九年级中考复习 分式方程及其应用 专题训练题 含答案
中考复习分式方程应用题专题(含答案)

分式方程应用题专题1、我国“八纵八横〞铁路骨干网的第八纵通道——温〔州〕福〔州〕铁路全长298千米.将于2021年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间〔结果精确到0.01小时〕.2、某商店在“端午节〞到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.3、南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,假设2007年每天的污水处理率比2006年每天的污水处理率提高40%〔污水处理率 污水处理量〕.污水排放量〔1〕求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?〔结果保存整数〕〔2〕预计我市2021年平均每天的污水排放量比2007年平均每天污水排放量增加20%,按照国家要求“2021年省会城市的污水处理率不低于...70%〞,那么我市2021年每天污水处理量在2007年每天污还需要增加多少万吨,才能符合国家规定的要求?水处理量的根底上至少..4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要〔 〕A.6天B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的选项是〔 〕A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 6、张明与李强共同清点一批图书,张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程〔 〕A .9001500300x x=+ B .9001500300x x =- C .9001500300x x =+ D .9001500300x x =- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在方案每天加固的长度比原方案增加了20m ,因而完成河堤加固工程所需天数将比原方案缩短2天,假设设现在方案每天加固河堤x m ,那么得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?〔利润=售价-进价,利润率100%=⨯利润进价〕12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原方案提高了20%,结果提前8小时完成任务.求原方案每小时修路的长度.假设设原方案每小时修x m ,那么根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购置某种图书.第一次用1200元购书假设干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了〔不考虑其它因素〕?假设赔钱,赔多少?假设赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐〞号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程工程,现在甲、乙两个工程队有能力承包这个工程.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,那么轮船在静水中的速度是千米/时.。
2021年九年级中考数学 专题训练:分式方程及其应用(含答案)

2021中考数学 专题训练:分式方程及其应用一、选择题1. 甲志愿者计划用若干个工作日完成社区的某项工作.从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A. 8B. 7C. 6D. 52. 分式方程1x+2=1的解是 ( )A .x=1B .x=-1C .x=2D .x=-23. (2020·抚顺本溪辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( ) A .3000x =420080x - B .3000x +80=4200x C .4200x =3000x -80 D .3000x =420080x +4. (2020·成都)已知x =2是分式方程1的解,那么实数k 的值为( )A .3B .4C .5D .65. (2020自贡)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .40 B .40 C .40D .406. (2020·重庆A 卷)若关于x 的一元一次不等式组3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x ≤a ;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7 B .-14C .28D .-567. (2020·齐齐哈尔)若关于x 的分式方程3x x -2=m2-x+5的解为正数,则m 的取值范围为( )A .m <﹣10B .m ≤﹣10C .m ≥﹣10且m ≠﹣6D .m >﹣10且m ≠﹣68. (2020·荆门)已知关于的分式方程232x x +-=(2)(3)k x x -++2的解满足-4<x <-1,且k 为整数,则符合条件的所有k 值的乘积为( )A .正数B .负数C .零D .无法确定二、填空题9. 方程+=1的解是 .10. 方程12x =2x -3的解是________.11. 一艘轮船在静水中的最大航速为30 km/h ,它以最大航速沿江顺流航行120 km所用时间,与以最大航速逆流航行60 km 所用时间相同,则江水的流速为 km/h .12. (2020·南京)方程1x x -=12x x -+的解是______.13. (2020·绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天,设原计划每天加工零件x 个,可列方程______.14. (2020·湘潭)若37y x =,则x yx -=________.15. 若分式方程x -ax +1=a 无解,则a 的值为________.16. (2020·内江)若数a使关于x 的分式方程2311x ax x++=--的解为非负数,且使关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤,则符合条件的所有整数a 的积为_____________三、解答题17. (2020·遵义)解方程x -12=x -32318. A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.19. (2020·泰安)中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4 000元购进了A种茶叶若干盒,用8 400元购进了B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5 800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?20. (12分)小刚去超市买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次性购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折,设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?2021中考数学 专题训练:分式方程及其应用-答案一、选择题1. 【答案】A【解析】设甲志愿者计划完成此项工作的天数为x 天,依题意得1x ×2+(1x +1x )(x -2-3)=1, 解得x =8.2. 【答案】B[解析]去分母得,1=x +2,移项,合并同类项,得:x=-1,经检验,x=-1是原分式方程的解,∴x=-1,故选B .3. 【答案】D 【解析】由“原来公司投递快件的能力每周3000件,”可知快递公司人数可表示为3000x 人,由“快递公司为快递员更换了快捷的交通工具后投递快件的能力由每周3000件提高到4200件”,可知快递公司人数可表示为420080x +人,再结合快递公司人数不变可列方程:3000x =420080x +.故选项D 正确.4. 【答案】B 【解析】把x =2代入分式方程计算即可求出k 的值.解:把x =2代入分式方程得:1=1,解得:k =4.故选:B .5. 【答案】 A .【解析】本题考查了分式方程在实际问题中的应用,本题数量关系清晰,难度不大,解:设实际工作时每天绿化的面积为x 万平方米,则原计划每天绿化的面积为万平方米, 依题意,得:40,即40.因此本题选A .6. 【答案】A 【解析】 对于不等式组313,2x x x a -⎧≤+⎪⎨⎪≤⎩①②,解不等式①,得x ≤7.解不等式②,得x ≤a .因为不等式组的解集为x ≤a ,∴a ≤7.对于分式方程34122y a y y y --+=--,去分母,得y -a +3y -4=y -2,解这个整式方程,得y =+23a .因为a ≤7,所以当a =1,4,7时+23a 为正整数.当a =4时, y =2是分式方程的增根,分式方程无解.综上,可得a =1或7,它们的积为1×7=7.7. 【答案】 D【解析】分式方程去分母化为整式方程,表示出方程的解,由分式方程的解为正数求出m 的范围即可.去分母得:3x =﹣m +5(x ﹣2),解得:x =m +102,由方程的解为正数,得到m +10>0,且m +10≠4,则m 的范围为m >﹣10且m ≠﹣6,故选:D .8. 【答案】A【解析】解原分式方程得x =217k -,且x ≠2,-3.∵分式方程的解满足-4<x<-1,∴-4<217k -<-1且217k -≠-3.解得-7<k <14且k ≠0.∴整数k =-6,-5,-4,-3,-2,-1,1,…,13.其中有6个负数,13个正数,因此它们的积是正数.故选A .二、填空题9. 【答案】x=-2[解析]原方程可化为=1,去分母,得(2x -1)(x +1)-2=(x +1)(x -1),解得x 1=1,x 2=-2, 经检验x 1=1是增根,x 2=-2是原方程的解, ∴原方程的解为x=-2.故答案为x=-2.10. 【答案】x =-1 【解析】化简12x =2x -3得x -3=4x ,则-3x =3,所以x =-1,经检验x =-1是原方程的根.11. 【答案】10[解析]设江水的流速为x km/h ,根据题意可得:=,解得:x=10,经检验,x=10是原方程的根,且符合题意,所以江水的流速为10 km/h .12. 【答案】 x =14【解析】去分母,得:x(x +2)=(x -1)2,去括号,得:x 2+2x =x 2-2x +1,移项、合并同类项,得:4x =1,系数化为1,得:x =14.检验:当x =14时,(x -1)(x +2)≠0,故x =14是原分式方程的根.13. 【答案】240x =2401.5x +2 【解析】实际每天加工零件1.5x 个.原计划的工作时间=240x (天),实际的工作时间=2401.5x (天),根据“结果比原计划少用2天”可列方程240x =2401.5x +2.14. 【答案】47【解析】本题主要考查了比的基本性质,准确利用性质变形是解题的关键. 根据比例的基本性质变形,代入求职即可; 由37y x =可设3y k =,7x k =,k 是非零整数, 则7344777--===x y k k k x k k . 故答案为:47.15. 【答案】17[解析] 由方程x -4x=3得x -4=3x.解得x =-2.当x =-2时,x≠0.所以x =-2是方程x -4x =3的解.又因为方程ax a -1-2x -1=1的解与方程x -4x =3的解相同,因此x =-2也是方程ax a -1-2x -1=1的解.这时-2a a -1-2-2-1=1.解得a =17.当a =17时,a -1≠0,故a =17满足条件.16. 【答案】40【解析】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为0y ≤,找出a 的取值范围是解题的关键.根据分式方程的解为正数即可得出a ≤5且a ≠3,根据不等式组的解集为0y ≤,即可得出a >0,找出0<a ≤5且a ≠3中所有的整数,将其相乘即可得出结论.分式方程2311x a x x ++=--的解为x =52a -且x ≠1,∵分式方程2311x ax x++=--的解为非负数,∴502a -≥且52a -≠1.∴a ≤5且a ≠3.()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩①②解不等式①,得0y ≤.解不等式②,得y <a .∵关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤,∴a >0. ∴0<a ≤5且a ≠3.又a 为整数,则a 的值为1,2,4,5.符合条件的所有整数a 的积为124540⨯⨯⨯=.因此本题答案为:40.三、解答题17. 【答案】解: 去分母,得2x -3=3x -6解得x =3;检验:把x =3带入(x -2) (2x -3) ≠0所以x =3是原分式方程的解.18. 【答案】解:设A 型机器每小时加工x 个零件,则B 型机器每小时加工(x -20)个零件.依题意得:400x =300x -20,(2分)∴400x -8000=300x ,(4分) ∴100x =8000, 解得x =80.(6分)经检验:x =80是原方程的解,且符合题意.(7分) 答:A 型机器每小时加工80个零件.(8分)19. 【答案】(1)设A 种茶叶每盒进价为x 元,则B 种茶叶每盒进价为1.4x 元. 根据题意,得:4000x +10﹦84001.4x . 解得x ﹦200.经检验:x ﹦200是原方程的根. ∴1.4x ﹦1.4×200﹦280(元).∴A ,B 两种茶叶每盒进价分别为200元,280元.(2)设第二次A 种茶叶购进m 盒,则B 种茶叶购进(100—m )盒.打折前A 种茶叶的利润为m2 ×100﹦50m .B 种茶叶的利润为100—m2 ×120﹦6 000—60m .打折后A 种茶叶的利润为m2 ×10﹦5m . B 种茶叶的利润为0.由题意得:50m +6 000—60m +5m ﹦5800. 解方程,得:m ﹦40.∴100—m ﹦100—40﹦60(盒).∴第二次购进A 种茶叶40盒,B 种茶叶60盒.20. 【答案】解:(1)设超市B 型画笔单价a 元,则A 型画笔单价为(a -2)元, 由题意列方程,得601002a a=-, 解得,5a =.经检验5a =是原分式方程的根. 答:超市B 型画笔单价是5元. (2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x;当小刚购买的B型画笔支数x>20时,费用为y=20×0.9+(x-20)×0.8×5=4x+10.所以4.5,(20)410,()x xyx x≤⎧=⎨+⎩>20,其中x为正整数.(3)当4.5x=270(x≤20)时,解得x=60,因为60>20不符合题意,舍去. 当4x+10=270(x>20)时,解得x=65.答:小刚能购买65支B型画笔.。
中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x 的方程,是分式方程的是( )A.3+x 2-3=2+x 5B.2x -17=x 2C.x π+1=2-x 3D.12+x =1-2x2.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 3.若x =3是分式方程a -2x -1x -2=0的解,则a 的值是( ) A.5 B.-5 C.3 D.-34.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-35.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A.x =1 B.x =2 C.x =-1D.无解6.解分式方程1x -5﹣2=35-x,去分母得( ) A.1﹣2(x ﹣5)=﹣3 B.1﹣2(x ﹣5)=3C.1﹣2x ﹣10=﹣3D.1﹣2x +10=37.如果分式方程113122=x++-x a+无解,那么a 的值为( )A.2B.﹣2C.2或﹣2D.﹣2或48.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x=1D.原方程的解为x=19.某生态示范园计划种植一批梨树,原计划总产量30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x ﹣361.5x =10B.30x ﹣301.5x=10 C.361.5x ﹣30x =10 D.30x +361.5x=10 10.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务. 设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.60x -60(1+25%)x =30 B.60(1+25%)x -60x=30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 二、填空题11.下列方程:①x -12=16;②x ﹣2x =3;③x (x -1)x =1;④4-x π=π3;⑤3x +x -25=10;⑥1x +2y=7,其中是整式方程的有 ,是分式方程的有 . 12.若关于x 的方程211=--ax a x 的解是x=2,则a= . 13.方程2x +13-x =32的解是 . 14.关于x 的方程2x +a x -1=1的解满足x >0,则a 的取值范围是________. 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.对于实数a ,b ,定义一种新运算⊗为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=﹣18,则方程x ⊗(﹣2)=2x -4﹣1的解是__________. 三、解答题17.解分式方程:xx-1﹣2x=1;18.解分式方程:2x-3=3x;19.解分式方程:1-xx-2=x2x-4﹣1;20.解分式方程:xx-1-1=3(x-1)(x+2)21.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2) 得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.22.当x为何值时,分式的值比分式的值小2?23.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.24.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?答案1.D2.A3.A4.A5.D6.A7.D8.D9.A10.C11.答案为:①④⑤,②③⑥.12.答案为:54 .13.答案为:x=1.14.答案为:a<-1 且a≠-2.15.答案为:200x﹣200x+15=12.16.答案为:x=517.解:去分母得x2﹣2x+2=x2﹣x解得x=2检验:当x=2时,x(x﹣1)≠0故x=2是原方程的解;18.解:(1)方程两边乘x(x﹣3),得2x=3(x﹣3).解得x=9.检验:当x=9时,x(x﹣3)≠0.所以,原方程的解为x=9;19.解:去分母,得2(1﹣x)=x﹣(2x﹣4),解得x=﹣2 检验:当x=﹣2时,2(x﹣2)≠0故x=﹣2是原方程的根;20.解:方程两边同乘(x-1) (x+2)得x(x+2)-(x-1) (x+2)=3化简,得 x+2=3解得x=1检验:x=1时(x-1) (x+2)=0,x=1不是分式方程的解所以原分式方程无解.21.解:有错误,错在第①步,正确解法为:方程两边同乘(x﹣2)得x﹣3+x﹣2=﹣3解得x=1经检验x=1是分式方程的解所以原分式方程的解是x=1.22.解:由题意,得﹣=2,解得,x=4经检验,当x=4时,x﹣3=1≠0,即x=4是原方程的解.故当x=4时,分式的值比分式的值小2.23.解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.24.解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时则题意得:=﹣3,解得:x=120经检验x=120是原方程的解则高铁的平均速度是120×2.5=300(千米/时)答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.25.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。
中考数学总复习《分式方程及其应用》专题训练(附带答案)

中考数学总复习《分式方程及其应用》专题训练(附带答案) 学校:___________班级:___________姓名:___________考号:___________知识梳理分式方程的应用列分式方程解应用题的一般步骤,与列整式方程解应用题的步骤一样,都是按照审、设、列、解、验、答六步进行.(1)在利用分式方程解实际问题时,必须进行“双检验”,既要检验去分母化成整式方程的解是否为分式方程的解,又要检验分式方程的解是否符合实际意义.(2)分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型.同步练习一、选择题1.为响应“绿色出行”的号召,小李上班由自驾车改为乘坐公交车.已知小李家距上班地点20km,他乘公交车平均每小时行驶的路程比他自驾车平均每小时行驶的路程少12km.他从家出发到上班地点,乘公交车所用的时间是自驾车所用时间的43,小李乘公交车上班平均每小时行驶()A.30km B.36km C.40km D.46km2.某服装店用4.5万元购进某种品牌的服装,由于销售状况良好,服装店又调拨11万元资金购进该种服装,但这次的单价比第一次的单价贵20元,购进服装的数量比第一次的2倍还多50件,求该服装第一次的单价.为解决此问题,设该服装第一次的单价为x元,根据题意列出方程,其中正确的是()A.11 4.525020x x=⨯++B.1100004500025020x x=⨯++C.1100004500025020x x=⨯+-D.1100004500025020x x=⨯-+3.甲、乙两地相距160千米,一辆汽车从甲地到乙地的速度比原来提高了25%,结果比原来提前0.4小时到达,那么这辆汽车原来的速度为()A.80千米/小时B.90千米/小时C.100千米/小时D.110千米/小时4.《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为;把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天;如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍.根据题意列方程为900900213x x⨯=+-,其中x表示()A.快马的速度B.慢马的速度C.规定的时间D.以上都不对5.为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单6.一个圆柱形容器的容积为3Vm,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用t则大,小两根水管的注水速一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间min.7.八年级学生去距学校10千米的荆州博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车A.实际工作时每天铺设的管道比原计划降低了20%,结果延误3天完成了这一任务B.实际工作时每天铺设的管道比原计划降低了20%,结果提前3天完成了这一任务C.实际工作时每天铺设的管道比原计划提高了20%,结果延误3天完成了这一任务D.实际工作时每天铺设的管道比原计划提高了20%,结果提前3天完成了这一任务二、填空题数称为调和数,如15,5,3也是一组调和数.现有一组调和数:x ,3,2(3)x >,则x = . 12.甲、乙两船从相距150km 的A ,B 两地同时匀速沿江出发相向而行,甲船从A 地顺流航行90km 时与从B 地逆流航行的乙船相遇.甲、乙两船在静水中的航速均为30km/h ,则江水的流速为 km/h . 13.甲、乙、丙三名工人共承担装搭一批零件.已知甲乙丙丁四人聊天时的对话信息如表,如果每小时只安排1名工人,那么按照甲、乙、丙的轮流顺序至完成工作任务,共需 小时. 甲说:我单独完成任务所需时间比乙单独完成任务所需时间多5小时;乙说:我3小时完成的工作量与甲4小时完成的工作量相等;丙说:我工作效率不高,我的工作效率是乙的工作效率的12;丁说:我没参加此项工作,但我可以计算你们的工作效率,知道工程问题三者关系是:工作效率⨯工作时间=工作总量.三、解答题14.为深刻践行习近平总书记的“绿水青山就是金山银山”重要思想,某单位积极开展植树活动,准备购买甲、乙两种树苗、已知用800元购买甲种树苗的棵数与用680元购买乙种树苗的棵数相同,乙种树苗每棵比甲种树苗便宜6元.(1)求甲种树苗的单价;(请根据题意列方程解答)(2)若购买这两种树苗共100棵,且费用不超过3800元,则至少购买乙种树苗多少棵?15.科学中,经常需要把两种物质混合制作成混合物,研究混合物的物理性质和化学性质.现将甲、乙两种密度分别为ρ甲,ρ乙的液体混合(ρρ<甲乙),研究混合物的密度(=物体的质量物体的密度物体的体积),假设混合前后液体的总体积不变,令等体积的甲乙两种液体的混合溶液密度为1ρ,等质量的甲乙两种液体的混合溶液的密度为2ρ.(1)请用含ρ甲,ρ乙式子表示1ρ;(2)比较1ρ,2ρ的大小,并通过运算说明理由:(3)现有密度为31.2g /cm 的盐水600g ,加适量的水(密度为31.0g /cm )进行稀释,问:需要加水多少g ,才能使密度为31.1g /cm 的鸡蛋悬浮在稀释后的盐水中?16.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg 产品,甲型机器人搬运800kg 产品所用时间与乙型机器人搬运600kg 产品所用时间相等.根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运kg x 产品,可列方程为__________.小惠同学设甲型机器人搬运800kg 产品所用时间为y 小时,可列方程为__________.(2)求乙型机器人每小时搬运多少千克产品.17.某大型品牌书城购买了A B 、两种新出版书籍,商家用1600元购买A 书籍,1200元购买B 书籍,A B 、两种书籍的进价之和为40元,且购买A 书籍的数量是B 书籍的2倍.(1)求商家购买A 书籍和B 书籍的进价;(2)商家在销售过程中发现,当A 书籍的售价为每本25元,B 书籍的售价为每本33元时,平均每天可卖出50本A 书籍,25本 B 书籍.据统计,B 书籍的售价每降低0.5元平均每天可多卖出5本.商家在保证A 书籍的售价和销量不变且不考虑其他因素的情况下,为了促进B 的销量,想使A 书籍和B 书籍平均每天的总获利为775元,则每本B 书籍的售价为多少元?18.为更好地满足市民休闲、健身需求,提升群众的幸福感获得感,丰都县从年初开始对滨江公园进行“微改造”、“精提升”,将原有的边坡地带改造为观景平台,同时增设多处具有体育、文化、智慧元素的文体场所和设施,把3.5公里滨江健身长廊打造成智慧休闲乐园.施工过程中共有5000吨渣土要运走,现计划由甲、乙两个工程队运走渣土,已知甲、乙两个工程队,原计划乙平均每天运走的渣土比甲平均每天运走的渣土多13,这样乙运走2600吨渣土的时间比甲运走剩下渣土的时间少3天. (1)求原计划乙平均每天运渣土多少吨?(2)实际施工时,甲平均每天运走的渣土比原计划增加了m 吨,乙平均每天运走的渣土比原计划增加了200m ,甲、乙合作10天后,乙临时有其他任务;剩下的渣土由甲再单独工作5天完成.若运走每吨渣土的运输费用为30元,请求出乙工程队的运输费用.答案第1页,共1页 参考答案 1.【答案】B2.【答案】B3.【答案】A4.【答案】C5.【答案】B6.【答案】A7.【答案】C8.【答案】A9.【答案】810.【答案】1260012600251.5x x-= 11.【答案】612.【答案】613.【答案】319414.【答案】(1)40元(2)34棵15.【答案】(1)12ρρρ+=乙甲(2)12ρρ>(3)需要加水50g 16.【答案】(1)80060010x x=+ 80060010y y -=(2)乙型机器人每小时搬运30kg 产品 17.【答案】(1)商家购买A 书籍的进价为16元/本,购买B 书籍的进价为24元/本;(2)29元. 18.【答案】(1)200(2)6900。
九年级中考数学专题复习分式方程及应用含答案

2021中考数学专题复习分式方程及其应用〔含答案〕一、选择题〔本大题共5道小题〕小明用15元买售价同样的软面笔录本,小丽用24元买售价同样的硬面笔录本(两人的钱恰巧用完),每本硬面笔录本比软面笔录本贵3元,且小明和小丽买到同样数目的笔录本.设软面笔录本每本售价为x元,依据题意可列出的方程为( )A. =B. =C. =D. =2.分式方程=1的解是( )A.x=1B.x=-1C.x=2D.x=-23.解分式方程+ =3时,去分母化为一元一次方程,正确的选项是( )A.x+2=3B.x-2=3C.x-2=3(2x-1)D.x+2=3(2x-1)甲、乙二人做某种机械部件,每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个部件,以下方程正确的选项是()A. =B. =C. =D. =5.对于x的分式方程=1的解是负数,那么m的取值范围是( )≤3≤3且m≠2 C.m<3 D.m<3且m≠2二、填空题〔本大题共5道小题〕方程1=2的解是________.2xx-37.方程+ =1的解是.8.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺水航行120km所用时间,与以最大航速逆流航行60km所用时间同样,那么江水的流速为km/h.9.假定对于x的分式方程+ =2m有增根,那么m的值为.10.假定对于x的分式方程+ =2a无解,那么a的值为.三、解答题〔本大题共5道小题〕解方程:=1.解分式方程:(1)=;(2)-1=.(1)解方程:x2-2x-1=0.(2)解方程组:(3)解分式方程:-1=.(4)解不等式组:并把解集在数轴上表示出来.14.如图是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.依据以上信息,解答以下问题.(1)冰冰同学所列方程中的x表示,庆庆同学所列方程中的y表示;(2)两个方程中任选一个,并写出它的等量关系;(3)解(2)中你所选择的方程,并回复老师提出的问题.为了对学生进行革命传统教育,红旗中学展开了“清明节祭扫〞活动.全校学生从学校同时出发,步行4000米抵达烈士纪念馆.学校要求九(1)班提早抵达目的地,做好活动的准备工作.行走过程中,九(1)班步行的均匀速度是其余班的倍,结果比其余班提早10分钟抵达.分别求九(1)班、其余班步行的均匀速度.2021中考数学专题复习分式方程及其应用-答案一、选择题〔本大题共5道小题〕【答案】A[分析]本题考察了由实质问题抽象出分式方程,正确找出等量关系是解题重点.直接利用“小明和小丽买到同样数目的笔录本〞,得=,应选A.【答案】B[分析]去分母得,1=x+2,移项,归并同类项,得:x=-1,经查验,x=-1是原分式方程的解,∴x=-1,应选B.2.【答案】C[分析]两边同时乘以(2x-1),得x-2=3(2x-1).应选C.【答案】D5.【答案】D[分析]解分式方程得x=m-3,1∵方程的解是负数,m-3<0,m<3,∵当x+1=0,即x=-1时方程有增根,m-3≠-1,即m≠2.m<3且m≠2.应选D.二、填空题〔本大题共5道小题〕2【答案】x=-1【分析】化简2x=x-3得x-3=4x,那么-3x=3,因此x=-1,经查验x=-1是原方程的根.7.【答案】x=-2[分析]原方程可化为=1,去分母,得(2x-1)(x+1)-2=(x+1)(x-1),解得x1=1,x2=-2,经查验x1=1是增根,x2=-2是原方程的解,∴原方程的解为x=-2.故答案为x=-2.[分析]设江水的流速为xkm/h,依据题意可得:=,解得:x=10,8.【答案】10经查验,10km/h.x=10是原方程的根,且切合题意,因此江水的流速为【答案】1[分析]分式方程去分母,得:x-2m=2m·(x-2),假定原分式方程有增根,那么x=2,得2-2m=2m(2-2),解得m=1.10.【答案】或1[分析]去分母得:x-3a=2a(x-3),整理得:(1-2a)x=-3a,当1-2a=0时,方程无解,得a=;当1-2a≠0,x==3时,分式方程无解,得a=1,故对于x的分式方程=2a无解,那a的值为:1或.么三、解答题〔本大题共 5道小题〕 【答案】 解:方程两边同时乘x(x-1)得, x 2-2(x-1)=x(x-1),解得x=2. 查验:当x=2时,x(x-1)≠0, x=2是原分式方程的解. 原分式方程的解为x=2.【答案】 解:(1)去分母,得x+1=4(x-2),解得x=3,经查验x=3是原分式方程的解.因此方程的解为x=3. (2)方程两边同时乘(x-2)2得:x(x-2)-(x-2)2=4,解得x=4,查验:当x=4时,(x-2)2≠0. 因此原方程的解为 x=4. 【答案】 解:(1)配方法:移项,得x 2-2x=1, 配方,得x 2-2x+1=1+1,即(x-1)2=2, 开方,得x-1=±,即x 1 ,2=1+ x=1-.公式法:a=1,b=-2,c=-1, 2, =b-4ac=4+4=8>0 故方程有两个不相等的实数根,∴x= ==1±,即x 1=1+ ,x 2=1-.(2)-①,得:3x=9, 解得:x=3.把x=3代入①,得:3+y=1,解得:y=-2.∴原方程组的解为(3)方程左右两边同乘以3(x-1),得3x-3(x-1)=2x,3x-3x+3=2x,2x=3,x=1.5.查验:当时,3(x-1)≠0,∴原分式方程的解为x=1.5.(4)解不等式①,得:x>-4;解不等式②,得:x≤0,∴不等式组的解集为-4<x≤0.将这个不等式组的解集表示在数轴上如图:【答案】解:(1)∵冰冰是依据时间相等列出的分式方程,∴x表示甲队每日修路的长度;∵庆庆是依据乙队每日比甲队多修20米列出的分式方程,∴y表示甲队修路400米(乙队修路600米)所需的时间.故答案为:甲队每日修路的长度甲队修路400米(乙队修路600米)所需的时间(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;庆庆用的等量关系是:乙队每日修路的长度-甲队每日修路的长度=20米.(选择一个即可)(3)选冰冰所列的方程: =,去分母,得:400x+8000=600x,移项,x的系数化为1,得:x=40,查验:当x=40时,x,x+20均不为零,∴x=40是分式方程的根.答:甲队每日修路的长度为40米.选庆庆所列的方程:=20,去分母,得:600-400=20y,将y的系数化为1,得:y=10,查验:当y=10时,分母y不为0,∴y=10是分式方程的根,∴=40.答:甲队每日修路的长度为40米.【答案】解:设其余班的均匀速度为x米/分,那么九(1)班的均匀速度为米/分,依题意得:10,解得:x=80.经查验:x=80是所列方程的解.此时,×80=100.答:九(1)班的均匀速度为100米/分,其余班的均匀速度为80米/分.。
初三中考数学复习 分式方程及其应用 专项复习训练 含答案-精选文档

2019 初三中考数学复习 分式方程及其应用 专项复习训练1.关于x 的分式方程7x x -1+5=2m -1x -1有增根,则m 的值为( C ) A .1 B .3 C .4 D .52.方程2x +3=1x -1的解为( C ) A .x =3 B .x =4 C .x =5 D .x =-53.已知x =3是分式方程kx x -1-2k -1x=2的解,那么实数k 的值为( D ) A .-1 B .0 C .1 D .24.在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( B )A.13x =18x -5B.13x =18x +5C.13x =8x -5D.13x=8x +5 5.2019年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x 万棵,可列方程是( A )A.30x -30(1+20%)x =5B.30x -3020%x=5 C.3020%x +5=30x D.30(1+20%)x -30x=5 6.下列关于x 的方程中,属于分式方程的个数是( B )①-12x 3+3x =0;②x b 2+b =1;③1x 2-1=2;④x x +x 24=6. A .1个 B .2个 C .3个 D .4个7.若数a 使关于x 的不等式组⎩⎪⎨⎪⎧x -22≤-12x +2,7x +4>-a有且仅有四个整数解,且使关于y 的分式方程a y -2+22-y=2有非负数解,则所有满足条件的整数a 的值之和是( B )A .3B .1C .0D .-38.观察分析下列方程:①x+2x =3;②x+6x =5;③x+12x=7,…请利用它们所蕴含的规律,写出这一组方程中的第n 个方程是__x +n (n +1)x=2n +1__. 9.分式方程2x -3=3x的解是__x =9__. 10.已知关于x 的分式方程k x +1+x +k x -1=1的解为负数,则k 的取值范围是 __k >-12且k≠0__. 11.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,求平时每个粽子卖多少元?设平时每个粽子卖x 元,列方程为__54x +3=540.9x__. 12.解分式方程:(1)2x x -2=1-12-x; 解:x =-1.(2)x +1x -1+41-x 2=1. 解:方程的两边同乘(x -1)(x +1),得(x +1)2-4=(x -1)(x +1),解得x =1,检验:把x =1代入(x -1)(x +1)=0,所以原方程无解.13.某校为了丰富课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个.求跳绳的单价.解:设跳绳的单价为x 元,则排球的单价为3x 元,依题意得750x -9003x=30,解方程,得x =15.经检验:x =15是原方程的根,且符合题意.答:跳绳的单价是15元.14.为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)解:设A4薄型纸每页的质量为x 克,则A4厚型纸每页的质量为(x +0.8)克,根据题意,得400x +0.8=2×160x,解得x =3.2,经检验:x =3.2是原分式方程的解,且符合题意.答:A4薄型纸每页的质量为3.2克.15.某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420 km 的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2 h ,求汽车原来的平均速度.解:设汽车原来的平均速度是x km/h ,根据题意得420x -420(1+50%)x=2,解得x =70.经检验:x =70是原方程的解.答:汽车原来的平均速度是70 km/h.16.某饰品店老板去批发市场购买新款手链,第一次购买手链共用100元,按该手链的定价2.8元销售,并很快售完.由于该手链深得年轻人喜爱,十分畅销,第二次去购买手链时,每条的批发价已比第一次高0.5元,共用去了150元,所购数量比第一次多10条.当这批手链售出45时,出现滞销,便以定价的5折售完剩余的手链.试问该老板第二次销售手链是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少?若赚钱,赚多少?解:设第一次批发价为x 元/条,则第二次的批发价为(x +0.5)元/条.依题意得(x +0.5)(10+100x)=150,解得x 1=2,x 2=2.5.经检验x 1=2,x 2=2.5都是原方程的根.由于当x =2.5时,第二次的批发价就是3元/条,而零售价为2.8元,∴x =2.5不合题意,舍去.故第一次的批发价为2元/条.第二次的批发价为2.5元/条.第二次共批发手链1502.5=60(条).第二次的利润为(45×60×2.8+15×60×2.8×0.5)-150=1.2(元).∴老板第二次销售手链赚了1.2元.。
2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)

2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)知识总结1. 列分式方程解实际应用题的步骤:①审题——仔细审题,找出题目中的等量关系。
②设未知数——根据问题与等量关系直接或间接设未知数。
③列方程:根据等量关系与未知数列出分式方程。
④解方程——按照解分式方程的步骤解方程。
④答——检验方程的解是否满足实际情况,然后作答。
练习题1、(2022•内蒙古)某班学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为x km /h ,下列方程正确的是( )A .2021010=−x x B .2010210=−x x C .3110210=−x xD .3121010=−x x【分析】根据汽车的速度和骑车学生速度之间的关系,可得出汽车的速度为2xkm /h ,利用时间=路程÷速度,结合汽车比骑车学生少用20min ,即可得出关于x 的分式方程,此题得解.【解答】解:∵骑车学生的速度为xkm /h ,且汽车的速度是骑车学生速度的2倍, ∴汽车的速度为2xkm /h . 依题意得:﹣=,即﹣=.2、(2022•淄博)为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x 元,则下列方程中正确的是( )A .()10%1512000020000−−⨯=x x B .()x x %151200*********−⨯=− C .()10%1512000020000+−⨯=x x D .()xx %151200*********−⨯=+ 【分析】根据题目中的数据和两次购买的数量相同,可以列出相应的分式方程. 【解答】解:由题意可得,,故选:D .3、(2022•阜新)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的1.2倍,结果提前20天完成了这项工作.设原计划每天接种x 万人,根据题意,所列方程正确的是( )A .202.13030=−x xB .2.1203030=−−x x C .20302.130=−xxD .2.1302030=−−xx【分析】由实际接种人数与原计划接种人数间的关系,可得出实际每天接种1.2x 万人,再结合结果提前20天完成了这项工作,即可得出关于x 的分式方程,此题得解. 【解答】解:∵实际每天接种人数是原计划的1.2倍,且原计划每天接种x 万人, ∴实际每天接种1.2x 万人,又∵结果提前20天完成了这项工作, ∴﹣=20.4、(2022•襄阳)《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x 天,则可列出正确的方程为( )A .190023900+⨯=+x x B .190023900+⨯=−x xC .390021900+⨯=−x x D .390021900−⨯=+x x 【分析】根据快、慢马送到所需时间与规定时间之间的关系,可得出慢马送到所需时间为(x +1)天,快马送到所需时间为(x ﹣3)天,再利用速度=路程÷时间,结合快马的速度是慢马的2倍,即可得出关于x 的分式方程,此题得解. 【解答】解:∵规定时间为x 天,∴慢马送到所需时间为(x +1)天,快马送到所需时间为(x ﹣3)天, 又∵快马的速度是慢马的2倍,两地间的路程为900里, ∴=2×.故选:B .5、(2022•朝阳)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶xkm ,根据题意,所列方程正确的是( )A .60305.16060=−x x B .6030605.160=−x x C .305.16060=−xx D .30605.160=−xx 【分析】设慢车每小时行驶xkm ,则快车每小时行驶1.5xkm ,根据基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达,列方程即可.【解答】解:设慢车每小时行驶xkm ,则快车每小时行驶1.5xkm , 根据题意可得:﹣=.故选:A .6、(2022•黔西南州)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x 亩,则可以得到的方程为( )A .x x 302436⨯=− B .x x 302436⨯=+ C .430236−⨯=x x D .430236+⨯=x x 【分析】根据该农户耕作完旱地所用的时间是耕作完水田所用时间的一半列出方程即可. 【解答】解:根据题意得:=2×.故选:D .7、(2022•济宁)一辆汽车开往距出发地420km 的目的地,若这辆汽车比原计划每小时多行10km ,则提前1小时到达目的地.设这辆汽车原计划的速度是xkm /h ,根据题意所列方程是( )A .110420420+−=x x B .10420420+=+x x C .110420420++=x xD .10420420−=+x x 【分析】根据提速后及原计划车速间的关系,可得出这辆汽车提速后的速度是(x +10)km /h ,利用时间=路程÷速度,结合提速后可提前1小时到达目的地,即可得出关于x的分式方程,此题得解.【解答】解:∵这辆汽车比原计划每小时多行10km ,且这辆汽车原计划的速度是xkm /h , ∴这辆汽车提速后的速度是(x +10)km /h . 依题意得:=+1,故选:C .8、(2022•辽宁)小明和小强两人在公路上匀速骑行,小强骑行28km 所用时间与小明骑行24km 所用时间相等,已知小强每小时比小明多骑行2km ,小强每小时骑行多少千米?设小强每小时骑行xkm ,所列方程正确的是( ) A .22428+=x x B .xx 24228=+ C .xx 24228=− D .22428−=x x 【分析】根据小强与小明骑行速度间的关系可得出小明每小时骑行(x ﹣2)km ,利用时间=路程÷速度,结合小强骑行28km 所用时间与小明骑行24km 所用时间相等,即可得出关于x 的分式方程,此题得解.【解答】解:∵小强每小时比小明多骑行2km ,小强每小时骑行xkm , ∴小明每小时骑行(x ﹣2)km . 依题意得:=.故选:D .9、(2022•恩施州)一艘轮船在静水中的速度为30km /h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km /h ,则符合题意的方程是( )A .v v −=+309630144 B .v v 9630144=− C .vv +=−309630144 D .vv +=3096144 【分析】根据“顺流航行144km 与逆流航行96km 所用时间相等”列分式方程即可. 【解答】解:根据题意,可得,故选:A .10、(2022•绥化)有一个容积为24m 3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm 3,由题意列方程,正确的是( )A .3041212=+x x B .2441515=+x x C .2423030=+xxD .3021212=+xx【分析】设细油管的注油速度为每分钟xm 3,则粗油管的注油速度为每分钟4xm 3,利用注油所需时间=注油总量÷注油速度,即可得出关于x 的分式方程,此题得解. 【解答】解:24÷2=12(m 3).设细油管的注油速度为每分钟xm 3,则粗油管的注油速度为每分钟4xm 3, 依题意得:+=30.故选:A .11、(2022•荆州)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km 和10km 的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min 到达基地,求甲、乙的速度.设甲的速度为3xkm /h ,则依题意可列方程为( )A .x x 4103136=+ B .x x 4102036=+ C .3141036=−x xD .2041036=−xx【分析】根据甲、乙的速度比是3:4,可以设出甲和乙的速度,然后根据甲比乙提前20min 到达基地,可以列出相应的方程.【解答】解:由题意可知,甲的速度为3xkm /h ,则乙的速度为4xkm /h ,+=,即+=,故选:A.12、(2022•鞍山)某加工厂接到一笔订单,甲、乙车间同时加工,已知乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,甲车间加工4000件比乙车间加工4200件多用3天.设甲车间每天加工x件产品,根据题意可列方程为.【分析】根据两车间工作效率间的关系,可得出乙车间每天加工1.5x件产品,再根据甲车间加工4000件比乙车间加工4200件多用3天,即可得出关于x的分式方程,此题得解.【解答】解:∵甲车间每天加工x件产品,乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,∴乙车间每天加工1.5x件产品,又∵甲车间加工4000件比乙车间加工4200件多用3天,∴﹣=3.故答案为:﹣=3.13、(2022•青岛)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程,设小亮训练前的平均速度为x米/分,那么x满足的分式方程为.【分析】根据等量关系:原来参加3000米比赛时间﹣经过一段时间训练后参加3000米比赛时间=3分钟,依此列出方程即可求解.【解答】解:依题意有:﹣=3.故答案为:﹣=3.14、(2022•黑龙江)某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x个,可列方程为.【分析】根据甲车间生产500个玩具所用的时间=乙车间生产400个玩具所用的时间,列出方程即可解答.【解答】解:设乙车间每天生产x个,则甲车间每天生产(x+10)个,由题意得:=,故答案为:=.15、(2022•江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为.【分析】由实际问题找到合适的等量关系即可抽象出分式方程.【解答】解:设甲每小时采样x人,则乙每小时采样(x﹣10)人,根据题意得:=.故答案为:=.。
2021年九年级中考临考专题训练:分式方程及其应用(含答案)

2021中考 临考专题训练:分式方程及其应用一、选择题1. (2020·哈尔滨)方程2152-=+x x 的解为( ) A .1-=xB .5=xC .7=xD .9=x2. 2019·益阳解分式方程x 2x -1+21-2x=3时,去分母化为一元一次方程,正确的是( )A .x +2=3B .x -2=3C .x -2=3(2x -1)D .x +2=3(2x -1)3. 2019·鸡西已知关于x 的分式方程2x -m x -3=1的解是非正数,则m 的取值范围是( )A .m≤3B .m <3C .m >-3D .m≥-34. (2020·长沙)随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,设更新技术前每天生产x 万件,依据题意得 ·············································································· ( )A .x x 50030400=- B .30500400+=x x C .30500400-=x x D .x x 50030400=+5. (2020·湖北荆州)八年级学生去距学校10千米的荆州博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为/xkm h ,则可列方程为( ) A. 1010202x x B. 1010202x x C.1010123x x D. 1010123x x6. (2020·宜宾)学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x 元,则列方程正确的是( )A .150008x -=12000xB .150008x +=12000xC .15000x =120008x -D . 15000x =12000x+87. (2020•遂宁)关于x 的分式方程﹣=1有增根,则m 的值( )A .m =2B .m =1C .m =3D .m =﹣38. (2020·齐齐哈尔)若关于x 的分式方程3x x -2=m 2-x+5的解为正数,则m 的取值范围为( )A .m <﹣10B .m ≤﹣10C .m ≥﹣10且m ≠﹣6D .m >﹣10且m ≠﹣6二、填空题9. (2020·广州)方程3122xx x 的解是 .10. 一艘轮船在静水中的最大航速为30 km/h ,它以最大航速沿江顺流航行120 km所用时间,与以最大航速逆流航行60 km 所用时间相同,则江水的流速为 km/h .11. (2020·菏泽)方程111-+=-x x x x 的解是______. 12. (2020·江苏徐州)方程981x x =-的解为 .13. (2020·南京)方程1x x -=12x x -+的解是______.14. (2020·潍坊)若关于x 的分式方程33122x m x x +=+--有增根,则m =_________.15. (2020·湘潭)若37y x =,则x y x-=________.16. 若关于x 的分式方程+=2a 无解,则a 的值为 .三、解答题17. 解方程:2x +3=1x -1.18. (2019·上海)解方程:228122x x x x-=--19.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?20. (2020·威海)在“旅游示范公路”建设的过程中,工程队计划在海边某路段修建一条长1200m 的步行道.由于采用新的施工方式,平均每天修建步行道的长度是计划的1.5倍,结果提前5天完成任务.求计划平均每天修建步行道的长度.21. (2020·襄阳)(6分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的45,这样120吨水可多用3天,求现在每天用水量是多少吨?22. (2020·毕节)某学校拟购进甲、乙两种规格的书柜放置新购买的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高20%,用5400元购进的甲种书柜的数量比用6300元购进乙种书柜的数量少6个.(2)若该校拟购进这两种规格的书柜共60个,其中乙种书柜的数量不大于甲种书柜数量的2倍.该校应如何进货使得购进书柜所需费用最少?23. (2020·铜仁)某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3600元购买排球的个数要比用3600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?2021中考 临考专题训练:分式方程及其应用-答案一、选择题1. 【答案】D 【解析】本题考查了,解分式方程;熟练掌握分式方程的解法及验根是解题的关键,两边同时乘以(x +5)(x -2),∴2(x -2)=(x +5),∴9=x ,将检验9=x 是方程的根,∴方程的解为9=x ,因此本题选D .2. 【答案】C [解析] 方程两边都乘(2x -1),得x -2=3(2x -1).3. 【答案】A [解析] 2x -m x -3=1, 方程两边同乘(x -3),得2x -m =x -3.移项及合并同类项,得x =m -3.因为分式方程2x -m x -3=1的解是非正数,x -3≠0, 所以⎩⎨⎧m -3≤0,(m -3)-3≠0,解得m≤3.4. 【答案】B【解析】本题考查了分式方程应用,根据题意可知生产时间=数量÷效率,而且生产500万件产品所需的时间与更新技术前生产400万件产品所需时间相同,所以30500400+=x x ,因此本题选B .5. 【答案】C 【解析】本题考查了分式方程在实际问题中的应用,本题数量关系清晰,难度不大. 解:设骑车学生速度为x /km h ,则汽车的速度是2 x /km h ,依题意,得:1010123x x . 因此本题选C .6. 【答案】B【解析】设文学类图书平均每本x 元,则科普类图书平均每本(x +8)元,根据“用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等”得:150008x =12000x.7. 【答案】去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:m +3=0,解得:m =﹣3,故选:D .8. 【答案】 D【解析】分式方程去分母化为整式方程,表示出方程的解,由分式方程的解为正数求出m 的范围即可.去分母得:3x =﹣m +5(x ﹣2),解得:x =m +102,由方程的解为正数,得到m +10>0,且m +10≠4,则m 的范围为m >﹣10且m ≠﹣6,故选:D .二、填空题9. 【答案】32x 【解析】本题考查了分式方程的解法,过程如下:解:3121x x x 两边同乘21x ,得23x32x 检验:当32x 时,21x ≠0 ∴ 原分式方程的解为32x ,因此本题答案是32x .10. 【答案】10 [解析]设江水的流速为x km/h ,根据题意可得:=,解得:x=10, 经检验,x=10是原方程的根,且符合题意,所以江水的流速为10 km/h .11. 【答案】x =31 【解析】解分式方程的基本思路是通过去分母化为整式方程求解,解分式方程必须验根,把可能产生的增根舍去.方程两边同乘x (x -1),得(x -1)2=x (x +1),化简,得3x =1.∴x =31.经检验,x =31是原分式方程的根. 12. 【答案】 x =9【解析】把分式方程转化为整式方程,求出整式方程的根再进行验根确定 .∵981x x =-,把两边同时乘以x (x -1),得9x -9=8x ,∴x =9,经检验x =9是原方程的根.13. 【答案】 x =14【解析】去分母,得:x(x +2)=(x -1)2,去括号,得:x 2+2x =x 2-2x +1,移项、合并同类项,得:4x =1,系数化为1,得:x =14.检验:当x =14时,(x -1)(x +2)≠0,故x =14是原分式方程的根.14. 【答案】3【解析】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值. ()332x m x =++-,解得12m x +=.又∵关于x 的分式方程33122x m x x +=+--有增根,即20x -=,∴2x =,122m +=,解得:3m =,15. 【答案】4 7【解析】本题主要考查了比的基本性质,准确利用性质变形是解题的关键.根据比例的基本性质变形,代入求职即可;由37yx=可设3y k=,7x k=,k是非零整数,则7344777 --===x y k k kx k k.故答案为:47.16. 【答案】或1[解析]去分母得:x-3a=2a(x-3),整理得:(1-2a)x=-3a,当1-2a=0时,方程无解,得a=;当1-2a≠0,x==3时,分式方程无解,得a=1,故关于x的分式方程=2a无解,则a的值为:1或.三、解答题17. 【答案】解:去分母,得2(x-1)=x+3,(2分)去括号、移项、合并同类项,得x=5,(3分)经检验,x=5是原方程的根.∴原方程的解为x=5.(4分)18. 【答案】x=-4 【解析】去分母得:2x2-8=x2-2x,即x2+2x-8=0,分解因式得:(x-2)(x+4)=0,解得:x=2或x=-4,经检验x=2是增根,所以原分式方程的解为x=-4.19. 【答案】解:(1)设小明步行速度为x米/分,则小明骑自行车的速度为3x米/分.根据题意得,900 x=9003x+10,(3分)解得x=60,(4分)经检验x=60是原分式方程的解,答:小明步行速度是60米/分.(5分)(2)设小明家到图书馆之间的路程为a米,根据题意得,a 60≤2×90060×3,(8分)∴a≤600,答:小明家与图书馆的路程最多为600米.(10分)20. 【答案】解:设计划平均每天修建步行道的长度为xm ,则采用新的施工方式后平均每天修建步行道的长度为1.5xm , 依题意,得:5,解得:x =80,经检验,x =80是原方程的解,且符合题意.答:计划平均每天修建步行道的长度为80m .21. 【答案】 设原来每天用水量为x 吨,则现在每天用水量是45x 吨,根据题意,得 120120345x x -=,即1501203x x -=,解得x =10. 经检验,x =10是原方程的解且符合实际,则45x =8. 答:现在每天用水量是8吨.22. 【答案】解:(1)设每个乙种书柜的进价是x 元,则每个甲种书柜的进价是(1+20%)x 元 .根据题意,得5400120%x +()=6300x-6. 解得x =300.经检验x =300是原方程的解.当x =300时,(1+20%)x =360.所以每个乙种书柜的进价是300元,每个甲种书柜的进价是360元 .(2)设购进乙种书柜a 个,则购进甲种书柜(60-a )个.设购进书柜所需费用w 元.根据题意,得w =360(60-a )+300a =-60+21600.∵2(60-a )≥a ,∴a ≤40.所以该校应购进乙种书柜40个,购进甲种书柜20个时,购进书柜所需费用最少.23. 【答案】解:(1)设每一个篮球的进价是x 元,则每一个排球的进价是90%x 元,依题意有+10=,解得x=40,经检验,x=40是原方程的解,90%x=90%×40=36符合实际意义.故每一个篮球的进价是40元,每一个排球的进价是36元;(2)设文体商店计划购进篮球m个,总利润y元,则y=(100﹣40)m+(90﹣36)(100﹣m)=6m+5400,依题意有,解得0<m≤25且m为整数,∵6>0,∴y随m的增大而增大,∴当m=25时,y最大,这时y=6×25+5400=5550,100﹣25=75(个).答:该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5550元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学中考总复习 分式方程及其应用 专题训练题
1. 分式方程1x =2x -2
的解是( ) A .x =2 B .x =-2 C .x =-23 D .x =23
2. A ,B 两地相距160千米,甲车和乙车的平均速度之比为4∶5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )
A.1604x -1605x =30
B.1604x -1605x =12
C.1605x -1604x =12
D.1604x +1605x
=30 3. 若关于x 的分式方程2x -a x -2=12
的解为非负数,则a 的取值范围是( ) A .a ≥1 B .a >1 C .a ≥1且a≠4 D .a >1且a≠4
4. 将分式方程1x =2x -2
去分母后得到的整式方程,正确的是( ) A .x -2=2x B .x 2-2x =2x C .x -2=x D .x =2x -4
5.分式方程1x -1=3x 2-1
的解是( ) A .x =-1 B .x =1 C .x =2 D .无解
6.分式方程2x x -3
=1的解为( ) A .x =-2 B .x =-3 C .x =2 D .x =3
7.若关于x 的方程x +m x -3+3m 3-x
=3的解为正数,则m 的取值范围是( )
A .m <92
B .m <92且m ≠32
C .m>-94
D .m>-94且m ≠34
8.在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )
A.13x =18x -5
B.13x =18x +5
C.13x =8x -5
D.13x
=8x +5 9.关于x 的分式方程5x =a x -2
有解,则字母a 的取值范围是( ) A .a =5或a =0 B .a ≠0 C .a ≠5 D .a ≠5且a ≠0
10.分式方程1x -2=3x
的解是____. 11.关于x 的分式方程m x 2-4-1x +2
=0无解,则m =____. 12.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,求平时每个粽子卖多少元?设平时每个粽子卖x 元,列方程为____.
13. 方程2x -3=3x
的解是____. 14. 关于x 的方程x 2
-4x +3=0与1x -1=2x +a 有一个解相同,则a =____. 15. 解方程:1x -2-3=x -12-x
.
16. 解分式方程:x +14x 2-1=32x +1-44x -2
.
17. 小明解方程1x -x -2x
=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.
解:方程两边同乘x 得1-(x -2)=1 ……①
去括号得1-x -2=1 ……②
合并同类项得-x -1=1 ……③
移项得-x =2 ……④
解得x =-2 ……⑤
∴原方程的解为:x =-2 ……⑥
18. 马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.
19.为加快城市群的建设与发展,在A ,B 两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120 km 缩短至114 km ,城际铁路的设计平均时速要比现
行的平均时速快110 km ,运行时间仅是现行时间的25
,求建成后的城际铁路在A ,B 两地的运行时间.
20. 七月初,某市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同.
(1)求甲、乙两种救灾物品每件的价格各是多少元?
(2)经调查,灾区需求乙种物品的件数是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?
参考答案:
1---9 BBCAC BBBD
10. x =3
11. 0或-4
12. 54x +3=540.9x
13. x =9
14. 1
15. 解:方程两边同乘x -2,得1-3(x -2)=-(x -1),
即1-3x +6=-x +1,整理得:-2x =-6,
解得:x =3,检验,当x =3时,x -2≠0,则原方程的解为x =3.
16. 解:原方程即x +1(2x +1)(2x -1)=32x +1-22x -1
, 两边同时乘以(2x +1)(2x -1)得:x +1=3(2x -1)-2(2x +1),
x +1=6x -3-4x -2,解得:
x =6.经检验:x =6是原分式方程的解.∴原方程的解是x =6
17. 解:小明的解法有三处错误,步骤①去分母有误; 步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边乘以x ,得:1-(x -2)=x ,去括号得:1-x +2=x ,移项得:-x -x =-1-2,合并同类项得:-2x =-3,解得:x =32,经检验x =32是原分式方程的解,则方程的解为x =32
18. 解:设马小虎的速度为x 米/分,则爸爸的速度是2x 米/分,依题意得1800-200x =1800-2002x
+10,解得 x =80.经检验,x =80是原方程的根.答:马小虎的速度是80米/分
19. 解:设城际铁路现行速度是x km/h.由题意得:120x ×25=114x +110
,解这个方程得:x =80.经检验:x =80是原方程的根,且符合题意.则120x ×25=12080×25
=0.6(h).答:建成后的城际铁路在A ,B 两地的运行时间是0.6 h
20. 解:(1)设每件乙种物品的价格是x 元,则每件甲种物品的价格是(x +10)
元,根据题意得350x +10=300x
,解得x =60.经检验,x =60是原方程的解. 答:甲、乙两种救灾物品每件的价格分别是70元、60元
(2)设甲种物品件数为m 件,则乙种物品件数为3m 件,根据题意得,m +3m =2000,解得m =500,即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+60×1500=125000(元).
答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元。