人教版小学五年级数学上册知识点归纳总结

合集下载

人教版小学五年级数学上册知识点总结

人教版小学五年级数学上册知识点总结

人教版小学五年级数学上册知识点总结人教版小学五年级数学上册知识要点总结一、数的认识1.1 万以上数的认识:学生需要掌握万、十万、百万、千万、亿等大数的读法和写法,了解十进制计数法,并能够解决相关问题。

1.2 数的读写方法:学生需要掌握任意一个数的读写方法,包括整数、小数和分数。

1.3 数的改写和近似数:学生需要掌握如何将一个数改写成指定单位,如将千米改写成米,以及如何求一个数的近似数。

二、数的运算2.1 四则运算的意义:学生需要理解加法、减法、乘法和除法的意义,并能够解决简单的四则运算问题。

2.2 运算定律和简便运算:学生需要掌握加法交换律、加法结合律、乘法交换律、乘法结合律等基本运算定律,并能够运用这些定律进行简便运算。

2.3 估算:学生需要掌握如何对一个数进行估算,并能够运用估算解决实际问题。

三、简易方程3.1 方程的意义:学生需要理解方程的意义,并能够根据题意列方程。

3.2 解方程:学生需要掌握一些基本的解方程的方法,如移项、合并同类项、系数化为1等。

3.3 应用问题:学生需要能够运用方程解决一些简单的应用问题。

四、多边形面积4.1 平行四边形和三角形面积:学生需要掌握平行四边形和三角形的面积计算公式,并能够解决相关问题。

4.2 梯形面积:学生需要掌握梯形的面积计算公式,并能够解决相关问题。

4.3 面积单位换算:学生需要掌握常用的面积单位之间的换算关系,并能够进行简单的单位换算。

五、简易代数5.1 代数式和表达式:学生需要了解什么是代数式和表达式,并能够用代数式表示简单的数量关系。

5.2 解方程组:学生需要掌握如何解二元一次方程组,并能够解决相关问题。

5.3 应用问题解方程组:学生需要能够运用方程组解决一些简单的应用问题。

六、统计与概率6.1 统计图表的认识和应用:学生需要了解各种常见的统计图表,如柱状图、折线图和饼图等,并能够运用这些图表解决实际问题。

同时,学生还需要了解一些基本的概率知识,如随机事件、概率的意义和计算方法等。

五年级数学上册知识点总结人教版

五年级数学上册知识点总结人教版

五年级数学上册知识点总结人教版一、小数乘法。

1. 小数乘整数。

- 意义:与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

例如:2.5×3表示3个2.5相加的和是多少。

- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

如果积的末尾有0,要先点上小数点,再把0去掉。

例如:2.5×3 = 7.5。

2. 小数乘小数。

- 意义:表示求一个数的几分之几是多少。

例如:2.5×0.3表示2.5的十分之三是多少。

- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

例如:2.5×0.3 = 0.75。

3. 积的近似数。

- 求积的近似数的方法:先算出积,然后看需要保留数位的下一位数字,再按照“四舍五入”的方法求出近似数。

例如:2.5×0.3 = 0.75,如果保留一位小数,0.75≈0.8。

4. 整数乘法运算定律推广到小数。

- 乘法交换律:a× b=b× a;乘法结合律:(a× b)× c = a×(b× c);乘法分配律:(a + b)× c=a× c + b× c。

这些运算定律在小数乘法中同样适用。

例如:2.5×0.4×0.3=(2.5×0.4)×0.3 = 1×0.3 = 0.3;(2.5+0.3)×0.4 = 2.5×0.4+0.3×0.4 = 1 + 0.12 = 1.12。

二、位置。

1. 数对。

- 用数对表示位置时,先表示列数,再表示行数。

例如:在方格纸上,点A 在第3列第4行,用数对表示为(3,4)。

- 两个数对中第一个数相同,表示在同一列;第二个数相同,表示在同一行。

例如:(3,4)和(3,5)在同一列,(3,4)和(4,4)在同一行。

人教版小学五年级数学上册知识点归纳

人教版小学五年级数学上册知识点归纳

人教版小学五年级数学上册知识点归纳第一单元《小数乘法》一.小数乘整数1.计算小数加法先把小数点对齐,再把相同数位上的数相加2.计算小数乘法末尾对齐,按整数乘法法则进行计算.3.积中小数末尾有0的乘法. 先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0.如:3.60 “0”应划去 .如果乘得的积的小数位数不够要在前面用0补足,再点上小数点.如0.02×2=0.044.计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐.二.小数乘小数1.因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数.2.小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.)乘得的积的小数位数不够要在积的前面用0补足,在点小数点.3.规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数.一个数(0除外)乘小于1的数(0除外),积小于这个数.一个数(0除外)乘1,积等于这个数.4.小数乘法的验算方法(1).把因数的位置交换相乘. (2).用计算器来验算三.积的近似数1.先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示.2. 如果求得的近似数所求数位的数字是9而后一位数字又大于等于5需要进1,这是就要依次进一用0占位.如6.597 保留两位为6.60.四.连乘.乘加.乘减1.小数乘法要按照从左到右的顺序计算2.小数的乘加运算与整数的乘加运算顺序相同,先乘除,后加减.五.简便运算整数乘法的交换律.结合律和分配律,同样适用于小数乘法.常见乘法计算(敏感数字):25×4=100 125×8=1000第二单元位置1.行和列的意义:竖排叫做列,横排叫做行.2.数对可以表示物体的位置,也可以确定物体的位置.3.数对表示位置的方法:先表示列,再表示行.用括号把代表列和行的数字或字母括起来,再用逗号隔开.例如:(7,9)表示第七列第九行.4.两个数对,前一个数相同,说明它们所表示物体位置在同一列上.如:(2,4)和(2,7)都在第2列上.5.两个数对,后一个数相同,说明它们所表示物体位置在同一行上.如:(3,6)和(1,6)都在第6行上.6.物体向左.右平移,行数不变,列数减去或加上平移的格数.物体向下.上平移,列数不变,行数减去或加上平移的格数.第三单元《小数除法》1.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算.2.小数除法的计算方法:(可以先写商的小数点,再写商)(1)除数是整数的小数除法:按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,如果被除数的整数部分比除数小,不够商1,要在商的个位上写0,然后点上小数点,再继续除;如果除到被除数的末尾仍有余数时,就在余数的后面添0再继续除.(2)除数是小数的除法:先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算.3.商不变的性质:两数相除,被除数与除数同时扩大或缩小相同的倍数(0除外),商不变.4.商的变化规律:两数相除,除数不变,被除数扩大或缩小几倍,商也随着扩大或缩小几倍.两数相除,被除数不变,除数扩大或缩小几倍,商也随着缩小或扩大几倍.5.除法中比较大小时的规律:一个数(0除外)除以大于1的数,商小于被除数一个数(0除外)除以1,商等于被除数一个数(0除外)除以小于1的数(0除外),商大于被除数6.取近似数的方法:取近似数的方法有三种:①四舍五入法②进一法③去尾法一般情况下,按要求取近似数时用四舍五入法,进一法.去尾法在解决实际问题的时候选择应用.取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数.没有要求时,除不尽的一般保留两位小数.7.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数.依次不断重复出现的数字,叫做这个循环小数的的循环节.8.循环小数的表示方法:(1)一种是用省略号表示,要写出两个完整的循环节,后面标上省略号.如:0.3636… 1.587587….(2)另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点.如:0.3。

(人教版)小学五年级数学上册各单元重要知识点梳理详解汇总

(人教版)小学五年级数学上册各单元重要知识点梳理详解汇总

(人教版)小学五年级数学上册各单元重要知识点梳理详解汇总第一单元 小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:@意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大:一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(1)四舍五入法;(2)进一法: (3)去尾法 5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:@加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@减法:{a −bc =a −(b +c )a −(b +c )=a −b −c@乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c -b×c】@除法:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右分别为列数和行数,即“先列后行”。

{a ÷b ÷c =a ÷(b ×c )a ÷(b ×c )=a ÷b ÷c1、数对:第二单元位置2、作用:一组数对确定唯一一个点的位置。

人教版五年级数学上册知识点归纳总结

人教版五年级数学上册知识点归纳总结

人教版五年级数学上册知识点归纳总结IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】五年级上学期数学知识点总结第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:×3表示的3倍是多少或3个的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:×就是求的十分之八是多少。

×就是求的倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、(P11)小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换a+b=b+a加法结合律(a+b)+c=a+(b+c)减法:减法性质a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法:除法性质a÷b÷c=a÷(b×c)第二单元位置数对(a,b)a表示第几列b表示第几行列横数行竖数第三单元小数除法1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

数学五年级上册知识点总结(人教版)

数学五年级上册知识点总结(人教版)

数学五年级上册知识点总结(人教版)第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置1、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

最新人教版,五年级数学上册复习知识点归纳总结及重难点整理,精品资料

最新人教版,五年级数学上册复习知识点归纳总结及重难点整理,精品资料

最新人教版,五年级数学上册复习知识点归纳总结及重难点整理,精品资料小学最新人教版五年级数学上册复习知识点归纳总结第一单元小数乘法1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:1.5×0.8(整数部分是0)就是求1.5的十分之八是多少。

1.5×1.8(整数部分不是0)就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。

保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)见2.5找4或0.4,见1.25找8或0.8乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)变式: (a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c减法:减法性质:a-b-c=a-(b+c)除法:除法性质:a÷b÷c=a÷(b×c)第二单元位置8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。

(人教版)小学五年级数学上册1-7单元必背知识点总结

(人教版)小学五年级数学上册1-7单元必背知识点总结

五年级数学上册1-7单元必背知识点总结班级: 姓名:第一单元:小数乘法1.乘法运算定律:①乘法交换律:ab= ba②乘法结合律: (a×b)×c=a×(b×c)③乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c2.常用算式;0.2×5=10 0.4×5=2 0.5×6=3 0.5×8 =4 0.25×4 =1 0.125×8=13.常用数量关系式:重难点①(速度)×时间)=(路程) (路程)÷(速度)=(时间) (路程)÷(时间)=(速度)(速度和)×(相遇时间)=(两地路程) (甲行的路程)+(乙行的路程)=(总路程)②(单价)×(数量)=(总价) (总价)÷(单价)=(数量) (总价)÷(数量)=(单价)(原价)-(优惠价)=(现价) (付出钱数)-(用去钱数)=(找回钱数)③(工作效率)×(工作时间)=(工作总量) (工作能量)÷(工作较率)=(工作时间)(工作总量)÷(工作时间)=(工作效率)(两人工作效率之和)x(工作时间)=(两人工作总量之和)(甲工作总量)+(乙工作总量)=(两人工作总量之和)4.小数乘法的计算法则:①先按照(整数乘法)算出积,再点(小数点);②点(小数点)时,看(因数)中(一共)有几位小数,就从积的(右边)起数出几位,点上小数点。

③乘得的积的小数位数(不够),要在前面用(O)补足,再点小数点)。

积的小数部分(末尾)有0的,一般要把0(去掉)。

5.积与因数的关系:①一个数(O除外)乘大于1的数,积比原来的数(大);如:3.5 ×(1.2)>3.5②一个数(O除外)乘小于1的数,积比原来的数(小);如:8.2_×(0.9)< 8.26.倍数问题:求一个数是另一个数的几倍,用(乘法)计算,直接用这个数乘(倍数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学五年级数学上册复习知识点归纳总结第一单元小数乘法1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:(1)计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

(2)计算小数加减法先把小数点对齐,再把相同数位上的数相加。

(3)计算小数乘法末尾对齐,按整数乘法法则进行计算。

(4)计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数因数末尾对齐。

2、一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

3、求积的近似数:先求出积,在根据需要求近似数。

求近似数的方法一般有三种:⑴四舍五入法(常用);⑵进一法;⑶去尾法。

后两种多用于解决实际问题求近似数中。

4、计算钱数,保留两位小数,表示精确到分。

保留一位小数,表示精确到角。

5、小数四则运算顺序跟整数四则运算顺序是一样的。

(只有同级运算,从左到右依次计算;两级都有,先乘除后加减;有括号,先算括号里面。

)6、运算定律和性质:方法1、看(观察算式)2、想(思考能否简便计算)3、做(确定定xx按运算xx简便计算。

)整数乘法的交换律、结合律和分配律,同样适用于小数乘法。

常见乘法计算(敏感数字):25×4=100125×8=1000加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变.(a×b)×c=a×(b×c)乘法分配律:两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。

(a+b)×c=a×c+b×c减法或(a-b)×c=a×c-b×c 性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。

a-b-c=a-(b+c) a-b-c=a-c-b除法性质:从一个数里连续除数两个数,我们可以除以两个除数的积,或者交换两个除数的位置。

a÷b÷c=a÷(b×c)a÷b÷c=a÷c÷b去括号:加减(乘除)混合时,括号前是加号(乘号)的,去掉括号后,括号内的符号不变号;括号前是减号(除法)的,去掉括号后,括号内的符号要变号。

a+(b-c)=a+b-c a-(b-c)=a-b+c a (b÷c)=ab÷c a÷(b÷c)=a÷b×c加法交换律:加法结合律乘法交换律:乘法结合律:0.75+9.8+0.2548.5=0.4=0.62.5×5.6×0.499×12.5×0.8加法交换律与结合律6.5+0.28+3.5+0.722.5×1.25×0.4×0.8乘法分配律(提取式)1.35×12-1.35×295.5÷1.6-15.5÷1.6乘法分配律(添项)99×25.6+25.63.5×8+3.5×3-3.5数字换加法数字换减法数字换乘法4.5×10299×2.65.6×125减法1减法2减法352.8-6.5-3.55.28-0.89-1.287.63-(1.9+2.63)连除1连除2连除3(12.5×2.1)3200÷2.5÷0.4370÷2.5÷3.7210÷同级运算中,第一个数不动,后面的数可以带着符号搬家。

第二单元位置2.56-0.58+0.445.88+1.62-0.882.5÷0.2×0.4290×2.5÷0.291、数对:一般由两个数组成。

作用:数对可以表示物体的位置,也可以确定物体的位置。

2、行和列的意义:竖排叫做列,横排叫做行。

3、数对表示位置的方法:先表示列,再表示行。

用括号把代表列和行的数字或字母括起来,再用逗号隔开。

例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X轴上(横轴)的坐标表示列,y轴上(竖轴)的坐标表示行。

如:数对(3,2)表示第三列,第二行。

4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。

如:(2,4)和(2,7)都在第2列上。

5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。

如:(3,6)和(1,6)都在第6行上6、图形平移变化规律:(1)图形向左平移,行数不变,列数减去平移的格数;图形向右平移,行数不变,列数加上平移的格数。

(2)图形向上平移,列数不变,行数加上平移的格数;图形向下平移,列数不变,行数减去平移的格数。

第三单元小数除法1、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。

整数部分不够除,商0,点上小数点。

如果有余数,要添0再除。

2、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数(把小数点向右移动相同的位数),使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:向右移动小数点时,如果被除数的位数不够,在被除数的末尾用0补足。

3、除法中的变化规律:①商不变性质:被除数和除数同时乘或除以同一个数(0除外),商不变。

②除数不变,被除数乘或除以几,商随着乘或除以几。

③被除数不变,除数乘或除以几,商就除以或乘几。

④被除数大于除数,商就大于1;被除数小于除数,商就小于1。

⑤一个非0的数除以大于1的数,商就小于被除数;一个非0的数除以小于1的数,商就大于被除数。

⑥积不变性质:一个因数乘一个数,另一个除以同一个数(0除外),积不变。

⑦一个因数不变,另一个数乘几,积就乘几。

⑧一个因数不变,另一个因数除以几,积就除以几。

4、求商时有时也需要求近似数。

方法三种。

取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。

没有要求时,除不尽的一般保留两位小数。

5、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

一个循环小数的小数部分,依次不断重复出现的数字,叫循环节。

如6.32,,的循环节是32,注意不是23一定要是第一次重复出现的数字是3在前2在后重复出现!6、循环小数的记法:(1)用省略号表示。

写出两个完整的循环节,加省略号。

如: 3.55…,2.0321…(2)简便记法。

在循环节的首位和末位上加小圆点。

如0.36,2.587循环小数是无限小数,无限小数不一定是循环小数。

7、小数部分的位数是有限的小数,叫做有限小数。

小数部分的位数是无限的小数,叫做无限小数。

无限小数分为无限循环小数和无限不循环小数。

第四单元可能性1、可能性:无论在什么情况下都会发生的事件,是“一定”会发生的事件;在任何情况下都不会发生的事件,是“不可能”发生的事件;在某种情况下会发生,而在其他情况下不会发生的事件,是“可能”会发生的事件。

2、可能性的大小:在可能发生的事件中,如果出现该事件的情况较多,我们就说该事件发生的可能性较大;如果出现该事件的情况较少,我们就说该事件发生的可能性较小。

3、游戏规则的公平性:公平性就是只参与游戏活动的每一个对象获胜的可能性是相等的。

第五单元简易方程,也可以省略不写。

1、在含有字母的式子里,字母中间的乘号可以记作“·”加号、减号、除号以及数与数之间的乘号不能省略。

2、a×a可以写作a·a或a2,a2读作a的平方2a表示a+a或2×a我们不写)(1a=a这里的“1”3、方程:含有未知数的等式称为方程(★方程必须满足的条件:必须是等式必须有未知数,两者缺一不可)。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

4、xx原理:天平平衡。

等式性质一:方程两边同时加上或减去同一个数,左右两边仍然相等。

等式性质二:方程两边同时乘或除以同一个不为0数,左右两边仍然相等。

5、所有的方程都是等式,但等式不一定都是方程。

6、方程的检验过程:方程左边=方程右边7、方程的解是一个数;解方程式是一个计算过程。

所以,X=,是方程的解。

常见的等量关系:①路程=速度×时间②工作总量=工作效率×工作时间③总价=单价×数量xx解决问题方法步骤:1、读题、分析题意(从要求入手)。

【找出已知信息(包括隐含信息剔除无用信息)和未知(即要求信息);注意单位是否一致;不一致先转化】2、解:设未知数。

【有两个未知数,通常设小的那个,另一个用含设的未知数的关系式表示。

】3、思考并列出方程。

【根据题意和找出的信息建立已知和未知的等量关系列出方程。

】4、xx。

5、检验反思后作答。

第五单元多边形的面积1、长方形周长=(长+宽)×2字母公式:C=(a+b)×2长方形面积=长×宽字母公式:S=ab2、正方形周长=边长×4字母公式:C=4a正方形面积=边长×边长字母公式:S=a23、平行四边形的面积=底×高字母公式:S=ah4、三角形的面积=底×高÷2字母公式:S=ah÷2(三角形的底=面积×2÷高;三角形的高=面积×2÷底)5、梯形的面积=(上底+下底)×高÷2字母公式:S=(a+b)h÷2(上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底))注明:求三角形的底或高和梯形的上下底或高时,可根据公式列方程求解。

这样容易列出方程,也好理解。

6、三角形面积公式推导:平行四边形可以转化成一个长方形;两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;因为长方形面积=长×宽,所以平行四边形面积=底×高,长方形的面积等于平行四边形的面积。

平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于等底等高三角形面积的2倍。

7、两个完全一样的梯形可以拼成一个平行四边形。

平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷ 28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。

相关文档
最新文档