平稳时间序列模型及其特征

合集下载

第2章平稳时间序列模型

第2章平稳时间序列模型

第二章 平稳时间序列模型本章将介绍Box-Jenkins 方法,主要包括一元平稳时间序列的识别、估计、诊断和预测方法。

2.1 平稳性时间序列t y 的均值和协方差 ()t t E y μ=,cov(,)[()()]t s t t s s t s y y E y y μμγ=--=一个随机过程的线性性质可由均值和协方差来描述。

如果这个过程是正态过程, ,,t t s μγ可以完全刻画这个随机过程的分布性质。

如果没有正态性质,但生成过程是线性的,则在它的均值和方差中可获得关于这个过程的更多的重要特征。

下面的问题是如何来估计t μ,对于一些过程我们可以得到大量的实现(反复做观测),1,2,,.1,2,,.jt y t n j k ==那么,t μ的估计是11ˆkt jt j y k μ==∑但对大多数过程来说,得不到更多的实现。

如,不可能把经济停下来,然后重新开始观测。

对一个实现,不可能估计出t μ。

为了克服这个困难,时间序列分析要做如下的假设:均值和方差不随时间而改变。

如果对任何t, t-s, 都有μ==-)()(s t t y E y E222)()(y s t t y E y E σμμ=-=--s s j t j t s t t y y y y γ==----),cov(),cov(这里 2,y μσ都是常量,与时间无关,s γ是依赖于s 的常量。

这样的随机过程称为协方差平稳。

可以简单地说,如果一个时间序列的均值和协方差不受时间变化影响,则称这个时间序列是协方差平稳。

在一些文献中,协方差平稳的过程也称为弱平稳,二阶矩平稳或宽平稳过程。

(注意一个强平稳过程不一定有有限的均值和方差)。

一个更进一步的假设是遍历性(ergodic )。

这是一个较难理解的一个概念。

遍历性是指,按时间平均11nn t t y y n ==∑是总体均值μ的无偏、一致估计。

即(),()0,()n n E y Var y n μ=↓→∞。

平稳时间序列模型

平稳时间序列模型

(1)一个平稳的时间序列总可以找到生成它
的平稳的随机过程或模型; (2)一个非平稳的随机时间序列通常可以通 过差分的方法将它变换为平稳的,对差分后平稳 的时间序列也可找出对应的平稳随机过程或模型。
(六) 中国GDPP的 ARMA(p,q)模型
ARMA(1,1) ARMA(2,2)
ARIMA(8,2,7)非对称
p阶自回归模型,简记为AR(p):
xt 0 1 xt 1 2 xt 2 p xt p t 2 E ( ) 0 , Var ( ) t t , E ( t s ) 0, s t
0 且 1 1 2 p , Var( x ) t
(二)向量自回归模型定义 VAR(Vector AutoRegression,向量自回归)
•1980年Sims提出向量自回归模型(vector autoregressive model)。 •VAR模型是自回归模型的联立形式,所以称向量自回归 模型。
q 阶移动平均模型,
xt t 1 t 1 2 t 2 q t q q 0 2 E ( t ) 0,Var ( t ) , E ( t s ) 0, s t
特别当
0
时,称为中心化
MA(q) 模型
二、自回归模型
(一) AR模型的定义 1阶自回归模型,记为AR(1): xt=0+1xt-1+t (1) E(t)=0,Var(t)=2, E(ts)=0, st 若序列是弱平稳的,则 E(xt)=, Var(xt)=0, Cov(xt, xt-k)=k 由(1)可得 E(xt)=0+1E(xt-1) 0 因此

平稳时间序列模型及其特征

平稳时间序列模型及其特征

第一章平稳时间序列模型及其特征第一节模型类型及其表示一、自回归模型(AR)由于经济系统惯性的作用,经济时间序列往往存在着前后依存关系。

最简单的一种前后依存关系就是变量当前的取值主要与其前一时期的取值状况有关。

用数学模型来描述这种关系就是如下的一阶自回归模型:X t=φX t-1+εt(2.1.1)常记作AR(1)。

其中{X t}为零均值(即已中心化处理)平稳序列,φ为X t对X t-1的依赖程度,εt为随机扰动项序列(外部冲击)。

如果X t 与过去时期直到X t-p的取值相关,则需要使用包含X t-X t-p在内的p阶自回归模型来加以刻画。

P阶自回归模型的一1 ,……般形式为:X t=φ1 X t-1+φ2 X t-2+…+φp X t-p+εt(2.1.2)为了简便运算和行文方便,我们引入滞后算子来简记模型。

设B 为滞后算子,即BX t=X t-1, 则B(B k-1X t)=B k X t=X t-k B(C)=C(C为常数)。

利用这些记号,(2.1.2)式可化为:X t=φ1BX t+φ2B2X t+φ3B3X t+……+φp B p X t+εt从而有:(1-φ1B-φ2B2-……-φp B p)X t=εt记算子多项式φ(B)=(1-φ1B-φ2B2-……-φp B P),则模型可以表示成φ(B)X t=εt (2.1.3) 例如,二阶自回归模型X t=0.7X t-1+0.3X t-2+0.3X t-3+εt可写成(1-0.7B-0.3B2)X t=εt二、滑动平均模型(MA)有时,序列X t的记忆是关于过去外部冲击值的记忆,在这种情况下,X t可以表示成过去冲击值和现在冲击值的线性组合,即X t=εt-θ1εt-1-θ2εt-2-……-θqεt-q (2.1.4) 此模型常称为序列X t的滑动平均模型,记为MA(q),其中q为滑动平均的阶数,θ1,θ2…θq为参滑动平均的权数。

相应的序列X t称为滑动平均序列。

第二章平稳时间序列模型——ACF和PACF和样本ACFPACF

第二章平稳时间序列模型——ACF和PACF和样本ACFPACF

第⼆章平稳时间序列模型——ACF和PACF和样本ACFPACF⾃相关函数/⾃相关曲线ACFAR(1)模型的ACF:模型为:当其满⾜平稳的必要条件|a1|<1时(所以说,⾃相关系数是在平稳条件下求得的):y(t)和y(t-s)的⽅差是有限常数,y(t)和y(t-s)的协⽅差伽马s除以伽马0,可求得ACF如下:由于{rhoi}其在平稳条件|a1|<1下求得,所以平稳0<a1<1则⾃相关系数是直接收敛到0-1<a1<0则⾃相关系数是震荡收敛到0对于AR(2)模型的ACF:(略去截距项)两边同时乘以y(t),y(t-1),y(t-2)......得到yule-Walker⽅程,然后结合平稳序列的⼀些性质(yule-Walker⽅程法确确实实⽤了协⽅差只与时间间隔有关的性质),得到⾃相关系数如下:rho0恒为1(⼆阶差分⽅程)令⼈惊喜的是,这个⼆阶差分⽅程的特征⽅程和AR(2)模型的是⼀致的。

所以,我们的rho本就是在序列平稳的条件下求得,所以{rhoi}序列也平稳。

当然,其收敛形式取决于a1和a2MA(1)模型的ACF:模型为:由于y(t)的表达式是由⽩噪声序列中的项组成,所以不需要什么平稳条件,就可以求得rho的形式如下:对于MA(p)模型,rho(p+1)开始,之后都为0.所以说,到了p阶之后突然阶段,变为0了。

ARMA(1,1)模型的ACF:模型为:还是使⽤yule-Walker⽅程法(⽤到了序列平稳则协⽅差只与时间间隔有关的性质)得到:所以有:ARMA(p,q)模型的ACF:ARMA(p,q)的⾃相关系数满⾜:(式1)前p个rho值(rho1,rho2...rhop)可以看做yule-Walker⽅程的初始条件,其他滞后值取决于特征⽅程。

(其实是这样的,rho1,rho2...rhop实际上能写出⼀个表达式,⽽rho(p+1)开始,就满⾜⼀个差分⽅程,⽽这个⽅程对应的特征根(即式1)⽅程和AR(p)对应的⼀模⼀样),所以,他会从之后q期开始衰减。

时间序列分析模型

时间序列分析模型

时间序列分析模型时间序列分析是一种广泛应用于统计学和经济学领域的建模方法,用于研究随时间变化的数据。

它的目的是揭示和预测数据中隐含的模式和关系,以便更好地理解和解释现象,并做出相应的决策。

时间序列分析模型可以分为统计模型和机器学习模型两类。

一、统计模型1.平稳时间序列模型:平稳时间序列是指在统计学意义上均值和方差都是稳定的序列。

常用的平稳时间序列模型包括:自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)和季节性自回归整合移动平均模型(SARIMA)等。

-自回归移动平均模型(ARMA)是根据时间序列数据的自相关和移动平均性质建立的模型。

它将序列的当前值作为过去值的线性组合来预测未来值。

ARMA(p,q)模型中,p表示自回归项的阶数,q表示移动平均项的阶数。

-自回归整合移动平均模型(ARIMA)在ARMA模型基础上引入差分操作,用于处理非平稳时间序列。

ARIMA(p,d,q)模型中,d表示差分的次数。

-季节性自回归整合移动平均模型(SARIMA)是ARIMA模型的扩展,在存在季节性变化的时间序列数据中应用。

SARIMA(p,d,q)(P,D,Q)s模型中,s表示季节周期。

2.非平稳时间序列模型:非平稳时间序列是指均值和/或方差随时间变化的序列。

常用的非平稳时间序列模型包括:趋势模型、季节性调整模型、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。

- 趋势模型用于描述数据中的趋势变化,例如线性趋势模型(y = ax + b)和指数趋势模型(y = ab^x)等。

-季节性调整模型用于调整季节性变化对数据的影响,常见的方法有季节指数调整和X-12-ARIMA方法。

-自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)在非平稳时间序列中引入差分操作进行模型建立。

二、机器学习模型机器学习模型在时间序列分析中发挥了重要作用,主要应用于非线性和高维数据的建模和预测。

平稳时间序列模型概述

平稳时间序列模型概述

平稳时间序列模型概述平稳时间序列模型是一种常见的时间序列分析方法,用于对事物在一定时间范围内的变化进行建模和预测。

平稳时间序列模型假设时间序列的均值和方差在任意时刻都保持不变,即不受时间的影响。

平稳时间序列模型有许多不同的形式,其中最常见的是自回归移动平均模型(ARMA)和季节性自回归移动平均模型(SARMA)。

ARMA模型由自回归(AR)部分和移动平均(MA)部分组成,描述了时间序列的自相关和滞后误差,可以用来预测未来的观测值。

SARMA模型在ARMA模型的基础上加入了季节性因素,适用于存在明显季节性变化的时间序列。

ARMA模型的一般形式为:\[ X_t = c + \phi_1X_{t-1} + \dots + \phi_pX_{t-p} + \epsilon_t -\theta_1\epsilon_{t-1} - \dots - \theta_q\epsilon_{t-q} \]其中,\( X_t \)是时间序列在时刻\( t \)的观测值,\( c \)是常数,\( \phi_1, \dots, \phi_p \)是自回归系数,\( X_{t-1}, \dots, X_{t-p} \)是过去的观测值,\( \epsilon_t \)是误差项,\( \theta_1, \dots,\theta_q \)是移动平均系数,\( \epsilon_{t-1}, \dots, \epsilon_{t-q} \)是过去的误差项。

SARMA模型的一般形式为:\[ X_t = c + \phi_1X_{t-1} + \dots + \phi_pX_{t-p} -\theta_1\epsilon_{t-1} - \dots - \theta_q\epsilon_{t-q} + \gammaX_{t-m} + \phi_1\gamma X_{t-m-1} + \dots + \phi_p\gammaX_{t-m-p} + \epsilon_t \]其中,\( X_t \)是时间序列在时刻\( t \)的观测值,\( c \)是常数,\( \phi_1, \dots, \phi_p \)是自回归系数,\( X_{t-1}, \dots, X_{t-p} \)是过去的观测值,\( \epsilon_t \)是误差项,\( \theta_1, \dots,\theta_q \)是移动平均系数,\( \epsilon_{t-1}, \dots, \epsilon_{t-q} \)是过去的误差项,\( \gamma \)是季节性系数,\( X_{t-m},\dots, X_{t-m-p} \)是过去的季节性观测值。

平稳时间序列模型的特性

平稳时间序列模型的特性

它旳解为
Xt
at
1 1B
(1 1B 12 B 2
13 B3
)at
1j at j
G j at j
j0
j0
11
3.格林函数旳意义
(1) G j是前j个时间单位此迈进入系统旳扰动 at j对系统目前行 为(响应)影响旳权数。
(2)
G
客观地刻画了系统动态响应衰减旳快慢程度。
j
(3)
G
是系统动态旳真实描述。系统旳动态性就是蕴含在时间
3. 系统参数对系统响应旳影响 对此我们用实例加以阐明,对前面旳序列分将别利用 1 0.5 和 1 0.9 成了两个序列,分别描 绘在图3.2和图3.3中,
16
17
1
1
1
经过比较图3.1、图3.2能够懂得: (1) 取负值时,响应波动较大。 (2) 取正值时,响应变得平坦。 (3) 越大,系统响应回到均衡位置旳速度越慢,时
0
1 1 p
29
AR(P)序列中心化变换
称 {yt}为 {xt}旳中心化序列 ,令
0
1 1 p
yt xt
30
自回归系数多项式
引进延迟算子,中心化 AR( p)模型又能够简
记为
(B)xt t
自回归系数多项式
(B) 1 1B 2B2 p B p
31
AR模型平稳性鉴别
鉴别原因
zt (c1 c2t
cd t d 1)1t
c t d 1 d 1
cppt
复根场合
zt rt (c1eit c2eit ) c33t
c
p
t p
26
非齐次线性差分方程旳解
非齐次线性差分方程旳特解

趋势平稳的的时间序列

趋势平稳的的时间序列

趋势平稳的的时间序列趋势平稳的时间序列是指在一段时间内,其数据呈现出相对稳定的发展趋势,即没有明显的上升或下降趋势。

在统计学中,趋势平稳的时间序列对于分析和预测具有重要意义。

趋势平稳的时间序列的特征主要有以下几个方面:1. 均值稳定性:趋势平稳的时间序列的均值在不同的时间段内保持相对稳定。

也就是说,数据的整体平均水平没有明显的增长或降低趋势。

2. 方差稳定性:趋势平稳的时间序列的方差在不同时间段内保持相对稳定。

也就是说,数据的波动性没有明显的增加或减少趋势。

3. 自相关性:趋势平稳的时间序列的不同时刻的观测值之间存在一定的自相关性。

也就是说,当前时刻的观测值与前一时刻(或者前几个时刻)的观测值相关联。

这种自相关性是由于时间序列中的某种内在规律性或者周期性导致的。

4. 缺乏季节性或周期性:趋势平稳的时间序列在一段时间内不具备明显的季节性或周期性变化。

也就是说,数据的变化主要是由整体趋势所引起的,而非季节性或周期性因素所导致。

趋势平稳的时间序列分析和预测相对比较简单,因为在其基础上可以应用一些经典的时间序列分析方法。

以下是几种常见的分析和预测方法:1. 移动平均法:移动平均法是一种通过计算相邻时间段内的数据均值来平滑时间序列的方法。

在趋势平稳的时间序列中,由于数据的整体趋势相对稳定,因此移动平均法可以有效降低数据的随机波动,提取出数据的主要趋势,从而更好地分析和预测。

2. 指数平滑法:指数平滑法是一种通过加权平均计算当前时刻的观测值的方法,其中对不同时刻的观测值赋予不同的权重。

在趋势平稳的时间序列中,指数平滑法可以根据当前时刻的观测值和先前时刻的预测值来计算最新的预测值,从而更好地捕捉到数据的趋势性。

3. 自回归移动平均模型(ARIMA):ARIMA模型是一种常用的时间序列模型,可以将时间序列分解为自回归(AR)部分、差分(I)部分和滑动平均(MA)部分。

在趋势平稳的时间序列中,ARIMA模型可以通过拟合数据的自回归部分和滑动平均部分来进行预测,从而更好地反映数据的整体趋势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Yt=εt+G1εt-1+G2εt-2+……+Gkεt-k+……=G(B) εt
且 ,则称{Yt}具有传递形式,此时{Yt}是平稳的。系数{Gk}称为格林函数。它描述了系统对过去冲击的动态记忆性强度。
2序列的逆转形式:若{Yt}可表示为:
εt= Yt-π1Yt-1-π2Yt-2-……-πkYt-k-……=π(B) Yt
对于一般的MA(q)模型,利用滞后算子表示有:
ﻩYt=(1-θ1B-θ2B2-……- θqBq)εt= θ(B)εt
其可逆的充要条件是:θ(B) =0的根全在单位圆外(证明见Box-Jenkins,P79)。
在可逆的情况下,服从MA(q)模型的序列可以表示成无穷阶的AR模型:
θ-1(B)Yt=εt
MA(q)的可逆域:使θ(B) =0的根全在单位圆之外的系数向量(θ1,θ2,……,θq)所形成的集合。
此结论表明,ARMA(1,1)序列的平稳性仅与自回归系数有关,而与滑动平均系数无关。而且平稳条件与AR(1)的平稳条件相同。在平稳的条件下,Yt有上述形式的传递形式。
一般地,服从ARMA(p,q)模型的序列Yt平稳的充要条件是:φ(B)=0的根全在单位圆外。在平稳的条件下,Yt有传递形式Yt=φ-1(B)θ(B)εt
ﻩ例:求MA(2)的可逆域。
解:由 ,其特征方程为:
该方程的两个根为:
由二次方程根与系数的关系,有
当MA(2)平稳时,根的模 都必须大于1,因此必有:
由根与系数的关系,可以推出如下式子:
由于 是实数, 必同为实数或共轭复数。又因为 ,因此

反之,如果 ,且 。那么从 可以推出至少有一个 ,例如,假设 ,则根据 可推出 ,由 可以推出 ,从而 。因此, 的根在单位圆之外。(平稳域为一三角形)。
从而有:
(1-φ1B-φ2B2-……-φpBp)Xt=εt
记算子多项式φ(B)=(1-φ1B-φ2B2-……-φpBP),则模型可以表示成
ﻩφ(B)Xt=εt(2.1.3)
例如,二阶自回归模型Xt=0.7Xt-1+0.3Xt-2+0.3Xt-3+εt可写成(1-0.7B-0.3B2)Xt=εt
二、滑动平均模型(MA)
ﻩ且 ,则称{Yt}具有逆转形式(或可逆形式)。
一、MA模型
1.MA模型本身就是传递形式。
2.MA(q)总是平稳的(由上一章的例),MA(∞)在系数级数绝对收敛的条件下平稳。
3.MA(q)模型的可逆性条件。
先以MA(1)(Yt=εt-θ1εt-1)为例进行分析。
ﻩﻩMA(1)的可逆性条件为: 。如果引入滞后算子表示MA(1),则Yt=(1-θ1B)εt,可逆条件 等价于θ(B)=1-θ1B=0的根全在单位圆外。
平稳时间序列模型及其特征
———————————————————————————————— 作者:
———————————————————————————————— 日期:
第一章平稳时间序列模型及其特征
第一节模型类型及其表示
一、自回归模型(AR)
由于经济系统惯性的作用,经济时间序列往往存在着前后依存关系。最简单的一种前后依存关系就是变量当前的取值主要与其前一时期的取值状况有关。用数学模型来描述这种关系就是如下的一阶自回归模型:
ﻩAR(P)的平稳域:使 (B)=0的根全在单位圆外的AR系数向量( 1, 2,……, p,)的全体形成的集合。
练习:求AR(1)与AR(2)的平稳域。
三、ARMA(p,q)模型
1、平稳性与传递形式
首先考察ARMA(1,1)的平稳性:Yt–φ1Yt-1=εt–θ1εt-1
Yt平稳︱φ1︱<1(与AR(1)的平稳域相同)
ﻩ使用滞后算子记号,(2.1.4)可写成
Xt=(1-θ1B-θ2B2-……- θqBq)qt=θ(B)εt(2.1.5)
三、自回归滑动平均模型
ﻩ如果序列{Xt}ቤተ መጻሕፍቲ ባይዱ当前值不仅与自身的过去值有关,而且还与其以前进入系统的外部冲击存在一定依存关系,则在用模型刻画这种动态特征时,模型中既包括自身的滞后项,也包括过去的外部冲击,这种模型叫做自回归滑动平均模型,其一般结构为:
Xt=φ1Xt-1+φ2Xt-2+……+φpXt-p+εt-θ1εt-1-θ2εt-2-……-θqεt-q(2.1.6)
简记为ARMA(p, q)。利用滞后算子,此模型可写为
ﻩφ(B)Xt=θ(B)εt(2.1.7)
第二节线性时间序列模型的平稳性、可逆性和传递性
ﻩ首先介绍两个概念。
1序列的传递形式:设{Yt}为随机序列,{εt}为白噪声,若{Yt}可表示为:
二、AR模型
1.AR(P)模型本身就是一种逆转形式。
2.平稳性。
先以AR(1)(Yt= 1Yt-1+εt),进行分析。
AR(1)平稳的条件为 ,它等价于 (B)=1- 1B=0的根在单位圆外。
3、在平稳的情况下,AR(1)有传递形式:
ﻩﻩ(1- 1B)Yt=εt
一般地,对于AR(P)模型: (B) Yt=εt,序列{Yt}平稳的充要条件是: (B)=0的根全在单位圆外。此时,Yt有传递形式:Yt= -1(B) εt
有时,序列Xt的记忆是关于过去外部冲击值的记忆,在这种情况下,Xt可以表示成过去冲击值和现在冲击值的线性组合,即
Xt=εt-θ1εt-1-θ2εt-2-……-θqεt-q(2.1.4)
此模型常称为序列Xt的滑动平均模型,记为MA(q), 其中q为滑动平均的阶数,θ1,θ2…θq为参滑动平均的权数。相应的序列Xt称为滑动平均序列。
Xt=φ1Xt-1+φ2Xt-2+…+φpXt-p+εt(2.1.2)
ﻩ为了简便运算和行文方便,我们引入滞后算子来简记模型。设B为滞后算子,即BXt=Xt-1, 则B(Bk-1Xt)=BkXt=Xt-kB(C)=C(C为常数)。利用这些记号,(2.1.2)式可化为:
Xt=φ1BXt+φ2B2Xt+φ3B3Xt+……+φpBpXt+εt
Xt=φXt-1+εt(2.1.1)
常记作AR(1)。其中{Xt}为零均值(即已中心化处理)平稳序列,φ为Xt对Xt-1的依赖程度,εt为随机扰动项序列(外部冲击)。
如果Xt与过去时期直到Xt-p的取值相关,则需要使用包含Xt-1,……Xt-p在内的p阶自回归模型来加以刻画。P阶自回归模型的一般形式为:
相关文档
最新文档