡量算法的运行时间随着问题规模的增加而增长的趋势。
通常使用大O记法表示时间复杂度,如O(n)、O(nlogn)等。
2.空间复杂度分析:衡量算法所需的额外空间随着问题规模的增加而增长的趋势。
黄宇《算法设计与分析》课后习题解析(二)精选全文

黄宇《算法设计与分析》课后习题解析(⼆)第2章:从算法的视⾓重新审视数学的概念2.1:(向下取整)题⽬:请计算满⾜下⾯两个条件的实数的区间解析:根据向下取整的含义,令,讨论a的取值范围即可解答:令,则可得:即:故的取值区间为:2.2: (取整函数)题⽬:证明:对于任意整数,(提⽰:将n划分为)。
解析:根据提⽰将n进⾏划分,根据取整函数的定义⽤k表⽰取整函数,即可证明;证明如下:因为对于任意整数,可划分为,则:① ;② ;综上:对于任意整数,, 得证;2.3: (斐波拉契数列)对于斐波拉契数列,请证明:1)题⽬:是偶数当且仅当n能被3整除解析:由斐波拉契数列的递归定义式,容易联想到数学归纳法;证明如下:(采⽤数学归纳法)i)当n = 1,2,3时,依次为1,1,2,符合命题;ii)假设当(k>=1)时命题均成⽴,则:① 当n = 3k+1时,是奇数,成⽴;② 当n = 3k+2时,是奇数,成⽴;③ 当 n = 3(k+1)时,是偶数,成⽴;综上:归纳可得为偶数当且仅当,得证;2)题⽬:x x =1+a (0<a <1)x =1+a (0<a <1)⌊x ⌋=1⇒⌊x ⌋=21⌊x ⌋=2⌊1+a +22a ⌋=1a +22a <1⇒0<a <−21⇒1<a +1<⇒21<x <2x (1,)2n ≥1⌈log (n +1)⌉=⌊logn ⌋+12≤k n ≤2−k +11n ≥12≤k n ≤2−k +11k +1=⌈log (2+k 1)⌉≤⌈log (n +1)⌉≤⌈log (2)⌉=k +1k +1=>⌈log (n +1)⌉=k +1k =⌊log (2)⌋≤k ⌊logn ⌋≤⌊log (2−k +11)⌋=k =>⌊logn ⌋=k n ≥1⌈log (n +1)⌉=k +1=⌊logn ⌋+1F n F n n ≤3k F =n F +n −1F =n −2F +3k F =3k −1>F 3k +1F =n F +3k +1F =3k >F 3k +2F =n F +3k +2F =3k +1>F 3k +3F n 3∣n F −n 2F F =n +1n −1(−1)n +1解析:同1)理,容易联想到数学归纳法证明如下:(采⽤数学归纳法)i)当n = 2时,, 易知成⽴;ii)假设当 n = k 时命题成⽴,① 若k = 2m, 则,当n = k+1 = 2m+1时,要证命题成⽴,即证: => ,代⼊递推式, 得:, 易知是恒等式,故命题成⽴;②当 k=2m+1时,同①理可证命题成⽴;综上:归纳可得,得证;2.4:(完美⼆叉树)给定⼀棵完美⼆叉树,记其节点数为,⾼度为,叶节点数为,内部节点数为1)题⽬:给定上述4个量中的任意⼀个,请推导出其他3个量解析:根据完美⼆叉树的结构特点易得解答:(仅以已知⾼度h推导其他三个量为例,其余同理)已知⾼度为h,可得:节点数:叶节点数:内部节点数:2)题⽬:请计算完美⼆叉树任意⼀层的节点个数:① 如果任意指定深度为的⼀层节点,请计算该层节点个数;② 如果任意指定⾼度为的⼀层节点,请计算该层节点个数;解析:根据完美⼆叉树的结构特点易得(注意节点深度和节点⾼度是互补的,相加为树⾼)解答:① ; ② ;2.5: (⼆叉树的性质)对于⼀棵⾮空的⼆叉树T,记其中叶节点的个数为,有1个⼦节点的节点个数为,有两个⼦节点的节点个数为1)题⽬:如果T是⼀棵2-tree,请证明。
算法设计与分析课程设计

算法设计与分析 课程设计一、课程目标知识目标:1. 让学生掌握基本的算法设计原理,包括贪心算法、分治算法、动态规划等,并能够运用这些原理解决实际问题。
2. 使学生了解不同算法的时间复杂度和空间复杂度分析方法,能够评估算法的效率。
3. 引导学生理解算法的优缺点,并能针对具体问题选择合适的算法进行解决。
技能目标:1. 培养学生运用所学算法原理设计解决实际问题的算法,提高编程实现能力。
2. 培养学生通过分析算法的时间复杂度和空间复杂度,对算法进行优化和改进的能力。
3. 提高学生运用算法思维解决问题的能力,培养逻辑思维和创新能力。
情感态度价值观目标:1. 激发学生对算法学习的兴趣,培养主动探索、积极思考的学习态度。
2. 培养学生团队协作精神,学会与他人分享算法设计心得,共同解决问题。
3. 使学生认识到算法在现实生活中的重要性,提高对计算机科学的认识和兴趣。
课程性质:本课程为计算机科学领域的一门核心课程,旨在培养学生的算法设计与分析能力。
学生特点:学生已经具备一定的编程基础和逻辑思维能力,但对复杂算法的设计与分析仍需加强。
教学要求:结合实际案例,注重理论与实践相结合,引导学生通过自主探究、团队合作等方式,达到课程目标。
在教学过程中,注重分解目标,将目标具体化为可衡量的学习成果,以便于教学设计和评估。
二、教学内容1. 算法基本原理:- 贪心算法:介绍贪心算法原理及其应用场景,结合实际案例进行分析。
- 分治算法:阐述分治算法的设计思想及其应用,举例说明。
- 动态规划:讲解动态规划的基本概念、原理和应用,分析典型问题。
2. 算法分析:- 时间复杂度分析:介绍大O表示法,分析常见算法的时间复杂度。
- 空间复杂度分析:阐述空间复杂度的概念,分析常见算法的空间复杂度。
3. 算法优化与改进:- 针对典型问题,分析现有算法的优缺点,探讨优化方向。
- 引导学生通过算法分析,提出改进方案,并进行实现。
4. 教学大纲安排:- 第一章:算法基本原理(贪心算法、分治算法、动态规划)- 第二章:算法分析(时间复杂度、空间复杂度)- 第三章:算法优化与改进5. 教材章节和内容列举:- 教材第3章:贪心算法及其应用- 教材第4章:分治算法及其应用- 教材第5章:动态规划及其应用- 教材第6章:算法分析(时间复杂度、空间复杂度)- 教材第7章:算法优化与改进教学内容确保科学性和系统性,结合实际案例进行讲解,使学生能够逐步掌握算法设计与分析的方法。
算法设计与分析(第2版)

作者简介
王晓东,男,1957年3月出生,福州大学计算机系教授,福建省计算机学会理事长。研究领域是算法设计与 算法评价,基于计算机络和信息安全的大规模问题求解算法与数据结构,信息可视化技术。几何计算,并行和分 布式算法设计,计算复杂性理论。先后主持了与算法设计与分析有关的国家自一然科学基金项目、国家优秀留学 回国人一员基金项目、福建省杰出人才基金项目和省自然科学基金项目等7个研究课题;获得国家科技进步二等奖 1项,省科技进步二等奖3项。主持国家精品课程“算法与数据结构”,和福建省优质硕士学位课程“算法设计与 分析”的课程建设,获2005年福建省教学成果一等奖。在国内外重要学术刊物上发表有创见性的论文50余篇;正 式出版《算法设计与分析》等学术著作7部,在算法复杂性研究方面取得了一系列理论研究成果和应用成果。例如, 在对著名的凸壳问题的计算复杂性研究成果中推广了关于判定树模型下问题的计算复杂性下界的著名的Ben-Or, 并应用于分析凸壳问题的计算复杂性,在较_般的情况下改进和完善了国际算法界知名学者Aggarwal、Steele和 Yao等提出的关于凸壳问题计算复杂性下界的结果。研究成果得到同行专家的好评并被国内权威刊物所引用。
内容提要
为了适应培养我国21世纪计算机各类人才的需要,结合我国高等学校教育工作的现状,立足培养学生能跟上 国际计算机科学技术的发展水平,更新教学内容和教学方法,提高教学质量,本书以算法设计策略为知识单元, 系统地介绍计算机算法的设计方法与分析技巧,以期为计算机科学与技术学科的Байду номын сангаас生提供广泛而坚实的计算机算 法基础知识。
目录
第1章算法引论 1.1算法与程序 1.2表达算法的抽象机制 1.3描述算法 1.4算法复杂性分析 小结 习题 第2章递归与分治策略 2.1递归的概念 2.2分治法的基本思想 2.3二分搜索技术
安徽工业大学《算法设计与分析》考试内容

1.算法的定义:算法是解某一特定问题的一组有穷规则的集合。
2.算法的性质:有限性、确定性、输入、输出、能行性4.算法的时间复杂性越高,算法的执行时间越长;反之,执行时间越短。
算法的空间复杂性越高,算法所需的存储空间越多;反之越少。
5.初等操作:所有的操作都具有相同的固定字长;所有操作的时间花费都是一个常数时间间隔。
6. 算法分析的目的:分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法7.算法的时间复杂性与问题的规模相关,是问题大小n 的函数。
8.因此可以用T(n)的数量级(阶)评价算法。
时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。
设算法执行时间为T (n ),如果存在)(*n T ,使得:0)()()(lim*=-∞→n T n T n T n就称)(*n T 为算法的渐进时间复杂性。
9.运行时间的上界:令N 为自然数集合,R+为正实数集合。
函数f :N →R+,函数g :N →R+。
若存在自然数n 0和正常数c ,使得对所有的n ≥n 0,都有,f (n )≤cg (n ),就称函数f (n )的阶至多是O (g (n ))f (n )的增长最多像g (n )的增长那样快。
这时称O (g (n ))是f (n )的上界。
第二章堆可以看做一课完全二叉树,假设高度为d ,具有如下性质: 1.所有叶节点不是处于第d 层,就是处于d-1层 2.当d ≥1时,第d-1层上有2d-1个结点3.第d-1层上如果有分支节点,则这些分支节点都集中在树的最左边4.每个结点所存放元素的关键字,都大于或者小于它的孩子结点的关键字 第四章1.对于一个规模为n 的问题p(n),归纳法的思想方法是: a )基础步:a1是问题p(1)的解。
b )归纳步:对所有的k ,1<k <n ,若b 是问题p(k)的解,则p(b)是问题p(k+1)的解。
其中, p(b)是对问题的某种运算或处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法设计与分析
王晓东 编著
精品课件
1
主要内容介绍
• 第1章 • 第2章 • 第3章 • 第4章 • 第5章 • 第6章
算法引论 递归与分治策略 动态规划 贪心算法 回溯法 分支限界法
精品课件
2
主要内容介绍(续)
• 第7章 概率算法 • 第8章 NP完全性理论 • 第9章 近似算法 • 第10章 算法优化策略
0
16
[-32768,32767]
精品课件
10
1.3 描述算法
3.方法
在Java中,执行特定任务的函数或过程统称为方法(methods) 。 例如,java的Math类给出的常见数学计算的方法如下表所示:
方法 abs(x) ceil(x) cos(x) exp(x)
floor(x) log(x)
功能 x的绝对值 不小于x的最小整数 x的余弦
1.Java程序结构
(1)Java程序的两种类型:应用程序和applet
区别:应用程序的主方法为main,其可在命令行中用命令 语句 java 应用程序名 来执行; applet的主方法为init,其必须嵌入HTML文件,由 Web浏览器或applet阅读器来执行。
(2)包:java程序和类可以包(packages)的形式组织管理。
2
public static int ab(int a, int b)
{
return (a+b+Math.abs(a-b))/2; }
(1)方法参数:Java中所有方法的参数均为值参数。上述方法ab中,a和b
是形式参数,在调用方法时通过实际参数赋值。
(2)方法重载:Java允许方法重载,即允许定义有不同签名的同名方法。
方法 max(x,y) min(x,y) pow(x,y)
ex
sin(x)
不大于x的最大整数 sqrt(x)
x的自然对数
tan(x)
精品课件
功能 x和y中较大者 x和y中较小者 xy x的正弦
x的平方根 x的正切
11
1.3 描述算法
3.方法
计算表达式 a b a b 值的自定义方法ab描述如下:
s = new String(“Welcome”);
String s = new S精t品r课i件ng(“Welcome”);
9
1.3 描述算法
类型 boolean byte char double float int long short
表格1-1 Java基本数据类型
缺省值 分配空间(bits)
(2)高级语言为程序可维护性强,可靠性高;
(3)高级语言不依赖于机器语言,与具体的计算机硬件关系不大,因而 所写出来的程序可植性好、重用率高;
(4)把繁杂琐碎的事务交给编译程序,所以自动化程度高,开发周期短, 程序员可以集中时间和精力从事更重要的创造性劳动,提高程序质量。
上述方法ab可重载为:
public static double ab(double a, d
{
return (a+b+Math.abs(a-b))/2.
}精品课件
12
1.3 描述算法
4.异常
Java的异常提供了一种处理错误的方法。当程序发现一个 错误,就引发一个异常,以便在合适地方捕获异常并进行处理。
取值范围
false
1
[true,false]
0
8
[-128,127]
\u0000
16
[\u0000,\uFFFF]
0.0
64
±4.9*10-324 ~ ±1.8*10308
0.0
32
±1.4*10-45 ~ ±3.4*1038
0
32
[-2147483648,2147483647]
0
64
±9.2*1017
• 有限性:算法中每条指令的执行次数有限,执行 每条指令的时间也有限。
程序:是算法用某种程序设计语言的具体实现。
程序可以不满足算法的性质(4)即有限性。
精品课件
5
1.2 表达算法的抽象机制
1.从机器语言到高级语言的抽象
高级程序设计语言的主要好处是:
(1)高级语言更接近算法语言,易学、易掌握,一般工程技术人员只需 要几周时间的培训就可以胜任程序员的工作;
精品课件
6
1.2 表达算法的抽象机制
2.抽象数据类型
抽象数据类型是算法的一个数据模型连同定义在该模型上 并作为算法构件的一组运算。
抽象数据类型带给算法设计的好处有:
(1)算法顶层设计与底层实现分离;
(2)算法设计与数据结构设计隔开,允许数据结构自由选择;
(3)数据模型和该模型上的运算统一在ADT中,便于空间和时间耗费的折衷;
(4)用抽象数据类型表述的算法具有很好的可维护性;
(5)算法自然呈现模块化;
(6)为自顶向下逐步求精和模块化提供有效途径和工具;
(7)算法结构清晰,层次分明,便于算法正确性的证明和复杂性的分析。
精品课件
7
1.3 描述算法
在本书中,采用Java语言描述算法。
以下,对Java语言的若干重要特性作简要概述。
精品课件
3
第1章 算法引论
本章主要知识点:
• 1.1 算法与程序 • 1.2 表达算法的抽象机制 • 1.3 描述算法 • 1.4 算法复杂性分析
精品课件
4
1.1 算法与程序
算法:是满足下述性质的指令序列。
• 输 入:有零个或多个外部量作为算法的输入。
• 输 出:算法产生至少一个量作为输出。
• 确定性:组成算法的每条指令清晰、无歧义。
(3)import语句:在java程序中可用import语句加载所需的包。
例如,import java.io.*;语句加载java.io包。
精品课件
8
1.3 描述算法
2.Java数据类型
基本数据类型:详见下页表1-1
数据类型
非基本数据类型:如 Byte, Integer, Boolean, String等。
Java对两种数据类型的不同处理方式:
对基本数据类型:在声明一个具有基本数据类型的变量时,自 动建立该数据类型的对象(或称实例)。如:int k;
对非基本数据类型:语句 String s; 并不建立具有数据类型 String的对象,而是建立一个类型String的引用对象, 数据类型为String的对象可用下面的new语句建立。
通常用try块来定义异常处理。每个异常处理由一个catch
语句组成。
public static void main(String [] args)