电力电子技术课件第6章
合集下载
电力电子技术_王兆安第6章

io O u VT O 图4-2 阻感负载单相交流调压 电路及其波形
t
t
6.1.1 单相交流调压电路
–
数量关系
Uo =
1
负载电压有效值:
a
a
( 2U 1 sin t ) 2 d ( t )
= U1
1 sin 2a sin( 2a 2 )
瞬态微分方 程求解可得
为交流调功电路 控制对象时间常数很大,以周波数为单位控制即可 通常晶闸管导通时刻为电源电压过零的时刻,负载 电压电流都是正弦波,不对电网电压电流造成通常 意义的谐波污染
6.2.1 交流调功电路
电阻负载时的工作情况
– 控制周期为M倍电源周期,晶闸管在前N个周期 导通,后M-N个周期关断 – 当M=3、N=2时的电路波形如图 交流调功电路典型波形(M =3、N =2)
负载电流有效值
I0 =
2 IVT
6.1.1 单相交流调压电路
3.单相交流调压电路的谐波分析
电阻负载的情况
波形正负半波对称,所以不含直流分量和偶次谐波
式中:
a1 =
an =
uo (t ) =
n =1, 3, 5,
(a
n
cos n t bn sin n t )
2U 1 sin 2a 2( a ) 2
t 正负半周a 起始时刻 O (a =0)均为电压过 io 零时刻,稳态时,正 t O 负半周的a 相等 u
VT
t
t
t
t
O
t
6.1.1 单相交流调压电路
数量关系
VT 1 VT 2 u1 io uo R
负载电压有效值
电力电子技术第6章 交流交流变流电路

~u
VT1
uo
R
(a) 电阻负载单相交流调压电路 u1 O uo O i
o
α
π +α
t
VT1
VT2
t
u
O
V T
t
t O School of Electronics Science and Technology 7/57 (b)电阻负载单相交流调压工作波形
6.1.1 单相交流调压电路
每个晶闸管均在对应的交流电压 过零点关断,晶闸管的控制触发 角为α,导通角为θ = π-α。负载电 压波形是电源电压波形的一部分, 负载电流(也即电源电流)和负 载电压的波形相同,晶闸管也只 在两个晶闸管均关断时才承受电 压。 定量分析:由此可知,当晶闸管 的控制触发角为α时,负载两端的
ui 0 uo 0
t
t
图6-1 (c)斩控式交流调压方案 6/57
School of Electronics Science and Technology
6.1.1 单相交流调压电路
1 相控式交流调压电路
VT2
相控式交流调压电路的工作情 况和负载性质有很大的关系, 下面就电阻性负载和电感性负 载分别讨论。 (1)电阻性负载 单相相控式 交流调压电路电阻性负载电路 图如图所示,加在该电路输入 端的电源为正弦交流电。在交 流电源的正负半周分别在ωt =α 和ωt =π +α 时刻触发晶闸管VT1 和VT2,从而得到负载两端的电 压、电流以及VT两端电压波形 如图所示。
■直接方式
◆交流电力控制电路:只改变电压、电流或对电路的通 断进行控制,而不改变频率的电路。
◆交流调压电路:在每半个周波内通过对晶闸管开通相位的控制,调节输 出电压有效值的电路。 ◆交流调功电路:以交流电周期为单位控制晶闸管的通断,改变通态周期数 和断态周期数的比,调节输出功率平均值的电路。 ◆交流电力电子开关:串入电路中根据需要接通或断开电路的晶闸管。
电力电子技术第6章.软开关技术

图6-5给出了前三种软开关电路的基本开关单元,谐振直流 环节的电路见图6-10。
图6-5 准谐振电路的基本开关单元
2、零开关PWM电路
零开关PWM变换电路是在准谐振变换电路基础上,增加了 辅助开关而形成的。辅助开关用于控制谐振的开始时刻,使谐 振仅发生于开关过程前后,这样,电路就可以采用恒频控制方 式即PWM控制方式。零开关PWM电路可分为:
图6-6 零开关PWM电路的基本开关单元
3、零转换PWM电路
准谐振变换器的谐振电感和谐振电容一直参与工作;零开关 PWM变换器的谐振元件虽不一直工作,但谐振电感却串在主回 路中,损耗较大。为克服这些缺陷,提出了零转换PWM变换器。 虽这类变换器也采用对谐振时刻进行控制来实现PWM控制,但 与零开关变换器相比具有更突出的优点:
要 实 现 软 开 关 的 PWM 控制,只需控制Lr与Cr的 谐振时刻。其方法是:要 么在适当时刻先短接谐振 电感,在需要谐振的时刻 再断开;要么在适当时刻 先断开谐振电容,在需要 谐振的时刻再接通。由此 得到不同形式的零开关 PWM 电 路 的 基 本 开关 单 元, 如图 6-6 所 示,其 中 S1为辅助开关。
第6章 软开关技术
6.1 软开关的基本概念 1、硬开关及其缺点
变流电路中的电力电子开关不是理想器件。开通时,开关 管的电压不是立即降到零,同时它的电流也不是立即上升到 负载电流,有一个上升时间。在这段时间里,开关元件承受 的电压和流过的电流有一个交叠区,会产生开关损耗,称之 为开通损耗,其波形如图6-1(a)所示。同样,在开关关断 时,开关管的电流也有一个下降过程,电压也有一个上升时 间,电压和电流的交叠产生的开关损耗称之为关断损耗,其 波形如图6-1(b)所示。开关器件在开关过程中产生的开通 损耗和关断损耗,统称为开关损耗。具有这种开关过程的开 关称为硬开关。
《电力电子技术》PPT 第6章

⑧脚为内部基准电压UREF,其值为5V。
图6-18 UC3842内部框图和引脚排列图
图6-19 反激式脉宽调制电路原理图
本章要点
1 掌握降压、升压、升降压直流斩波的工作原理 2 掌握反激式、正激式开关电源的工作原理 3 了解其他开关电源的电路结构和工作原理 4 了解直流斩波波和开关电源的设计方法
2 开关电源的技术标准
1) 电气标准 ① 输入指标:包括输入电源相数、额定输入电压、电 压变化范围、电源频率及输入电流等。
② 输出指标:包括静态输入电压变动、动态输入电压 变化、静态负载变动(通过改变负载电阻,使电流从 额定值的10%变化到额定值的100%,看输出电压的变 化)、动态负载变动、环境温度的变动、时间特性变 化以及过流保护、过压保护、欠压保护、短路保护、 过热保护。这些指标由国家标准确定。
开关电源能进行AC→DC,DC→DC,DC→AC 功率的转换,但最常用的是将 AC→DC→AC→DC,即将电网交流能量转化为 负载的直流能量,这也是本章重点研究的内容。
6.2.1 开关电源基础知识 1、开关电源的工作原理和特点
开关电源通常由六大部分组成,如图6-10所示。
图6-10 开关电源工作原理框图
(6.2)
PL
D2
(U
2 d
/
R)
(6.3)
如果开关是理想开关,即开关本身损耗为零,则 该方式理论上的效率应为100%。实际的装置容易得到 90%以上的高功率,对于大容量的斩波器可获得95~98% 的效率。
6.1.2 降压斩波器
降压斩波器的功能使负载电压小于电源电压,起降压 作用。
实际线路图如图6.3所示,该图通常称Buck电路。
③ 耐压指标 交流输入线对次级电压为3750V,输入 线对地电压为2500V,次级输出线对地电压为500V, 各执行1 min。
图6-18 UC3842内部框图和引脚排列图
图6-19 反激式脉宽调制电路原理图
本章要点
1 掌握降压、升压、升降压直流斩波的工作原理 2 掌握反激式、正激式开关电源的工作原理 3 了解其他开关电源的电路结构和工作原理 4 了解直流斩波波和开关电源的设计方法
2 开关电源的技术标准
1) 电气标准 ① 输入指标:包括输入电源相数、额定输入电压、电 压变化范围、电源频率及输入电流等。
② 输出指标:包括静态输入电压变动、动态输入电压 变化、静态负载变动(通过改变负载电阻,使电流从 额定值的10%变化到额定值的100%,看输出电压的变 化)、动态负载变动、环境温度的变动、时间特性变 化以及过流保护、过压保护、欠压保护、短路保护、 过热保护。这些指标由国家标准确定。
开关电源能进行AC→DC,DC→DC,DC→AC 功率的转换,但最常用的是将 AC→DC→AC→DC,即将电网交流能量转化为 负载的直流能量,这也是本章重点研究的内容。
6.2.1 开关电源基础知识 1、开关电源的工作原理和特点
开关电源通常由六大部分组成,如图6-10所示。
图6-10 开关电源工作原理框图
(6.2)
PL
D2
(U
2 d
/
R)
(6.3)
如果开关是理想开关,即开关本身损耗为零,则 该方式理论上的效率应为100%。实际的装置容易得到 90%以上的高功率,对于大容量的斩波器可获得95~98% 的效率。
6.1.2 降压斩波器
降压斩波器的功能使负载电压小于电源电压,起降压 作用。
实际线路图如图6.3所示,该图通常称Buck电路。
③ 耐压指标 交流输入线对次级电压为3750V,输入 线对地电压为2500V,次级输出线对地电压为500V, 各执行1 min。
电力电子技术(第三版)(贺益康、潘再平著)PPT模板

03 第三章交流-直流变换
第三章交流 -直流变换
01 3 . 1 单 相可 控整流
电路
03 3 . 3 有 源逆 变电路
05 3 . 5 整 流电 路的谐
波及功率因数
02 3 . 2 三 相可 控整流
电路
04 3 . 4 电 容滤 波的不
可控整流电路
06 3 . 6 大 功率 整流电
路
第三章交流-直流 变换
电力电子技术(第三版)(贺益康、 潘再平著)
演讲人 2 0 2 X - 11 - 11
REPORT
01 第一章功率半导体器件
第一章功率半 导体器件
0 1
1.1概述
0 4
1.4大功率晶 体管
0 2
1.2大功率二 极管
0 5
1.5功率场效 应晶体管
0 3
1.3晶闸管
0 6
1.6绝缘栅双 极型晶体管
第一章功率半导体 器件
07 第七章谐振软开关技术
第七章谐振软开关 技术
7.1谐振软开关的基本概念 7.2典型谐振开关电路 本章小结 思考题与习题
08
第八章电力电子技术在电气 工程中的应用
在第 电八 气章 工电 程力 中电 的子 应技 用术
01
8.1晶闸管 -直流电动 机调速系统
04
8.4变速恒 频发电技术
电路
5.5逆变电 路的多重化 及多电平化
5.1逆变电 路概述
5.2负载谐 振式逆变电
路
5.3强迫换 流式逆变电
路
第五章直流-交流 变换
5.7PWM整流电路 本章小结 思考题与习题
06 第六章交流-交流变换
第六章交流-交流变换
电力电子技术【王兆安第五版】第6章PWM控制补充技术PPT课件

6.4 电压空间矢量脉宽调制方法
引言 6.4.1 180o导通模式下的逆变器电压空间矢量 6.4.2 三相对称交流量空间矢量定义 6.4.3 电机磁链空间矢量与电压矢量的关系 6.4.4 六拍阶梯波逆变器与正六边形空间旋转磁场 6.4.5 电压空间矢量的线性组合与SVPWM控制 小结 本节习题
6.4 电压空间矢量脉宽调制方法• 引言
如果定义电压空间矢量 U s 为:
为何有此 定义?
U s2 3(U U NU V Nej2 3U W Nej4 3)
则根据前述六拍阶梯波工作模式下的6种工作状态, 可以分别推导得出6个电压空间矢量: Us1, Us2, Us3, Us4, Us5和Us6; Us7和Us8幅值为零,称为零电压矢量,简称零矢量
☺如果对准这一目标,把逆变器和交流电动机视为一体,
按照跟踪圆形旋转磁场来控制逆变器的工作,其效果应 该更好。这种控制方法称作“磁链跟踪控制”,接下来 的讨论将表明,磁链的轨迹是交替使用不同的电压空间 矢量得到的,所以又称“电压空间矢量PWM(SVPWM, Space Vector PWM)控制”。这是一种在80年代提出, 现在得到广泛应用的三相逆变器PWM控制方法。
开关状态表
序号
开关状态
1 VT6 VT1 VT2
2
VT1 VT2 VT3
2
VT2 VT3 VT4
4
VT3 VT4 VT5
5
VT4 VT5 VT6
6
VT5 VT6 VT1
7
VT2 VT4 VT6
8
VT1 VT3 VT5
开关代码 100 110 010 011 001 101 000 111
开关代码:表示三相桥臂输出状态; 1—上管导通,下管关断,桥臂输出高电平 0—下管导通,上管关断,桥臂输出低电平
电力电子第6章 脉宽调(PWM)技术

同一相上下两臂的驱动信号互 补,为防止上下臂直通而造成 短路,留一小段上下臂都施加 关断信号的死区时间。
O
u UN'
Ud
2
O
?
Ud 2
u VN'
Ud
2O
?
Ud 2
u WN'
Ud
2
O
u UV Ud
O -Ud u UN
O
?t ?t ?t ?t
?t
2Ud
Ud
3
3
?t
图6-8 三相桥式PWM逆变电路波形
死区时间的长短主要由开关器 件的关断时间决定。
工作时V1和V2通断互补, V3和V4通断也互补。
以uo正半周为例,V1通, V2断,V3和V4交替通断。
负载电流比电压滞后,在 电压正半周,电流有一段 区间为正,一段区间为负。
负载电流为正的区间,V1 和V4导通时,uo等于Ud 。
图6-4 单相桥式PWM逆变电路
6-14
6.2.1 计算法和调制法
图6-4 单相桥式PWM逆变电路
6-15
6.2.1 计算法和调制法
3)单极性PWM控制方式(单相桥逆变)
在ur和uc的交点时刻控制IGBT的通断。
ur正半周,V1保持通,
V2保持断。
u
uc ur
当 ur>uc 时 使 V4 通 ,
V3断,uo=Ud 。
O
wt
当 ur<uc 时 使 V4 断 ,
V3通,uo=0 。
uo
uof uo
Ud
O
wt
-Ud
图6-6 双极性PWM控制方式波形
6-17
u
uc
ur6.2.1
O
u UN'
Ud
2
O
?
Ud 2
u VN'
Ud
2O
?
Ud 2
u WN'
Ud
2
O
u UV Ud
O -Ud u UN
O
?t ?t ?t ?t
?t
2Ud
Ud
3
3
?t
图6-8 三相桥式PWM逆变电路波形
死区时间的长短主要由开关器 件的关断时间决定。
工作时V1和V2通断互补, V3和V4通断也互补。
以uo正半周为例,V1通, V2断,V3和V4交替通断。
负载电流比电压滞后,在 电压正半周,电流有一段 区间为正,一段区间为负。
负载电流为正的区间,V1 和V4导通时,uo等于Ud 。
图6-4 单相桥式PWM逆变电路
6-14
6.2.1 计算法和调制法
图6-4 单相桥式PWM逆变电路
6-15
6.2.1 计算法和调制法
3)单极性PWM控制方式(单相桥逆变)
在ur和uc的交点时刻控制IGBT的通断。
ur正半周,V1保持通,
V2保持断。
u
uc ur
当 ur>uc 时 使 V4 通 ,
V3断,uo=Ud 。
O
wt
当 ur<uc 时 使 V4 断 ,
V3通,uo=0 。
uo
uof uo
Ud
O
wt
-Ud
图6-6 双极性PWM控制方式波形
6-17
u
uc
ur6.2.1
电力电子技术基础 第6章 AC-AC变换-交流调压和交交变频器

图6-1 单相交流调压电路(电阻式负载)
第6章 AC/AC变换——交流调压和交交变频器
u1
2、单相交流调压电路 (阻感式负载)
0j a
p
2p
wt
波形与工作原理
VT1
i0
VT2
R i2
~u1
u0
L
uG uG1
uG2
0
wt
u0
0j a
p
p+ a
wt
i00wtqFra bibliotekuVT
0
wt
图6-2 阻感负载电路波形
第6章 AC/AC变换——交流调压和交交变频器
电力电子技术课程讲座
第6章 AC/AC变换——交交变流电路 6.1 概述
交流-交流变流电路(AC/AC Converter)即把一种形式的交流变成另一种形式 交流的电路。在进行AC-AC变流时,可改变相应的电压(电流)、频率和相数等。
交流-交流变换电路可以分为直接方式(即无中间直流环节)和间接方式(有中 间直流环节)两种。
+
p
a p
第6章 AC/AC变换——交流调压和交交变频器
2、单相交流调压电路 (电阻式负载)
1.0
功率因数 λ
0.8
P U0I0 U0 sin 2a + p a
S U1I0 US
2p
p
✓ α越大,输出电压越低,功率因数也越低。 ✓ 移相范围: ✓ 图中输出电压虽是交流,但不是正弦波,没有偶次谐
O
✓
时刻,开通VT2,此时i2流过负载,u0 = u1;
✓在
期间,无VT通,由相应的VT承担u0电压,u0 = 0。
p+a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
简化假设条件如下:
(1)交流电压是三相对称、平衡的正弦电压,除了基 波以外,没有任何谐波分量。
(2)换流变压器的三相结构对称,各相参数相同。 (3)换流器的直流侧接有无限大电感的平波电抗器,
直流电流是没有谐波分量的恒定电流。 (4)在同一换流站中,各换流阀以等时间间隔的触发
脉冲依次触发,且触发角保持恒定。
•
6.1.1 高压直流输电的发展
•1882 年
•诞生
•20世纪 50年代
后
•1954年
•20世纪 70年代晶 闸管阀出
现
•1882年,法国物理学家德普勒用1500~2000V的直流发电 机经57km的线路,把电力由米斯巴赫煤矿传送到在慕尼黑 举办的国际展览会上,标志着直流输电问题。
•图6-6 双级HVDC系统
•
以双级HVDC系统为例,HVDC系统的主要元件 :
(1)换流器 (2)滤波器 (3)平波电抗器;电感值很大,在直流输电中有着非常重要的
作用: 1)降低直流线路中的谐波电压和电流。 2)限制直流线路短路期间的峰值电流。 3)防止逆变器换相失败。 4)防止负荷电流不连续。 (4)无功功率源 (5)直流输电线 (6)电级 (7)交流断路器
瑞典建成通过海底电缆向果特兰岛供电的±100kV、90km 、20MW、采用汞弧阀变流的直流输电工程。
标志着直流输电进入了一个新的时期。第一个采用晶闸管 阀的大规模高压直流输电系统是于1972年建立的依尔河系统 ,它是连接加拿大新不伦威克省和魁北克省的一个 ±80kV/320MW背靠背高压直流输电系统。
背靠背直流输电系统是输电线路长度为零(即无直流 联络线)的两端直流输电系统,主要用于两个非同步运行 的交流系统的联网,其整流站和逆变站的设备通常装设 在一个站内。由于背靠背直流输电系统无直流输电线路 ,直流侧损耗较小,所以直流侧电压等级不必很高。
•图6-5 背靠背直流输电系统结构
•
6.1.4 高压直流输电系统的结构和元件
•直流电压和交流电流波形(忽略换流过程) •
6.2.3 高压直流输电的稳态计算
采用多桥换流器时,交流和直流量之间的关系讨论如下:
(1)直流侧电压
整流器直流电压Udr为 逆变器直流电压Udi为
•
(2)直流侧电流
单极方式
双极方式
•式中:Rd为直流回路电阻,主要包括直流线路电 阻、平波电抗器电阻、单极方式包括接地极引线 电阻和接地极电阻等。
1.高压直流输电的优点 (1) 直流输电架空线路的造价低、损耗小。 (2) 高压直流输电不存在交流输电的稳定性问题,直流电缆
中不存在电容电流,因此有利于远距离大容量送电。 (3) 高压直流输电可以实现额定频率不同(如50Hz、60Hz)
的电网的互联,也可以实现额定频率相同但非同步运行 的电网的互联。 (4) 采用高压直流输电易于实现地下或海底电缆输电 (5) 高压直流输电容易进行潮流控制,并且响应速度快、调 节精确、操作方便。而交流线路的潮流控制比较困难。 (6) 高压直流输电工程便于分级分期建设和增容扩建,有利 于及早发挥投资效益。
•
•双桥换流器:如果换流器 只有一对换流桥串联组成 ,则称这样的换流器为双 桥换流器。
•结构特点:共有12个 阀臂,正常运行时阀 臂开通的顺序为11— 12—21—22—31— 32—41—42—51— 52—61—62,各个臂 开通的时间间隔为交 流侧周期的十二分之 一(即在相位上间隔 30º°)。由于整流输 出电压在每个交流电 源周期中脉动12次, 故该换流桥也称为12 脉动换流桥。
2. 1987年,我国投产了第一项高压直流输电工程浙江大陆—— 舟山群岛的跨海输电(50MW,100kV)工程,填补了我国高 压直流输电工程的空白,为今后发展和建设高压直流输电工 程提供了宝贵的建设和运行经验。
3. 1989年葛洲坝—上海高压直流输电工程的投入运行,标志我 国高压直流输电工程已迈入世界先进行列。该直流系统采用 500kV双极联络线,额定容量为1200MW,输电距离为 1045km,它的建成把华东、华中这两个装机容量超过14GW 的大电网连接起来,形成了我国第一个大电网联合系统,使 长江葛洲坝水电站的电能源源不断送往上海。
•
•高压直流输电自20世纪50年代兴起至今,全世界有 80多项高压直流输电系统投入运行 。
•巴西伊泰普直流 输电工程
•南非英加—沙巴 直流输电工程
•英法海峡 直流输电工
程 •瑞典—德国的波罗的 海高压直流输电工程
•架空线路最高电压(±600kV) 和最大输送容量(6300MW)
•最长架空直流线路传送距离(1700km) )
•
6.3.1 高压直流输电系统的谐波特点
直流输电系统的平波电抗器电抗值通常比换相电 抗值要大的多,所以对于与换流器连接的交流系 统来说,换流器及其直流端所连接的直流系统可 以看作一个高内阻抗的谐波电流源。
为了正确估计谐波所引起的不良影响、正确设计 和选择滤波装置,必须对直流输电系统中的谐波 进行分析。在分析谐波时,通常先采用一些理想 化的假设条件,这样不但可以使分析得到简化, 而且对谐波中的主要成分可以得出具有一定精度 的结果,根据这些假设条件,得出有关特征谐波 的结论。然后,对某些假定条件加以修正,使分 析计算接近于直流输电系统实际的运行和控制情 况。
•
(2)双极联络线
• 双极联络线有两根导线,一正一负,每端有两个额定电 压的换流器串联在直流侧,两个换流器间的连接点接地。 正常时,两极电流相等,无接地电流。若因一条线路故障 而导致一极隔离,另一极可通过大地运行,承担一半的额 定负荷,或利用换流器及线路的过载能力,承担更多的负 荷。
•图6-3 双极联络线结构
•电缆线路的最大输送容量2000MW)
•电缆线路的最高电压(450kV)和最 长距离(250km)
•俄罗斯—芬兰之间的维 堡高压直流输电工程
•背靠背换流站的最大容量 (1065MW)
•
•我国对高压直流输电的研究
起步较晚
1. 1977年在上海建设成并投运了我国第一条31kV、4650kW, 长8.6km的直流输电试验线路。
•
2. 直流输电的缺点
(1)直流输电的换流站比交流变电站设备多、造价高、结构复 杂、运行费用高。
(2)换流器工作时需要消耗较多的无功,需要进行无功补偿。 (3)换流器工作时,在直流侧和交流侧均产生谐波,必须装设
滤波装置,使换流站的造价、占地面积和运行费用大幅度 提高。 (4)直流电流没有电流的过零点,灭弧较难。因此高压直流断 路器制造困难,不能形成直流电网。 (5)直流输电利用大地(或海水)为回路会产生一系列技术性问 题。
•
•我国对高压直流输电的研究
起步较晚
1. 4. 我国第一个交直流并联运行系统天生桥—广州直流 输电工程于2001年6月全面建成投运,该工程线路长度 约980km,送电容量为1800MW,电压为±500kV。嵊 泗高压直流输电工程是我国自行设计和建造的海底电缆 高压直流工程于2002年全部建成。
2. 5. 三峡工程的兴建、全国联网和西电东送步伐的进一 步加快,为扩大高压直流输电技术的应用创造了良好的 条件。
•
•图6-7 阀的电气连接示意图 (a)晶闸管级;(b)阀组件;(c)单阀(桥•臂);(d)换流桥
6.2.2 12脉动换流器
在大功率、远距离直流输电工程中,为了减小谐 波影响,常把两个或两个以上换流桥的直流端串 联起来,组成多桥换流器。
多桥换流器结构 • 由偶数桥组成,其中每两个桥布置成为一个 双桥。每一个双桥中的两个桥由相位差为30º° 的两组三相交流电源供电,可以通过接线方式 分别为Y—Y和Y—D的两台换流变压器得到。
3.
2004年底,三峡—常州、三峡—广东、贵州—广东
±500kV、3000A、3000MW的高压直流输电工程投运
,标志着我国的高压直流输电技术已跨入世界先进行列
。随着电力电子技术的进步和高压直流输电设备价格的
下降,将使压直流输电的优势更加明显,在未来的电力
系统中将会更具竞争力。
•
6.1.2 高压直流输电的特点
电力电子技术课件第6章
2020年7月21日星期二
6.1 高压直流输电概述
•高压直 流输电
(HVDC)
•将发电厂发出的交流电通过换 流器转变为直流电(即整流),然 后通过输电线路把直流电送入受 电端,再把直流电转变为交流电 供用户使用(即逆变)。
•电力电子技术的一个重要应用领域,与其他应用 技术相比,其实用化较早、电压与功率等级最高。
•
6.2 换流器的工作原理
6.2.1 换流阀
在直流输电系统中,为实现换流所需的三相桥式换流 器的桥臂,称为换流阀 。
•整流
换流阀功能 •逆变
•开关
半导体阀可分为晶闸管阀(或可控硅阀)、低频门极关 断晶闸管阀(GTO阀)、高频绝缘栅双级晶体管阀 (IGBT阀)三类。
•
晶闸管阀是由晶闸管元件及其相应的电子电路、阻 尼回路、阳极电抗器、均压元件等通过某种形式的 电气连接后组装而成的换流桥的桥臂。
•
(3)同极联络线
同级联络线导线数不少于两根,所有导线同极性。通 常导线为负极性,因为这样由电晕引起的无线电干扰较 小。系统采用大地作为回路,当一条线路发生故障时, 换流器可为余下的线路供电。这些导线有一定的过载能 力,能承受比正常情况更大的功率。
•图6-4 同极联络线结构
•
(4)背靠背直流输电系统
✓实际上,用于计算特征谐波的理想条件是不存在的 ,总是存在比较小量的非特征谐波。
•
特征谐波
单纯由于换流器接线方式而产生的谐波称为特征
谐波。例如:一个脉动数为p的换流器,在它的直 流侧将主要产生n=kp次的电压谐波,而在它的交 流侧将主要产生n=kp±1次的电流谐波,其中k为
任意的整数。
简化假设条件如下:
(1)交流电压是三相对称、平衡的正弦电压,除了基 波以外,没有任何谐波分量。
(2)换流变压器的三相结构对称,各相参数相同。 (3)换流器的直流侧接有无限大电感的平波电抗器,
直流电流是没有谐波分量的恒定电流。 (4)在同一换流站中,各换流阀以等时间间隔的触发
脉冲依次触发,且触发角保持恒定。
•
6.1.1 高压直流输电的发展
•1882 年
•诞生
•20世纪 50年代
后
•1954年
•20世纪 70年代晶 闸管阀出
现
•1882年,法国物理学家德普勒用1500~2000V的直流发电 机经57km的线路,把电力由米斯巴赫煤矿传送到在慕尼黑 举办的国际展览会上,标志着直流输电问题。
•图6-6 双级HVDC系统
•
以双级HVDC系统为例,HVDC系统的主要元件 :
(1)换流器 (2)滤波器 (3)平波电抗器;电感值很大,在直流输电中有着非常重要的
作用: 1)降低直流线路中的谐波电压和电流。 2)限制直流线路短路期间的峰值电流。 3)防止逆变器换相失败。 4)防止负荷电流不连续。 (4)无功功率源 (5)直流输电线 (6)电级 (7)交流断路器
瑞典建成通过海底电缆向果特兰岛供电的±100kV、90km 、20MW、采用汞弧阀变流的直流输电工程。
标志着直流输电进入了一个新的时期。第一个采用晶闸管 阀的大规模高压直流输电系统是于1972年建立的依尔河系统 ,它是连接加拿大新不伦威克省和魁北克省的一个 ±80kV/320MW背靠背高压直流输电系统。
背靠背直流输电系统是输电线路长度为零(即无直流 联络线)的两端直流输电系统,主要用于两个非同步运行 的交流系统的联网,其整流站和逆变站的设备通常装设 在一个站内。由于背靠背直流输电系统无直流输电线路 ,直流侧损耗较小,所以直流侧电压等级不必很高。
•图6-5 背靠背直流输电系统结构
•
6.1.4 高压直流输电系统的结构和元件
•直流电压和交流电流波形(忽略换流过程) •
6.2.3 高压直流输电的稳态计算
采用多桥换流器时,交流和直流量之间的关系讨论如下:
(1)直流侧电压
整流器直流电压Udr为 逆变器直流电压Udi为
•
(2)直流侧电流
单极方式
双极方式
•式中:Rd为直流回路电阻,主要包括直流线路电 阻、平波电抗器电阻、单极方式包括接地极引线 电阻和接地极电阻等。
1.高压直流输电的优点 (1) 直流输电架空线路的造价低、损耗小。 (2) 高压直流输电不存在交流输电的稳定性问题,直流电缆
中不存在电容电流,因此有利于远距离大容量送电。 (3) 高压直流输电可以实现额定频率不同(如50Hz、60Hz)
的电网的互联,也可以实现额定频率相同但非同步运行 的电网的互联。 (4) 采用高压直流输电易于实现地下或海底电缆输电 (5) 高压直流输电容易进行潮流控制,并且响应速度快、调 节精确、操作方便。而交流线路的潮流控制比较困难。 (6) 高压直流输电工程便于分级分期建设和增容扩建,有利 于及早发挥投资效益。
•
•双桥换流器:如果换流器 只有一对换流桥串联组成 ,则称这样的换流器为双 桥换流器。
•结构特点:共有12个 阀臂,正常运行时阀 臂开通的顺序为11— 12—21—22—31— 32—41—42—51— 52—61—62,各个臂 开通的时间间隔为交 流侧周期的十二分之 一(即在相位上间隔 30º°)。由于整流输 出电压在每个交流电 源周期中脉动12次, 故该换流桥也称为12 脉动换流桥。
2. 1987年,我国投产了第一项高压直流输电工程浙江大陆—— 舟山群岛的跨海输电(50MW,100kV)工程,填补了我国高 压直流输电工程的空白,为今后发展和建设高压直流输电工 程提供了宝贵的建设和运行经验。
3. 1989年葛洲坝—上海高压直流输电工程的投入运行,标志我 国高压直流输电工程已迈入世界先进行列。该直流系统采用 500kV双极联络线,额定容量为1200MW,输电距离为 1045km,它的建成把华东、华中这两个装机容量超过14GW 的大电网连接起来,形成了我国第一个大电网联合系统,使 长江葛洲坝水电站的电能源源不断送往上海。
•
•高压直流输电自20世纪50年代兴起至今,全世界有 80多项高压直流输电系统投入运行 。
•巴西伊泰普直流 输电工程
•南非英加—沙巴 直流输电工程
•英法海峡 直流输电工
程 •瑞典—德国的波罗的 海高压直流输电工程
•架空线路最高电压(±600kV) 和最大输送容量(6300MW)
•最长架空直流线路传送距离(1700km) )
•
6.3.1 高压直流输电系统的谐波特点
直流输电系统的平波电抗器电抗值通常比换相电 抗值要大的多,所以对于与换流器连接的交流系 统来说,换流器及其直流端所连接的直流系统可 以看作一个高内阻抗的谐波电流源。
为了正确估计谐波所引起的不良影响、正确设计 和选择滤波装置,必须对直流输电系统中的谐波 进行分析。在分析谐波时,通常先采用一些理想 化的假设条件,这样不但可以使分析得到简化, 而且对谐波中的主要成分可以得出具有一定精度 的结果,根据这些假设条件,得出有关特征谐波 的结论。然后,对某些假定条件加以修正,使分 析计算接近于直流输电系统实际的运行和控制情 况。
•
(2)双极联络线
• 双极联络线有两根导线,一正一负,每端有两个额定电 压的换流器串联在直流侧,两个换流器间的连接点接地。 正常时,两极电流相等,无接地电流。若因一条线路故障 而导致一极隔离,另一极可通过大地运行,承担一半的额 定负荷,或利用换流器及线路的过载能力,承担更多的负 荷。
•图6-3 双极联络线结构
•电缆线路的最大输送容量2000MW)
•电缆线路的最高电压(450kV)和最 长距离(250km)
•俄罗斯—芬兰之间的维 堡高压直流输电工程
•背靠背换流站的最大容量 (1065MW)
•
•我国对高压直流输电的研究
起步较晚
1. 1977年在上海建设成并投运了我国第一条31kV、4650kW, 长8.6km的直流输电试验线路。
•
2. 直流输电的缺点
(1)直流输电的换流站比交流变电站设备多、造价高、结构复 杂、运行费用高。
(2)换流器工作时需要消耗较多的无功,需要进行无功补偿。 (3)换流器工作时,在直流侧和交流侧均产生谐波,必须装设
滤波装置,使换流站的造价、占地面积和运行费用大幅度 提高。 (4)直流电流没有电流的过零点,灭弧较难。因此高压直流断 路器制造困难,不能形成直流电网。 (5)直流输电利用大地(或海水)为回路会产生一系列技术性问 题。
•
•我国对高压直流输电的研究
起步较晚
1. 4. 我国第一个交直流并联运行系统天生桥—广州直流 输电工程于2001年6月全面建成投运,该工程线路长度 约980km,送电容量为1800MW,电压为±500kV。嵊 泗高压直流输电工程是我国自行设计和建造的海底电缆 高压直流工程于2002年全部建成。
2. 5. 三峡工程的兴建、全国联网和西电东送步伐的进一 步加快,为扩大高压直流输电技术的应用创造了良好的 条件。
•
•图6-7 阀的电气连接示意图 (a)晶闸管级;(b)阀组件;(c)单阀(桥•臂);(d)换流桥
6.2.2 12脉动换流器
在大功率、远距离直流输电工程中,为了减小谐 波影响,常把两个或两个以上换流桥的直流端串 联起来,组成多桥换流器。
多桥换流器结构 • 由偶数桥组成,其中每两个桥布置成为一个 双桥。每一个双桥中的两个桥由相位差为30º° 的两组三相交流电源供电,可以通过接线方式 分别为Y—Y和Y—D的两台换流变压器得到。
3.
2004年底,三峡—常州、三峡—广东、贵州—广东
±500kV、3000A、3000MW的高压直流输电工程投运
,标志着我国的高压直流输电技术已跨入世界先进行列
。随着电力电子技术的进步和高压直流输电设备价格的
下降,将使压直流输电的优势更加明显,在未来的电力
系统中将会更具竞争力。
•
6.1.2 高压直流输电的特点
电力电子技术课件第6章
2020年7月21日星期二
6.1 高压直流输电概述
•高压直 流输电
(HVDC)
•将发电厂发出的交流电通过换 流器转变为直流电(即整流),然 后通过输电线路把直流电送入受 电端,再把直流电转变为交流电 供用户使用(即逆变)。
•电力电子技术的一个重要应用领域,与其他应用 技术相比,其实用化较早、电压与功率等级最高。
•
6.2 换流器的工作原理
6.2.1 换流阀
在直流输电系统中,为实现换流所需的三相桥式换流 器的桥臂,称为换流阀 。
•整流
换流阀功能 •逆变
•开关
半导体阀可分为晶闸管阀(或可控硅阀)、低频门极关 断晶闸管阀(GTO阀)、高频绝缘栅双级晶体管阀 (IGBT阀)三类。
•
晶闸管阀是由晶闸管元件及其相应的电子电路、阻 尼回路、阳极电抗器、均压元件等通过某种形式的 电气连接后组装而成的换流桥的桥臂。
•
(3)同极联络线
同级联络线导线数不少于两根,所有导线同极性。通 常导线为负极性,因为这样由电晕引起的无线电干扰较 小。系统采用大地作为回路,当一条线路发生故障时, 换流器可为余下的线路供电。这些导线有一定的过载能 力,能承受比正常情况更大的功率。
•图6-4 同极联络线结构
•
(4)背靠背直流输电系统
✓实际上,用于计算特征谐波的理想条件是不存在的 ,总是存在比较小量的非特征谐波。
•
特征谐波
单纯由于换流器接线方式而产生的谐波称为特征
谐波。例如:一个脉动数为p的换流器,在它的直 流侧将主要产生n=kp次的电压谐波,而在它的交 流侧将主要产生n=kp±1次的电流谐波,其中k为
任意的整数。