碳酸钙的改性
碳酸钙的表面处理改性及其在塑料中的应用

碳酸钙的表面处理改性及其在塑料中的应用摘要:碳酸钙是橡胶与塑料制品的填料,能够提升制品的耐磨性与耐热性,保证尺寸的稳定性与刚度,并提升制品可加工性,还能减少制品的经济成本。
碳酸钙粉末的表面在经过改性处理后,可以有效的获得塑料机体材料。
在降低塑料制品的经济成本,并改善部分性能的同时,对于获得性价比较高的填充塑料有着深远的意义。
本文在分析碳酸钙表面处理改性技术及机理的基础上,对改性碳酸钙在塑料制品中的应用进行研究,从而推动碳酸钙行业不断发展。
关键词:碳酸钙;表面处理改性;塑料;应用碳酸钙被应用在了PVC、PE、PP以及ABS等材料中,加入碳酸钙可以改善塑料制品中的部分性能,能够提升制品的使用范围,还能在塑料加工中减少一定的树脂收缩率,从而改变流态状态,提升粘度。
碳酸钙应用在塑料制品中,可以有效提升制品的性能,通过研究碳酸钙的表面处理改性及其在塑料中的应用,可以帮助企业充分明确塑料制品的综合品质,降低经济成本与碳酸钙的关系,明确碳酸钙表面处理改性,从而到达应用目标,促进碳酸钙应用范围扩大。
一、碳酸钙表面处理改性碳酸钙的表面处理是经过物理与化学的方式来吸附表面处理剂,或者键合在碳酸钙表面中,构成包膜,改善表面的性能。
随着时间的推移,人们对于碳酸钙的研究不断加深,在碳酸钙处理剂与处理方法上面已经有了很多的技术方法。
碳酸钙的表面处理方法主要可分为偶联剂、有机物、无机物等表面处理方式[1]。
通过研究,可以充分为碳酸钙的应用提供依据。
(一)偶联剂表面处理偶联剂表现处理主要是通过两性结构化合物来处理,分为硅烷类、铝酸酯类等,还可以应用锌酸酯、铬酸酯等作为表面处理。
偶联剂的作用机理是借助分子的一端基团和碳酸钙的表明出现反应,从而构成化学键合,但是另一端和聚合物相容产生物理缠绕,把不同的材料经过偶联剂的作用结合起来,从而改善塑料制品的机械、物理特性。
例如,钛酸酯偶联剂、铝酸酯偶联剂等等[2]。
(二)有机物表面处理有机物表现处理分为脂肪酸或盐处理、磷酸酯处理、聚合物处理等等,不同的表面处理会通过不同的作用产生不一样的反应、性能,从而达到处理作用。
【精品文章】活性碳酸钙-改性碳酸钙的特点及常用改性剂

活性碳酸钙/改性碳酸钙的特点及常用改性剂
作为填料使用的碳酸钙,若未经表面处理,与有机高聚物的亲和性较差,容易造成在高聚物中分散不均匀,从而造成两种材料的界面缺陷,因此需要改进碳酸钙填料的应用性能。
活性碳酸钙(又称改性碳酸钙)是以普通碳酸钙粉体(有重钙和轻钙之分)为基料,采用多功能表面活性剂和复合型高效加工助剂,对无机粉体表面进行改性活化处理而成。
经改性处理后的碳酸钙粉体,表面形成一种特殊的包层结构,能显著改善在聚烯烃等高聚物基体中的分散性和亲和性,并且能与高聚物基体间产生界面作用,从而提高制品的抗冲击强度,是一种性能优良的增量型填充料。
用表面活性剂处理碳酸钙时,由于碳酸钙是无机物,所以它和表面活性剂的亲水基有很大的亲和力,它们之间进行类似化学键这样的化学结合,亲油基就定向于碳酸钙微粒的表面,形成一层单分子膜。
这就是活性碳酸钙生产的基本原理,这样处理过的填料已由亲水性变为亲油性,对树脂一类的有机物有良好的亲和力。
必须指出,可以用来对碳酸钙进行表面处理的,除了表面活性剂以外,还有近年来发展起来的有机偶联剂以及各种改性剂。
凡是用这些物质处理的碳酸钙都可以笼统地称为活性碳酸钙。
活性碳酸钙对一般橡胶、塑料制品均具有一定补强性,改善无机填料与树脂的相容性,从而改善制品的机械性能、加工性能,提高复合材料的热稳定性,实现高填充。
pvc管材、板材、电缆料等,可提高复合材料热稳定性、表面光洁度、填料填充量,减少树脂用量,降低成本。
pp、pe、橡胶等,特别适用pvc管材,可提高复合材料热稳定性、表面光洁度、填。
碳酸钙表面改性探究

碳酸钙表面改性探究碳酸钙是一种重要的工业原料,广泛应用于建筑、冶金、化工、农药、医药等领域中。
尽管碳酸钙在实用和经济方面已发挥重要作用,但由于其物理性质的特殊性,碳酸钙的表面活性性不高,给其在各种应用中的发挥出现了一定的限制。
因此,在科学家对碳酸钙有效改性的认识不断深入的过程中,对碳酸钙的表面改性技术得到了广泛的研究和开发。
碳酸钙表面改性技术有多种,其中最常用的方法包括物理改性和化学改性。
物理改性技术包括粉体表面微观结构的改变、表面疏松膨胀、表面抗粘附强化技术等,可以改变碳酸钙表面的表面活性性,从而改善其在某些特定应用中的性能。
而化学改性技术主要是通过利用化合物作用于碳酸钙表面,以改变其表面性质,进而获得新的或者改性后的化学组分,实现对碳酸钙活性表面的改性。
物理改性技术可以明显改变碳酸钙粉体表面的结构,从而增加其表面能量、增加表面积、改变比表面电位及其他性能,以达到改善碳酸钙表面活性性的目的。
例如,碳酸钙表面可以通过喷雾干燥技术改变表面的结构,使碳酸钙表面的一部分水溶性,从而改善表面的活性性。
此外,碳酸钙表面还可以通过气化、水热等物理方法改性,例如水热碳酸钙,可以改变钙离子的结构,进而改变表面的结构,达到碳酸钙表面改性的目的。
另外,碳酸钙表面改性技术还包括表面抗粘附强化技术,即对碳酸钙表面进行有机涂层改性,以改善其表面活性性。
例如,可以通过硅油沉积、化学改性等方法,将硅油均匀涂覆于碳酸钙表面,以达到改变碳酸钙表面性质的目的。
此外,表面强化技术还可以通过利用碳酸钙表面特异性,将不同类型的有机涂层与其结合,从而改变其表面电荷,获得较高的表面活性性。
当前,碳酸钙表面改性技术已取得了长足的发展,并得到了广泛的应用。
不仅如此,在未来,碳酸钙表面改性技术还会发展得更加全面,更加完善,以满足碳酸钙在不同领域的应用需求。
综上所述,碳酸钙表面改性技术是通过改变表面结构、抗粘附强化技术和化学改性技术,改变其表面电荷等技术,以改善其表面活性性而获得的。
超微细碳酸钙的表面改性研究

r s l h we h t h e t d f d c n i o a h t h o a e o df r s2 , e e au e w s 5 o ,a d t e u t s o d t a e b s s t mo i e o d t n w st a e d s g fmo i e % t mp r t r a C i i t i wa 7 n i me
( h m s yad C e cl n ier gC l g f uzo nvri , uyn uzo 5 0 3 1C e i r n hmia E gn e n ol eo i uU iesy G i gG i u5 0 0 ; t i e G h t a h
2 S ae ma e a g n e ng a d Te h o o y I n v to n e ,Gu z o i a g 5 0 4; t t tr lEn i e r n c n lg n o a in Ce t r i i ih u Gu y n 5 01 3 Gu z o n tt t fMeal r n e c lEngn e n ih u I siu e o t l g a d Ch mi a uy i e r g,Guiho i a g 55 0 2; i z u Gu y n 0 0
超微细碳酸钙是一种 粒径 小于 1 m 的无 机粉 体材 料… , 0 其研 制 、 开发 、 应用受 到 国 内外 的普遍 关 注。广 泛用 于涂 料 、 橡 胶、 塑料 、 黏剂 、 墨 、 胶 油 造纸 、 妆 品 、 药等 方 面 , 它 作填 充 化 医 用 剂不仅 可增容降低 成本 , 还具 有增 韧 补强 作 用 J 因此 , 为 . 作
wa . h s1 5 .
碳酸钙表面改性常用改性剂有哪些

碳酸钙表面改性常用改性剂有哪些?在实际生产中,碳酸钙的表面处理主要分为干法改性和湿法改性。
对于重钙、部分低档次轻钙等普通产品,可采用干法处理,对于纳米碳酸钙、专用碳酸钙等中高档次的产品则需采用湿法处理。
1、碳酸钙干法改性常用改性剂干法改性是将表面处理剂与碳酸钙粉末直接混合,通过高速旋转、喷淋等方式,使改性剂一端的基团与碳酸钙表面形成强化学键,另一端与高分子材料发生反应或物理缠绕,从而实现对碳酸钙的表面改性。
干法改性的工艺原理简单,设备要求也不高,但此法缺点也很明显,无法达到非常均匀的包覆效果,总有部分碳酸钙无法被包覆,这将导致产品在应用时使制品出现缺陷。
故干法改性一般适用于对性能要求不太高的产品。
干法改性工艺使用的表面处理剂主要有:钛酸酯类:主要分为单烷氧型,螯合型和配位型三大类。
单烷氧型因含有功能性基团,比较适合干法改性;螯合型因含有乙二醇基,比较适合湿法改性工艺;而配位型一般难溶于水,不与酯发生反应,适合干法改性。
铝酸酯类:常温下为白色蜡状固体,热分解温度高、约300℃,具有反应活性强,无毒、味弱、价格较低、适用范围广等特点,但因为易水解,钛酸酯只适合于干法改性工艺。
由于铝酸酯对PVC有良好的热稳定性和润滑性,其已广泛应用于碳酸钙表面处理及塑料产品的加工中。
硼酸酯类:常温下为白色粉状或块状固体,由于具有优异的抗水解性和热稳定性,硼酸酯不仅可以应用于干法改性,湿法改性也同样适合。
磷酸酯类:表面处理时,可以与碳酸钙表面钙离子发生反应生成磷酸钙包覆在碳酸钙表面,从而达到表面改性功能。
用磷酸酯处理过的碳酸钙在应用时可提高材料的加工、机械性能,同时也可改善制品的阻燃性和耐腐蚀性。
2、碳酸钙湿法改性常用改性剂湿法改性是将表面处理剂溶于水,加入到碳酸钙水溶液中,通过控制加入速度,溶液温度,包覆时间来进行表面处理的一种方法。
相较于干法改性,湿法改性的包覆效果明显更好,包覆的更加均匀,得到的产品质量也更加稳定。
纳米碳酸钙改性技术进展和应用现状

纳米碳酸钙改性技术进展和应用现状目前用于纳米碳酸钙表面改性的方法重要有:局部化学反应改性、表面包覆改性、微乳液改性、机械改性及高能表面改性。
1纳米碳酸钙表面改性技术优缺点对比局部化学反应改性方法重要通过纳米碳酸钙表面官能团与改性剂间发生化学反应来达到改性目的,分为干法和湿法两种工艺。
将碳酸钙粉和表面改性剂同时投放到捏合机中进行高速捏合的方法称为干法改性。
此法操作简单,出料便于运输且可直接包装。
干法改性所得产品表面不均匀,适合低档碳酸钙粉末的生产,但因操作工艺简单而被广泛采纳。
适合干法改性的改性剂重要有钛酸脂、铝酸脂、磷酸脂等偶联剂。
湿法改性是将碳酸钙和改性剂在液相中共混,通过改性剂在碳酸钙表面包覆形成双膜结构来进行改性的,湿法改性虽然效果很好,但是工艺较为多而杂。
水溶性的表面活性剂较适合湿法改性工艺,这类水溶性表面活性剂重要有高级脂肪酸及其盐等。
表面包覆改性方法是指表面改性剂和纳米碳酸钙表面之间仅依靠范德瓦耳斯力或物理方法连接却没有发生化学反应的改性方法。
这种方法可以在制备纳米碳酸钙的同时在溶液中加入表面活性剂,达到制备和改性同步进行的目的,由于表面活性剂的存在使这种方法生产出来的碳酸钙分散性能得到很好的改善。
微乳液改性方法又称胶囊化改性,这种方法是通过在纳米碳酸钙表面包上一层其他物质的膜,更改粒子表面固有特性来进行改性的。
此法虽然和表面包覆改性方法仿佛,但是这种方法改性后包在纳米碳酸钙表面的一层膜相对表面包覆改性的较为均匀。
机械化学改性方法是利用猛烈机械力作用有目的的激活粒子表面,使分子晶格发生位移,来更改其物理化学结构和表面晶体结构,提高粒子与有机物或无机物的反应活性的改性方法。
对于大颗粒的碳酸钙这种改性方法特别有效,就纳米级碳酸钙来说,由于其本身粒径很小,通过机械粉碎、研磨的机械化学改性方法就不再能发挥出优异的改性效果。
值得一提的是,机械化学改性方法虽不能单独见效,但因其能显著加添纳米碳酸钙的活性基团与表面活性点,因此结合其他改性方法协同作用亦不失为一种有效方案。
碳酸钙表面改性探究

碳酸钙表面改性探究碳酸钙经过改性活化处理后,具有高度的疏水性。
分子的结构发生改变、粒度分布更加均匀。
其具有白度高、流动性优良、光度好、分布均匀、填充量大等特点,并有良好的润滑性、分散性及有机性。
与塑料、橡胶的分子间亲和能力强、填充量是普通碳酸钙的3-6倍,生产成本降低显著。
因此,文章主要针对目前碳酸钙的广泛应用,进行探究碳酸钙改性的方法及常用的改性剂,以便碳酸钙改性得到进一步发展。
标签:碳酸钙;表面改性;活性碳酸钙前言碳酸钙是一种白色粉末,无味无臭的化合物,它有很多俗称,像灰石、石灰石、大理石等等。
碳酸钙不溶于水,但是却溶于像盐酸等这样的酸,溶解在酸中会放出大量的气体。
碳酸钙在地球上很常见,不仅存在动物的骨骼或者外壳中,也存在于方解石、大理石等岩石中。
碳酸钙有无定型和结晶型两种形态,碳酸钙是一种无机化合物,也是一种粉末产品。
碳酸钙凭借着价格低廉、无毒无味、白度高、硬度好等特点在橡胶和塑料生产过程中广泛用作填料碳[1]。
据统计,在塑料制品制造过程中无机填料大部分是碳酸钙,约占填料用量的70%。
碳酸钙分为天然矿石粉碎而得的重质碳酸钙(GCC)和经过化学过程生产的沉淀碳酸钙(PCC)[2]。
因PCC的生产工艺复杂且昂贵,同时会带来环境污染,今后的发展趋势是更多的使用GCC代替PCC[3]。
通常未经过改性的GCC具有亲水性表面,然而其与极性有机聚合物的亲和性较差,在基料中易造成分散的不均匀或积聚现象,从而导致填料与聚合物之间产生相异界面,这种缺陷容易产生应力集中现象,以致填充复合材料机械力学性能下降,发生断裂现象[4]。
1 碳酸钙改性方法及特点1.1 粒径细化使GCC粉末粒度微细化或超微细化,以提高填充剂在制品中的分布均匀。
主要对传统的碳酸钙生产工艺的碳化、粉化及脱水干燥等技术进行升级改造,使其生产工艺变的复杂了,条件也变得难以实现,同时产品成本提高很多。
纳米活性钙加入到高分子体系中,因为其颗粒属于纳米级,对体系的流变特性可以产生一定的影响,因此人们对在高分子体系中加入纳米活性钙所产生的流变性能影响的研究也越来越重视,所以对其的发展也越来越深入了,未来的情景很美好,很值得开拓它。
改性剂对碳酸钙粉体进行改性原理?

改性剂对碳酸钙粉体进行改性原理?
碳酸钙粉体作为橡胶、塑料、涂料等领域的填料,若未经碳酸钙改性剂做表面改性,与有机高聚合物的亲和性差,容易造成在高聚物中分散不均匀,造成两种材料的界面缺陷,因此碳酸钙粉体需要粉体改性剂,改进碳酸钙的应用性能,从而提高制品的抗冲击强度,拉伸性能等,成为一种性能优异的增量型填充料。
一、那么如果有效的对碳酸钙粉体进行表面改性呢?
碳酸钙粉体表面改性原理:用碳酸钙改性剂对碳酸钙粉体进行改性时,由于碳酸钙是无机物,它和粉体改
性剂的亲水基有很大的亲和力,它们之间进行类似化学键这样的化学结合,亲油基就定向于碳酸钙微粒的表面,形成一层单分子膜,能显著改善在聚烯烃等高聚物基体中的分散性和亲和性,并且能与高聚物基体间产生界面
作用。
这就是活性碳酸钙生产的基本原理,这样处理过的填料已由亲水性变为亲油性,对树脂一类的有机物有
良好的亲和力,从而提高制品的各项应用性能。
二、改性后碳酸钙粉体具备哪些性能特点?
改性后的碳酸钙对一般橡胶、塑料制品均具有一定补强性,改善无机填料与树脂的相容性,从而改善制品
的机械性能、加工性能,提高复合材料的热稳定性,实现高填充。
pvc管材、板材、电缆料等,可提高复合材
料热稳定性、表面光洁度、填料填充量,减少树脂用量,降低成本。
pp、pe、橡胶等,特别适用pvc管材,可提高复合材料热稳定性、表面光洁度、填料填充量,减少树脂用量,降低成本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无机粉体(CaCO3)的聚合物胶囊化改性
一、实验目的
1、了解无机粉体的聚合物胶囊化过程;
2、认识聚合物对无机粉体表面的改性作用;
3、熟悉并掌握粘度计的使用方法。
二、实验原理
采用物理或化学方法对粉体颗粒进行表面处理,有目的地改变其表面物理化学性质的工艺,称为粉体表面改性。
其目的是为了增强粉体与基体的界面相容性,从而提高复合材料的力学等各种性能。
矿物等粉体的表面改性方法有多种不同的分类。
根据改性性质的不同分为物理方法,化学方法和包覆方法;综合改性作用的性质、手段和目的,分为包覆法、沉淀反应法、表面化学法、接枝法和机械化学法。
包覆处理改性是利用无机物或有机物(主要是表面活性剂,水溶性或油溶性高分子化合物及脂肪酸皂等)对矿粒表面进行包覆以达到改性的方法,也包括利用吸附、附着及简单化学反应或沉积现象进行的包膜。
利用化学反应并将生成物沉积在矿粒表面形成一层或多层“改性层”的方法称为沉淀反应改性。
表面化学改性通过表面改性剂与颗粒表面进行化学反应或化学吸附的方式完成。
机械力化学改性是在矿物超细粉碎的同时实施表面化学改性,利用粉体机械力效应,可促进和强化改性效果,其实质是表面化学等改性方法的促进手段。
利用紫外线、红外线、电晕放电和等离子体等方法进行矿物等粉体表面改性的方法称为高能处理改性。
高能处理改性一般作为激发手段用于单体烯烃或聚烯烃在矿物颗粒表面的接枝改性。
如玻璃纤维和?-AL2O3等无机粉体经?-射线照射,可实现聚乙烯等单体在其表面的接枝聚合。
胶囊化改性是在颗粒表面覆盖均质而且有一定厚度薄膜的一种表面改性方法,如采用in suit聚合法可制成聚甲基丙烯酸甲酯包覆的钛白粉胶囊改性体。
在胶囊化改性工艺中,一般称内藏物为芯物质或核物质(Core material),包膜物为膜物质(Wall material)。
胶囊的作用是控制芯物质的放出条件,即控制制造胶囊的条件以调节芯物的溶解、挥发、发色、混合以及反应时间;对在相间起反应的物质可起到隔离作用,以备长期保存;对有毒物质可以起到隐蔽作用。
矿物粉体的胶囊化是正在发展的领域。
随着科学技术的发展,人们对材料在多功能、高附加值方面提出了更高的要求。
通过某种方法将不同种类的材料制成复合材料,使新材料保留原有组分的优点,克服其缺点,并显示一些新的性能,这种复合技术的研究,已日益受到国内外科技工作者的重视。
无机物质和有机物质各有所长,表面性质也有较大差异,通常两者单独使用时均存在一定的局限性,若将有机物质通过一定的方法包覆在无机粉体表面得到无机-有机复合粒子,可使其兼具两者的各自优点;再者将有机聚合物包覆在无机粉体表面,可使无机粉体达到表面改性的效果,改善其在有机溶剂中的分散稳定性。
微胶囊壳体直径为1-100 m,壳体壁膜厚度从几分之一微米到几微米。
通常用的表面改性剂有偶联剂、高级脂肪酸及其盐、不饱和有机酸、有机硅、聚烯烃低聚合物等,其中偶联剂是一种常用的表面改性剂,它是一种两性结构物质,分子中的一部分基团可与矿物表面的各种官能团反应,形成强有力的化学键合;另一部分基团与有机高分子发生化学反应或物理缠绕,从而将矿物与有机基体两种性质差异很大的材料牢固结合在一起。
本实验采用十二烷基硫酸钠为表面活性剂,甲基丙烯酸甲酯为聚合单体,过硫酸铵为引发剂,通过自由基聚合反应在CaCO3粉体表面包裹上一层均质而且有一定厚度的有机聚合物薄膜,达到粉体表面改性的效果,改善其在有机溶剂中的分散稳定性。
自由基聚合反应是指是单体借助于光、热、辐射、引发剂的作用,使单体分子活化为活性自由基,再与单体连锁聚合形成高聚物的化学反应。
此类聚合过程分可为链引发、链增长、链终止三个过程。
链引发反应是指单体借助于光、热、辐射、引发剂的作用,形成单体自由基的反应,常用的引发剂包括过氧化物和偶氮化合物。
链增长过程是指单体自由基与单体连锁聚合形成高分子活性链的过程,此步反应的活化能较低,为放热过程,链增长过程只与单体的本性有关,与引发剂的种类和介质性质基本无关。
链终止过程是指链自由基相互作用而形成稳定大分子的过程。
自由基聚合分为本体、溶液、乳液和悬浮四大类。
简单说一下这四类聚合的特点和优缺点。
三、实验试剂与仪器
试剂:CaCO3、蒸馏水、甲基丙烯酸甲酯(MMA)、十二烷基硫酸钠(SDS)、过硫酸铵、液体石蜡。
仪器:烧杯、量筒、三口圆底烧瓶、回流冷凝管、温度计、搅拌器、电子天平、氮气袋、布氏漏斗、滤纸、粘度剂、铁架台、300 目筛。
四、实验步骤
1、搭搅拌装置:按从下到上的顺序将水浴装置、三口烧瓶、聚四氟乙烯搅拌棒、温度计、冷凝管、电动搅拌器依次装好,应确保从正面和侧面看都呈一条直线.
2、实验步骤
五、注意事项
注意控制氮气流速和搅拌速度,不易过快。
六、思考题
1、CaCO3烘干过筛的目的是什么?
烘干过程可去除水分,通过过筛操作可去除结块的样品,保证碳酸钙原料的颗粒均匀,提高包覆效率。
2、CaCO3经包覆后,为什么要在40 oC下烘干?
在较低温度下烘干可有效保护有机包覆层。
3、在实验过程中加入十二烷基硫酸钠的目的是什么?
表面活性剂,可保证单体均匀分散在无机粉体表面,以得到均匀的包覆层。
预习报告:
1、查阅有关颗粒改性的文献一篇。