人教B版选修2-3高中数学2.2.1《条件概率》word导学案

合集下载

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.1 条件概率》

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.1 条件概率》

2.2.1条件概率教学设计一教学目标(一)知识与技能:掌握条件概率的定义、判断、及求解方法。

(二)过程与方法:通过知识的探索让学生体会数学为主的方法,以培养学生自学能力。

(三)情感态度与价值观:通过生活中的实例让学生体会数学知识的重要性,培养学生思维的灵活性和知识的迁移能力,让学生养成善于观察,分析总结的良好习惯。

二教学重点、难点教学重点:条件概率的定义、公式的推导及计算;为了让学生能够区分一般概率和条件概率的区别,在教学时应特别注意条件概率的定义的引入;但能否解决问题,并解决学生知其然,不知其所以然的情况,还在于对公式的理解,所以本节课的重点是让学生理解公式的推导及应用。

教学难点:条件概率的判断与计算;在理解的基础上能运用自如才是教学的真正目的,所以在教学中选择适当的练习题让学生理解究竟什么是条件概率及条件概率该如何解决。

三学情分析(一)学生已有知识基础或学习起点这是一节新授课,本班学生对数学科特别是概率内容的学习有很高的热情,本班学生具备较好的逻辑思维能力,并能够用已学的定理和概念解决一些常见问题,但分析问题的能力有待提高。

(二)学生已有生活经验和学习该内容的经验学生通过小学、初中的学习,具备了基本的逻辑思维能力,同时在以前的数学学习中学生已经经历了合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

(三)学生的思维水平以及学习风格受以前传统教学方式的影响,学生的思维仍停留在就题论题上,还没有形成一套完整的思维体系去解决一类问题甚至没有形成一种解决问题的思维方法,因此思路不开阔,缺少发散思维和逻辑思维能力。

学习风格上还保留着被动接受的习惯,缺乏主动思考和探索的精神。

(四)学生学习该内容可能的困难在学习中,学生可能对对条件概率的判断和计算上会有些困难,但相比较计算上困难会更大一些,因为通过本节课的学习,我们掌握了两种解决条件概率的方法,分别是公式法和缩减基本事件空间的方法,能不能运用的好可能是学生在学习中遇到的困难。

2019-2020学年高中数学人教B版选修2-3教学案:2.2.3 独立重复试验与二项分布 Word版含解析

2019-2020学年高中数学人教B版选修2-3教学案:2.2.3 独立重复试验与二项分布 Word版含解析

2.2.3 独立重复试验与二项分布[对应学生用书P31]要研究抛掷硬币的规律,需做大量的掷硬币试验.试想每次试验的前提是什么?提示:条件相同.1.在相同条件下重复地做n次试验,各次实验的结果相互独立,则称它们为n次独立重复试验.2.一般地,如果在一次试验中事件A发生的概率是p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P n(k)=C k n p k(1-p)n-k(k=0,1,2,…,n).在体育课上,某同学做投篮训练,他连续投篮3次,每次投篮的命中率都是0.8.用A i(i=1,2,3)表示第i次投篮命中这件事,用B1表示仅投中1次这件事.问题1:试用A i表示B1.提示:B1=(A1∩A2∩A3)∪(A1∩A2∩A3)∪(A1∩A2∩A3).问题2:试求P(B1).提示:因为P(A1)=P(A2)=P(A3)=0.8,且A1∩A2∩A3,A1∩A2∩A3,A1∩A2∩A3两两互斥,故P(B1)=P(A1∩A2∩A3)+P(A1∩A2∩A3)+P(A1∩A2∩A3)=0.8×0.22+0.8×0.22+0.8×0.22=3×0.8×0.22.问题3:用B k表示投中k次这件事,试求P(B2)和P(B3).提示:P(B2)=3×0.2×0.82,P(B3)=0.83.问题4:由以上结果你能得出什么结论?提示:P(B k)=C k30.8k0.23-k,k=0,1,2,3.若将事件A发生的次数记为X,事件A不发生的概率为q=1-p,那么在n次独立重复试验中,事件A恰好发生k次的概率是P(X=k)=C k n p k q n-k,其中k=0,1,2,…,n.于是得到X的分布列由于表中的第二行恰好是二项式展开式(q+p)n=C0n p0q n+C1n p1q n-1+…+C k n p k q n-k+…+C n p n q0各对应项的值,所以称这样的离散型随机变量X服从参数为n,p的二项分布,记作X~B(n,p).1.独立重复试验满足的条件:(1)每次试验是在相同的条件下进行的;(2)各次试验的结果互不影响,即每次试验是相互独立的;(3)每次试验都只有两种结果,即事件要么发生,要么不发生.2.二项分布中各个参数的意义:n表示试验的总次数;k表示在n次独立重复试验中成功的次数;p表示试验成功的概率;1-p表示试验不成功的概率.3.二项分布的特点:(1)对立性:即一次试验中只有两种结果——“成功”和“不成功”,而且有且仅有一个发生;(2)重复性:试验在相同条件下独立重复地进行n次,保证每一次试验中“成功”的概率和“不成功”的概率都保持不变.[对应学生用书P32][例1] 2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.[思路点拨]由于5次预报是相互独立的,且结果只有两种(或准确,或不准确),符合独立重复试验模型.[精解详析](1)记“预报1次准确”为事件A,则P(A)=0.8.5次预报相当于5次独立重复试验,2次准确的概率为P=C250.82×0.23=0.051 2≈0.05.因此5次预报中恰有2次准确的概率为0.05.(2)“5次预报中至少有2次准确”的对立事件为“5次预报全部不准确或只有1次准确”,其概率为P=C05(0.2)5+C15×0.8×0.24=0.006 72≈0.01.所求概率为1-P=1-0.01=0.99.(3)由题意知第1,2,4,5次预报中恰有1次准确.所以概率P=C140.8×0.23×0.8=0.020 48≈0.02.即恰有2次准确,且其中第3次预报准确的概率约为0.02.[一点通]1.运用独立重复试验的概率公式求概率时,首先判断问题中涉及的试验是否为n次独立重复试验,判断时注意各次试验之间是相互独立的,并且每次试验的结果只有两种(即要么发生,要么不发生),在任何一次试验中某一事件发生的概率都相等,然后用相关公式求概率.2.解此类题常用到互斥事件概率加法公式,相互独立事件概率乘法公式及对立事件的概率公式.1.打靶时,甲每打10发可中靶8次,则他打100发子弹有4发中靶的概率为( ) A .C 41000.84×0.296 B .0.84 C .0.84×0.296D .0.24×0.296解析:设X 为中靶的次数,则X ~B (100,0.8), ∴P (X =4)=C 41000.84×0.296. 答案:A2.在4次独立重复试验中,事件A 至少发生1次的概率为6581,则事件A 在1次试验中出现的概率为( )A.13B.25C.56D.34解析:由题意知,C 04p 0(1-p )4=1-6581,p =13.答案:A3.甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23,求:(1)甲恰好击中目标2次的概率; (2)乙至少击中目标2次的概率; (3)乙恰好比甲多击中目标2次的概率.解:(1)甲恰好击中目标2次的概率为C 23⎝ ⎛⎭⎪⎫123=38.(2)乙至少击中目标2次的概率为C 23⎝ ⎛⎭⎪⎫232·⎝ ⎛⎭⎪⎫13+C 3⎝ ⎛⎭⎪⎫233=2027. (3)设乙恰好比甲多击中目标2次为事件A ,乙恰好击中目标2次且甲恰好击中目标0次为事件B 1,乙恰好击中目标3次且甲恰好击中目标1次为事件B 2,则A =B 1∪B 2,B 1,B 2为互斥事件.P (A )=P (B 1)+P (B 2)=C 23⎝ ⎛⎭⎪⎫232×13×C 03⎝ ⎛⎭⎪⎫123+C 3⎝ ⎛⎭⎪⎫233×C 13⎝ ⎛⎭⎪⎫123=118+19=16.[2](12分)已知某种从太空飞船中带回来的植物种子每粒成功发芽的概率都为13,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一粒种子,如果某次没有发芽,则称该次试验是失败的.(1)第一小组做了3次试验,记该小组试验成功的次数为X ,求X 的概率分布列; (2)第二小组进行试验,到成功了4次为止,求在第4次成功之前共有3次失败的概率.[思路点拨] (1)X 服从二项分布;(2)共7次试验,前6次试验有3次失败.[精解详析] (1)由题意,随机变量X 可能取值为0,1,2,3,则X ~B ⎝ ⎛⎭⎪⎫3,13.(2分)即P (X =0)=C 03⎝ ⎛⎭⎪⎫130⎝ ⎛⎭⎪⎫1-133=827,(4分)P (X =1)=C 13⎝ ⎛⎭⎪⎫131⎝ ⎛⎭⎪⎫1-132=49,(5分) P (X =2)=C 23⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫1-131=29,(6分)P (X =3)=C 3⎝ ⎛⎭⎪⎫133=127.(7分)所以X 的概率分布列为(8分)(2)第二小组第7次试验成功,前面6次试验中有3次失败,3次成功,每次试验又是相互独立的,因此所求概率为P =C 36⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫1-133×13=1602 187.(12分)[一点通]解决此类问题的步骤:(1)判断随机变量X 服从二项分布; (2)建立二项分布模型;(3)确定X 的取值并求出相应的概率; (4)写出分布列.4.已知X ~B ⎝ ⎛⎭⎪⎫6,13,则P (X =2)等于( ) A.316 B.4243 C.13243D.80243解析:P (X =2)=C 26⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫234=80243.答案:D5.某射手每次射击击中目标的概率是0.8,现连续射击4次,求击中目标次数X 的分布列. 解:击中目标的次数X 服从二项分布X ~B (4,0.8), ∴P (X =k )=C k 4(0.8)k (0.2)4-k (k =0,1,2,3,4),即X 的分布列为6.4名考生选做这两题的可能性均为12.(1)求其中甲、乙2名考生选做同一道题的概率;(2)设这4名考生中选做第15题的学生数为X ,求X 的分布列.解:(1)设事件A 表示“甲选做第14题”,事件B 表示“乙选做第14题”,则甲、乙2名学生选做同一道题的事件为“(A ∩B )∪(A ∩B )”,且事件A ,B 相互独立.∴P ((A ∩B )∪(A ∩B )) =P (A )P (B )+P (A )P (B ) =12×12+⎝ ⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-12=12.(2)随机变量X 的可能取值为0,1,2,3,4,且X ~B ⎝ ⎛⎭⎪⎫4,12.∴P (X =k )=C k 4⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫1-124-k=C k 4⎝ ⎛⎭⎪⎫124(k =0,1,2,3,4). 所以变量X 的分布列为1.独立重复试验概率求解的关注点:(1)运用独立重复试验的概率公式求概率时,要判断问题中涉及的试验是否为n 次独立重复试验,判断时可依据n 次独立重复试验的特征.(2)解此类题常用到互斥事件概率加法公式、相互独立事件概率乘法公式及对立事件的概率公式. 2.二项式(q +p )n (p +q =1)的展开式中,第k +1项为T k +1=Ckn q n -k p k ,可见P (X =k )就是二项式(q +p )n 的展开式中的第k +1项,故此公式称为二项分布公式.错误!1.某地人群中高血压的患病率为p ,由该地区随机抽查n 人,则( )A .样本患病率X /n 服从B (n ,p ) B .n 人中患高血压的人数X 服从B (n ,p )C .患病人数与样本患病率均不服从B (n ,p )D .患病人数与样本患病率均服从B (n ,p ) 解析:由二项分布的定义知B 正确. 答案:B2.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为35,若40分为最低分数线,则该生被选中的概率是( )A .C 45⎝ ⎛⎭⎪⎫354×25B .C 5⎝ ⎛⎭⎪⎫355C .C 45⎝ ⎛⎭⎪⎫354×25+C 5⎝ ⎛⎭⎪⎫355 D .1-C 35⎝ ⎛⎭⎪⎫353×⎝ ⎛⎭⎪⎫252 解析:该生被选中包括“该生做对4道题”和“该生做对5道题”两种情形,故所求概率为P =C 45⎝ ⎛⎭⎪⎫354×25+C 5⎝ ⎛⎭⎪⎫355. 答案:C3.甲、乙两队参加乒乓球团体比赛,甲队与乙队的实力之比为3∶2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )A .C 23⎝ ⎛⎭⎪⎫353×25B .C 23⎝ ⎛⎭⎪⎫352×25C .C 34⎝ ⎛⎭⎪⎫353×25D .C 34⎝ ⎛⎭⎪⎫233×13解析:甲打完4局才胜,说明在前三局中甲胜两局,且在第4局中获胜,其概率为P =C 23⎝ ⎛⎭⎪⎫352×25×35=C 23⎝ ⎛⎭⎪⎫353×25. 答案:A4.位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动5次后位于点(2,3)的概率是( )A.⎝ ⎛⎭⎪⎫123 B .C 25⎝ ⎛⎭⎪⎫125 C .C 35⎝ ⎛⎭⎪⎫123 D .C 25C 35⎝ ⎛⎭⎪⎫125 解析:质点由原点移动到(2,3)需要移动5次,且必须有2次向右,3次向上,所以质点的移动方法有C 25种.而每一次向右移动的概率都是12,所以向右移动的次数X ~B ⎝ ⎛⎭⎪⎫5,12,所求的概率等于P (X =2)=C 25⎝ ⎛⎭⎪⎫125.答案:B5.下列说法正确的是________.①某同学投篮的命中率为0.6,他10次投篮中命中的次数X 是一个随机变量,且X ~B (10,0.6); ②某福彩的中奖概率为P ,某人一次买了8张,中奖张数X 是一个随机变量,且X ~B (8,P ); ③从装有5个红球、5个白球的袋中,有放回地摸球,直到摸出白球为止,则摸球次数X 是随机变量,且X ~B⎝ ⎛⎭⎪⎫n ,12. 解析:①②显然满足独立重复试验的条件,而③虽然是有放回地摸球,但随机变量X 的定义是直到摸出白球为止,也就是说前面摸出的一定是红球,最后一次是白球,不符合二项分布的定义.答案:①②6.设X ~B (2,p ),若P (X ≥1)=59,则p =________.解析:∵X ~B (2,p ),∴P (X =k )=C k 2p k (1-p )2-k ,k =0,1,2.∴P (X ≥1)=1-P (X <1)=1-P (X =0) =1-C 02p 0(1-p )2=1-(1-p )2, ∴1-(1-p )2=59.结合0≤p ≤1,解之得p =13.答案:137.在资料室存放着书籍和杂志,任一读者借书的概率为0.2,而借杂志的概率为0.8,设每人只借一本,现有5位读者依次借阅.(1)求5人中有两人借杂志的概率;(2)求5人中至多有2人借杂志的概率.(保留到0.000 1)解:记“一位读者借杂志”这为事件A ,则“此人借书”为事件A -,5位读者借几次可看作几次独立重复事件.(1)5人中有2人借杂志的概率为P =C 25(0.8)2(0.2)3=0.051 2.(2)5人中至多有2人借杂志,包括三种情况:5人都不借杂志;5人中恰有1人借杂志;5人中恰有2人借杂志.所以求概率为P =C 05(0.8)0(0.2)5+C 15(0.8)1(0.2)4+C 25(0.8)2(0.2)3≈0.057 9.8.在一次抗洪抢险中,准备用射击的办法引爆从桥上游漂流而下的一个巨大汽油灌,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23.(1)求油灌被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为X ,求X 不小于4的概率.解:(1)油灌被引爆的对立事件为油灌没有被引爆,没有引爆的可能情况是射击5次只击中一次或一次也没有击中,故该事件的概率为C 15·23·⎝ ⎛⎭⎪⎫134+⎝ ⎛⎭⎪⎫135=11243, 所以所求的概率为 1-11243=232243. (2)当X =4表示前3次中只有一次击中,第四次击中,则 P (X =4)=C 13·23·⎝ ⎛⎭⎪⎫132·23=427.当X =5时,表示前4次射击只击中一次或一次也未击中,第5次可以击中,也可以不击中, 则P (X =5)=C 14·23·⎝ ⎛⎭⎪⎫133+⎝ ⎛⎭⎪⎫134=19,所以所求概率为P (X ≥4)=P (X =4)+P (X =5)=427+19=727.。

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.1 条件概率》3

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.1 条件概率》3

条件概率教学设计3条件概率公式:(1))()()|(AnABnABP=;(2)P B A=p(A B)()P(A)PA>04计算条件概率有两种方法:①列基本事件,在缩减的事件空间A中求事件B发生的概率,就得到)|(ABP;②在基本事件空间Ω中,先求事件()P A B和)(AP,再按公式计算)|(ABP。

5.PB|A和PA∩B的区别?注意:“在前提(条件)下”四、应用举例例1:一个家庭中有两个孩子,假定生男、生女是等可能的,已知这个家庭有一个是女孩。

求这时另一个孩子是男孩的概率是多少?例2:甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天所占的比例分别为202118%,两地同时下雨的比例为12%,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?五、跟踪训练1盒内装有16个球,其中6个是玻璃球,10个是木质球玻璃球中有2个是红色的,4个是蓝色的;木质球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是玻璃球的概率是多少?2.抛掷红、蓝两个骰子,事件A=“红骰子出现4点”,事件B=“蓝骰子出现的点数是偶数”,求PA|B。

3.假定生男孩或生女孩是等可能的,在一个有3个孩子的家庭中,已知有一个男孩,求至少有一个女孩的概率。

4.设某种灯管使用了500h还能继续使用的概率是,使用到700h后还能继续使用的概率是,问已经。

【B版】人教课标版高中数学选修2-3《条件概率》导学案

【B版】人教课标版高中数学选修2-3《条件概率》导学案

2.2.1条件概率【学习要求】1.理解条件概率的定义。

2.掌握条件概率的计算方法。

3.利用条件概率公式解决一些简单的实际问题。

【学法指导】理解条件概率可以以简单事例为载体,先从古典概型出发求条件概率,然后再进行推广;计算条件概率可利用公式P(B|A)=()()P ABP A,也可以利用缩小样本空间的观点计算。

【知识要点】1.条件概率的概念设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件发生的条件下,事件发生的条件概率。

P(B|A)读作发生的条件下发生的概率。

2.条件概率的性质(1)P(B|A)∈。

(2)如果B与C是两个互斥事件,则P(B∪C|A)=。

【问题探究】探究点一条件概率问题13张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?问题2如果已知第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率是多少?问题3怎样计算条件概率?问题4若事件A、B互斥,则P(B|A)是多少?例1在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率。

小结 利用P (B |A )=()()n AB n A 解答问题的关键在于明确B 中的基本事件空间已经发生了质的变化,即在A 事件必然发生的前提下,B 事件包含的样本点数即为事件AB 包含的样本点数。

跟踪训练1 一个盒子中有6个白球、4个黑球,每次从中不放回地任取1个,连取两次,求第一次取到白球的条件下,第二次取到黑球的概率。

探究点二 条件概率的性质及应用问题 条件概率满足哪些性质?例2 一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个。

某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率。

【人教B版】高中数学选修2-2学案全集(全册 共65页 附答案)

【人教B版】高中数学选修2-2学案全集(全册 共65页 附答案)

【人教B版】高中数学选修2-2学案全集(全册共65页附答案)目录1.2 导数的运算1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理2.1.1 合情推理2.1.2 演绎推理2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法3.1.2 复数的概念3.1.3 复数的几何意义3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法1.2 导数的运算1.掌握基本初等函数的导数公式,并能利用这些公式求基本初等函数的导数. 2.熟练运用导数的运算法则.3.正确地对复合函数进行求导,合理地选择中间变量,认清是哪个变量对哪个变量求导数.1.基本初等函数的导数公式表y =f (x ) y′=f′(x )(1)求导公式在以后的求导数中可直接运用,不必利用导数的定义去求. (2)幂函数的求导规律:求导幂减1,原幂作系数.【做一做1-1】给出下列结论:①若y =1x 3,则y′=-3x 4;②若y =3x ,则y′=133x ;③若y =1x2,则y′=-2x -3;④若y =f (x )=3x ,则f′(1)=3;⑤若y =cos x ,则y′=sin x ;⑥若y =sin x ,则y′=cos x .其中正确的个数是( ).A .3B .4C .5D .6【做一做1-2】下列结论中正确的是( ).A .(log a x )′=a xB .(log a x )′=ln 10xC .(5x )′=5xD .(5x )′=5xln 5 2.导数的四则运算法则(1)函数和(或差)的求导法则: 设f (x ),g (x )是可导的,则(f (x )±g (x ))′=__________,即两个函数的和(或差)的导数,等于这两个函数的____________.(2)函数积的求导法则:设f (x ),g (x )是可导的,则[f (x )g (x )]′=____________,即两个函数的积的导数等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数.由上述法则立即可以得出[Cf (x )]′=Cf′(x ),即常数与函数之积的导数,等于常数乘以____________.(3)函数的商的求导法则:设f (x ),g (x )是可导的,g (x )≠0,则⎣⎢⎡⎦⎥⎤f (x )g (x )′=________________.(1)比较:[f (x )g (x )]′=f′(x )g (x )+f (x )g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′=g (x )f ′(x )-f (x )g ′(x )g 2(x ),注意差异,加以区分.(2)f (x )g (x )≠f ′(x )g ′(x ),且⎣⎢⎡⎦⎥⎤f (x )g (x )′≠g (x )f ′(x )+f (x )g ′(x )g 2(x ).(3)两函数的和、差、积、商的求导法则,称为可导函数四则运算的求导法则.(4)若两个函数可导,则它们的和、差、积、商(商的分母不为零)必可导. 若两个函数不可导,则它们的和、差、积、商不一定不可导.例如,设f (x )=sin x +1x ,g (x )=cos x -1x,则f (x ),g (x )在x =0处均不可导,但它们的和f (x )+g (x )=sin x +cos x 在x =0处可导. 【做一做2】下列求导运算正确的是( ).A .⎝ ⎛⎭⎪⎫x +1x ′=1+1x2B .(log 2x )′=1x ln 2C .(3x )′=3x·log 3eD .(x 2cos x )′=-2x sin x 3.复合函数的求导法则对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )和u =g (x )的复合函数,记作y =f [g (x )].如函数y =(2x +3)2是由y =u 2和u =2x +3复合而成的.复合函数y =f [g (x )]的导数和函数y =f (u ),u =g (x )的导数间的关系为 y′x =y′u ·u ′x .即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.对于复合函数的求导应注意以下几点:(1)分清复合函数是由哪些基本函数复合而成的,适当选定中间变量.(2)分步计算的每一步都要明确是对哪个变量进行求导的,而其中要特别注意的是中间变量的导数.如(sin 2x )′=2cos 2x ,而(sin 2x )′≠cos 2x .(3)根据基本初等函数的导数公式及导数的运算法则,求出各函数的导数,并把中间变量转换成自变量的函数.如求y =sin ⎝ ⎛⎭⎪⎫2x +π3的导数,设y =sin u ,u =2x +π3,则y′x =y′u ·u ′x =cos u ·2=2cos ⎝⎛⎭⎪⎫2x +π3. (4)复合函数的求导熟练后,中间步骤可省略不写. 【做一做3】函数y =ln(2x +3)的导数为________.1.如何看待导数公式与用定义法求导数之间的关系?剖析:导数的定义本身给出了求导数的最基本的方法,但由于导数是用极限定义的,因此求导数总是归结到求极限,这在运算上很麻烦,有时甚至很困难,利用导数公式就可以比较简捷地求出函数的导数.2.导数公式表中y′表示什么?剖析:y′是f′(x )的另一种写法,两者都表示函数y =f (x )的导数. 3.如何理解y =C (C 是常数),y′=0;y =x ,y′=1?剖析:因为y =C 的图象是平行于x 轴的直线,其上任一点的切线即为本身,所以切线的斜率都是0;因为y =x 的图象是斜率为1的直线,其上任一点的切线即为直线本身,所以切线的斜率为1.题型一 利用公式求函数的导数 【例题1】求下列函数的导数:(1)y =x x ;(2)y =1x4;(3)y =5x 3;(4)y =log 2x 2-log 2x ;(5)y =-2sin x2(1-2cos 2x4).分析:熟练掌握常用函数的求导公式.运用有关的性质或公式将问题转化为基本初等函数后再求导数.反思:通过恒等变形把函数先化为基本初等函数,再应用公式求导. 题型二 利用四则运算法则求导 【例题2】求下列函数的导数:(1)y =x 4-3x 2-5x +6; (2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3);(4)y =x -1x +1.分析:仔细观察和分析各函数的结构规律,紧扣求导运算法则,联系基本函数求导公式,不具备求导法则条件的可适当进行恒等变形,然后进行求导.反思:对于函数求导问题,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,必须注意变换的等价性,避免不必要的运算错误.题型三 求复合函数的导数 【例题3】求下列函数的导数:(1)y =(2x +1)n(x ∈N +);(2)y =⎝⎛⎭⎪⎫x 1+x 5;(3)y =sin 3(4x +3);(4)y =x cos x 2.分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,其中还应特别注意中间变量的关系,求导后,要把中间变量转换成自变量的函数.反思:对于复合函数的求导,要注意分析问题的具体特征,灵活恰当地选择中间变量.易犯错误的地方是混淆变量,或忘记中间变量对自变量求导.复合函数的求导法则,通常称为链条法则,因为它像链条一样,必须一环一环套下去,而不能丢掉其中的一环.题型四 易错辨析易错点:常见函数的导数公式、导数的四则运算法则、复合函数的求导法则等,记忆不牢或不能够灵活运用,所以在求导时容易出错.牢记公式、灵活应用法则是避免求导出错的关键.【例题4】求函数y =12(e x +e -x)的导数.错解:y′=⎣⎢⎡⎦⎥⎤12(e x +e -x )′=12(e x +e -x )′=12[(e x )′+(e -x )′]=12(e x +e -x).1下列各组函数中导数相同的是( ). A .f (x )=1与f (x )=xB .f (x )=sin x 与f (x )=cos xC .f (x )=1-cos x 与f (x )=-sin xD .f (x )=x -1与f (x )=x +12已知函数f (x )=ax 3+3x 2+2,若f′(-1)=4,则a 的值为( ). A .193 B .103 C .133 D .1633函数y =cos xx的导数是( ).A .-sin xx2 B .-sin xC .-x sin x +cos x x 2D .-x cos x +cos xx 24设y =1+a +1-x (a 是常数),则y′等于( ).A .121+a +121-xB .121-xC .121+a -121-xD .-121-x5已知抛物线y =ax 2+bx -5(a ≠0),在点(2,1)处的切线方程为y =-3x +7,则a =________,b =________.答案:基础知识·梳理1.nxn -1a xln a1x ln acos x -sin x 【做一做1-1】B 由求导公式可知,①③④⑥正确. 【做一做1-2】D2.(1)f′(x )±g′(x ) 导数和(或差) (2)f′(x )g (x )+f (x )g′(x ) 函数的导数 (3)fx g x -f x gxg 2x【做一做2】B 由求导公式知,B 选项正确.⎝⎛⎭⎪⎫x +1x′=x ′+(x -1)′=1-x -2=1-1x2.(3x )′=3x ln 3,(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x cos x -x 2sin x . 【做一做3】y′=22x +3函数y =ln(2x +3)可看作函数y =ln u 和u =2x +3的复合函数,于是y′x =y′u ·u ′x =(ln u )′·(2x +3)′=1u ×2=22x +3.典型例题·领悟【例题1】解:(1)y′=(x x )′=⎝ ⎛⎭⎪⎫x 32′=32x 32-1=32x . (2)y′=⎝ ⎛⎭⎪⎫1x4′=(x -4)′=-4x -4-1=-4x -5=-4x5.(3)y′=(5x 3)′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2. (4)∵y =log 2x 2-log 2x =log 2x ,∴y′=(log 2x )′=1x ln 2. (5)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x2=sin x ,∴y′=cos x .【例题2】解:(1)y′=(x 4-3x 2-5x +6)′=(x 4)′-3(x 2)′-5x ′-6′=4x 3-6x -5.(2)y′=(x ·tan x )′=⎝ ⎛⎭⎪⎫x ·sin x cos x ′=x ·sin x ′·cos x -x ·sin x cos x ′cos 2x=sin x +x ·cos x ·cos x +x ·sin 2xcos 2x=sin x ·cos x +x ·cos 2x +x ·sin 2x cos 2x =12sin 2x +x cos 2x +x sin 2x cos 2x =sin 2x +2x 2cos 2x . (3)方法1:y′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)(x +2) =(x +2+x +1)(x +3)+(x +1)(x +2) =(2x +3)(x +3)+(x +1)(x +2)=3x 2+12x +11.方法2:y =x 3+6x 2+11x +6, y′=3x 2+12x +11.(4)方法1:y′=⎝ ⎛⎭⎪⎫x -1x +1′=x -1′x +1-x -1x +1′x +12=x +1-x -1x +12=2x +12.方法2:y =1-2x +1, y′=⎝ ⎛⎭⎪⎫1-2x +1′=⎝ ⎛⎭⎪⎫-2x +1′=-2′x +1-2x +1′x +12=2x +12.【例题3】解:(1)y′=[(2x +1)n]′=n (2x +1)n -1·(2x +1)′=2n (2x +1)n -1.(2)y′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 1+x 5′=5·⎝ ⎛⎭⎪⎫x 1+x 4·⎝ ⎛⎭⎪⎫x 1+x ′=5x4x +16.(3)y′=[sin 3(4x +3)]′=3sin 2(4x +3)[sin(4x +3)]′=3sin 2(4x +3)·cos(4x +3)·(4x +3)′=12sin 2(4x +3)cos(4x +3).(4)y′=(x cos x 2)′=x ′·cos x 2+(cos x 2)′·x=cos x 2-2x 2sin x 2.【例题4】错因分析:y =e -x 的求导错误,y =e -x 由y =e u与u =-x 复合而成,因此其导数应按复合函数的求导法则进行.正解:令y =e u ,u =-x ,则y′x =y′u ·u ′x ,所以(e -x )′=(e u )′(-x )′=e -x×(-1)=-e -x,所以y′=⎣⎢⎡⎦⎥⎤12x +e -x ′=12[(e x )′+(e -x )′]=12(e x -e -x ). 随堂练习·巩固1.D2.B f′(x )=3ax 2+6x ,∴f′(-1)=3a -6=4,∴a =103.3.C y′=⎝⎛⎭⎪⎫cos x x ′=xx -cos x ·x ′x =-x sin x -cos xx =-x sin x +cos xx 2.4.D 由x 是自变量,a 是常数,可知(1+a )′=0,所以y′=(1+a )′+(1-x )′=[(1-x )12]′=12(1-x )-12·(1-x )′=-121-x .5.-3 9 ∵y′=2ax +b ,∴y′|x =2=4a +b ,∴方程y -1=(4a +b )(x -2)与方程y =-3x +7相同,即⎩⎪⎨⎪⎧4a +b =-3,1-a +b =7,即4a +b =-3,又点(2,1)在y =ax 2+bx -5上, ∴4a +2b -5=1.即4a +2b =6.由⎩⎪⎨⎪⎧4a +b =-3,4a +2b =6,得⎩⎪⎨⎪⎧a =-3,b =9.1.3.1 利用导数判断函数的单调性1.理解可导函数单调性与其导数的关系,会用导数确定函数的单调性. 2.通过比较体会用导数求函数单调区间的优越性.用函数的导数判定函数单调性的法则1.如果在(a ,b )内,f′(x )>0,则f (x )在此区间是______,(a ,b )为f (x )的单调增区间;2.如果在(a ,b )内,f′(x )<0,则f (x )在此区间是______,(a ,b )为f (x )的单调减区间.(1)在(a ,b )内,f′(x )>0(<0)只是f (x )在此区间是增(减)函数的充分条件而非必要条件.(2)函数f (x )在(a ,b )内是增(减)函数的充要条件是在(a ,b )内f′(x )≥0(≤0),并且f′(x )=0在区间(a ,b )上仅有有限个点使之成立.【做一做1-1】已知函数f (x )=1+x -sin x ,x ∈(0,2π),则函数f (x )( ). A .在(0,2π)上是增函数 B .在(0,2π)上是减函数C .在(0,π)上是增函数,在(π,2π)上是减函数D .在(0,π)上是减函数,在(π,2π)上是增函数【做一做1-2】设f′(x )是函数f (x )的导数,f′(x )的图象如图所示,则f (x )的图象最有可能是( ).1.函数的单调性与其导数有何关系?剖析:(1)求函数f(x)的单调增(或减)区间,只需求出其导函数f′(x)>0(或f′(x)<0)的区间.(2)若可导函数f(x)在(a,b)内是增函数(或减函数),则可以得出函数f(x)在(a,b)内的导函数f′(x)≥0(或f′(x)≤0).2.利用导数判断函数单调性及单调区间应注意什么?剖析:(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题时只能在定义域内,通过讨论导数的符号,来判断函数的单调区间.(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点.(3)如果一个函数具有相同单调性的单调区间不止一个,这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开.题型一求函数的单调区间【例题1】求下列函数的单调区间:(1)f(x)=x-x3;(2)f(x)=x ax-x2(a>0).分析:先求f′(x),然后解不等式f′(x)>0得单调增区间,f′(x)<0得单调减区间.反思:运用导数讨论函数的单调性需注意如下几点:(1)确定函数的定义域,解决问题时,只能在函数的定义域内,通过讨论函数导数的符号,来判断函数的单调区间;(2)在对函数划分单调区间时,要注意定义域内的不连续点和不可导点;(3)在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在该区间上为增(或减)函数的充分不必要条件.题型二根据函数的单调性求参数的取值范围【例题2】已知函数f(x)=2ax-1x2,x∈(0,1],若f(x)在x∈(0,1]上是增函数,求a 的取值范围.分析:函数f(x)在(0,1]上是增函数,则f′(x)≥0在(0,1]上恒成立.反思:函数f(x)在区间M上是增(减)函数,即f′(x)≥0(≤0)在x∈M上恒成立.题型三证明不等式【例题3】已知x>1,求证:x>ln(1+x).分析:构造函数f(x)=x-ln(1+x),只要证明在x∈(1,+∞)上,f(x)>0恒成立即可.反思:利用可导函数的单调性证明不等式,是不等式证明的一种重要方法,其关键在于构造一个合理的可导函数.此法的一般解题步骤为:令F(x)=f(x)-g(x),x≥a,其中F(a)=f(a)-g(a)=0,从而将要证明的不等式“当x>a时,f(x)>g(x)”转化为证明“当x>a时,F(x)>F(a)”.题型四易错辨析易错点:应用导数求函数的单调区间时,往往因忘记定义域的限制作用从而导致求解结果错误,因此在求函数的单调区间时需先求定义域.【例题4】求函数f (x )=2x 2-ln x 的单调减区间.错解:f′(x )=4x -1x =4x 2-1x ,令4x 2-1x <0,得x <-12或0<x <12,所以函数f (x )的单调减区间为⎝ ⎛⎭⎪⎫-∞,-12,⎝ ⎛⎭⎪⎫0,12.1在区间(a ,b )内f′(x )>0是f (x )在(a ,b )内为增函数的( ). A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件2函数y =x cos x -sin x 在下面哪个区间内是增函数( ). A .⎝ ⎛⎭⎪⎫π2,3π2 B .(π,2π)C .⎝ ⎛⎭⎪⎫3π2,5π2 D .(2π,3π)3若f (x )=ax 3+bx 2+cx +d 为增函数,则一定有( ).A .b 2-4ac ≤0 B.b 2-3ac ≤0C .b 2-4ac ≥0 D.b 2-3ac ≥04如果函数f (x )=-x 3+bx (b 为常数)在区间(0,1)上是增函数,则b 的取值范围是__________.5函数y =-13x 3+x 2+5的单调增区间为________,单调减区间为________.答案:基础知识·梳理 1.增函数 2.减函数 【做一做1-1】A f′(x )=1-cos x ,当x (0,2π)时,f′(x )>0恒成立,故f (x )在(0,2π)上是增函数.【做一做1-2】C 由f′(x )的图象知,x (-∞,0)或x (2,+∞)时,f′(x )>0,故f (x )的增区间为(-∞,0),(2,+∞),同理可得f (x )的减区间为(0,2).典型例题·领悟【例题1】解:(1)f (x )′=1-3x 2.令1-3x 2>0,解得-33<x <33.因此函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫-33,33. 令1-3x 2<0,解得x <-33或x >33.因此函数f (x )的单调减区间为⎝⎛⎭⎪⎫-∞,-33和⎝ ⎛⎭⎪⎫33,+∞. (2)由ax -x 2≥0得0≤x ≤a ,即函数的定义域为[0,a ].又f (x )′=ax -x 2+x ×12(ax -x 2)-12·(a -2x )=-4x 2+3ax 2ax -x2, 令f (x )′>0,得0<x <3a 4;令f (x )′<0,得x <0或x >34a ,又x [0,a ],∴函数f (x )的单调增区间为⎝ ⎛⎭⎪⎫0,3a 4,单调减区间为⎝ ⎛⎭⎪⎫3a 4,a .【例题2】解:由题意,得f′(x )=2a +2x3.。

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.1 条件概率》8

高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.2.1 条件概率》8

条件概率教学设计课标分析《条件概率》是人教B 版普通高中课程标准实验教科书《数学》选修2-3 第二章随机变量及其分布中,二项分布及其应用的第一课时的内容,主要包括:(1)条件概率的概念;(2)条件概率的性质;(3)条件概率公式的简单应用。

《条件概率》的内容,利用“抽奖”这一典型案例,以无放回抽取奖券的方式,通过对有无“第一名同学没有中奖”条件,最后一名同学中奖的概率的比较,引出条件概率的概念,给出了条件概率的两个性质,并通过条件概率公式的简单应用加深对条件概率概念本质特征的理解掌握。

为相互独立事件和二项分布的内容教学,起“引流开山”之作用,即为定义相互独立事件和研究二项分布做好了知识铺垫。

正因本节是数学新概念引入建立,其教学便化身为本章的难点,对其进行合理的教学处理尤显重要。

本节教学重点和难点都是对条件概率的概念理解,应用公式对条件概率的计算是围绕这一中心的;在条件概率概念的引入中,应抓住“条件概率的本质是样本空间范围的缩小下的概率”这一转化关键。

教学关键是实际案例对比,甚者要辅以图示直观说明解释和反例验证等教学方式对条件概率的概念进行多角度分析研究,才能突破本节教学重点和教材分析《条件概率》第一课时是高中数学选修2-3第二章第二节的内容本节课是在必修三学习了概率的定义,概率的关系与运算,概率的基本性质,古典概型特点及其运算的基础上,学习如何计算已知某一事件发生的条件下,另一事件发生的概率,它仍属于概率的范畴。

它在教材中起着承前启后的作用,一方面,可以巩固古典概型概率的计算方法,另一方面,为研究相互独立事件打下良好的基础教学重点、难点和关键:教学重点是条件概率的定义、计算公式的推导及条件概率的计算;难点是条件概率的判断与计算;教学关键是数学建模条件概率是比较难理解的概念。

教科书利用大家比较熟悉的抽奖为实例,以无放回抽取奖券的方式,通过比较抽奖前和在已知第一名同学没有中奖的条件下,最后一名同学中奖的概率从而引入条件概率的概念,给出条件概率的两种计算方法。

高中数学人教A版选修2-3 精品导学案:2.2.1 条件概率 Word版含解析

高中数学人教A版选修2-3 精品导学案:2.2.1 条件概率 Word版含解析

2.2二项分布及其应用2.2.1条件概率1.了解条件概率的概念.2.掌握求条件概率的两种方法.(难点)3.能利用条件概率公式解一些简单的实际问题.(重点)[基础·初探]教材整理条件概率阅读教材P51~P53,完成下列问题.1.条件概率的概念一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率.P(B|A)读作A发生的条件下B发生的概率.2.条件概率的性质(1)P(B|A)∈[0,1].(2)如果B与C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).1.设A,B为两个事件,且P(A)>0,若P(AB)=13,P(A)=23,则P(B|A)=________.【解析】由P(B|A)=P(AB)P(A)=1323=12.【答案】1 22.设某动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,则它活到25岁的概率是________.【解析】根据条件概率公式知P=0.40.8=0.5.【答案】0.5[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]利用定义求条件概率一个袋中有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球”为A;事件“第二次抽到黑球”为 B.(1)分别求事件A,B,AB发生的概率;(2)求P(B|A).【精彩点拨】首先弄清“这次试验”指的是什么,然后判断该问题是否属于古典概型,最后利用相应公式求解.【自主解答】由古典概型的概率公式可知(1)P(A)=2 5,P(B)=2×1+3×25×4=820=25,P(AB)=2×15×4=110.(2)P(B|A)=P(AB)P(A)=11025=14.1.用定义法求条件概率P(B|A)的步骤(1)分析题意,弄清概率模型;(2)计算P(A),P(AB);(3)代入公式求P(B|A)=P(AB)P(A).2.在(2)题中,首先结合古典概型分别求出了事件A、B的概率,从而求出P(B|A),揭示出P(A),P(B)和P(B|A)三者之间的关系.[再练一题]1.(1)甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P(A)=0.2,P(B)=0.18,P(AB)=0.12,则P(A|B)=________,P(B|A)=________. 【导学号:97270036】(2)(2016·烟台高二检测)有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.【解析】(1)由公式P(A|B)=P(AB)P(B)=23,P(B|A)=P(AB)P(A)=35.(2)设“种子发芽”为事件A,“种子成长为幼苗”为事件AB(发芽,又成活为幼苗),出芽后的幼苗成活率为P(B|A)=0.8,又P(A)=0.9,P(B|A)=P(AB)P(A),得P(AB)=P(B|A)·P(A)=0.8×0.9=0.72.【答案】(1)2335(2)0.72利用基本事件个数求条件概率现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.【精彩点拨】第(1)、(2)问属古典概型问题,可直接代入公式;第(3)问为条件概率,可以借用前两问的结论,也可以直接利用基本事件个数求解.【自主解答】设第1次抽到舞蹈节目为事件A,第2次抽到舞蹈节目为事件B,则第1次和第2次都抽到舞蹈节目为事件A B.(1)从6个节目中不放回地依次抽取2个的事件数为n(Ω)=A26=30,根据分步计数原理n(A)=A14A15=20,于是P(A)=n(A)n(Ω)=2030=23.(2)因为n(AB)=A24=12,于是P(AB)=n(AB)n(Ω)=1230=25.(3)法一:由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P(B|A)=P(AB)P(A)=2523=35.法二:因为n(AB)=12,n(A)=20,所以P(B|A)=n(AB)n(A)=1220=35.1.本题第(3)问给出了两种求条件概率的方法,法一为定义法,法二利用基本事件个数直接作商,是一种重要的求条件概率的方法.2.计算条件概率的方法(1)在缩小后的样本空间ΩA中计算事件B发生的概率,即P(B|A).(2)在原样本空间Ω中,先计算P(AB),P(A),再利用公式P(B|A)=P(AB) P(A)计算求得P(B|A).(3)条件概率的算法:已知事件A发生,在此条件下事件B发生,即事件AB 发生,要求P(B|A),相当于把A看作新的基本事件空间计算事件AB发生的概率,即P(B|A)=n(AB)n(A)=n(AB)n(Ω)n(A)n(Ω)=P(AB)P(A).[再练一题]2.盒内装有16个球,其中6个是玻璃球,10个是木质球.玻璃球中有2个是红色的,4个是蓝色的;木质球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是玻璃球的概率是多少?【解】由题意得球的分布如下:玻璃木质总计红23 5蓝4711总计61016设A={取得蓝球}则P(A)=1116,P(AB)=416=14.∴P(B|A)=P(AB)P(A)=141116=411.[探究共研型]利用条件概率的性质求概率探究1掷一枚质地均匀的骰子,有多少个基本事件?它们之间有什么关系?随机事件出现“大于4的点”包含哪些基本事件?【提示】掷一枚质地均匀的骰子,可能出现的基本事件有“1点”“2点”“3点”“4点”“5点”“6点”,共6个,它们彼此互斥.“大于4的点”包含“5点”“6点”两个基本事件.探究2“先后抛出两枚质地均匀的骰子”试验中,已知第一枚出现4点,则第二枚出现“大于4”的事件,包含哪些基本事件?【提示】“第一枚4点,第二枚5点”“第一枚4点,第二枚6点”.探究3先后抛出两枚质地均匀的骰子,已知第一枚出现4点,如何利用条件概率的性质求第二枚出现“大于4点”的概率?【提示】设第一枚出现4点为事件A,第二枚出现5点为事件B,第二枚出现6点为事件C.则所求事件为B∪C|A.∴P(B∪C|A)=P(B|A)+P(C|A)=16+16=13.将外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则试验成功.求试验成功的概率.【精彩点拨】设出基本事件,求出相应的概率,再用基本事件表示出“试验成功”这件事,求出其概率.【自主解答】设A={从第一个盒子中取得标有字母A的球},B={从第一个盒子中取得标有字母B的球},R={第二次取出的球是红球},W={第二次取出的球是白球},则容易求得P(A)=710,P(B)=310,P(R|A)=12,P(W|A)=12,P(R|B)=45,P(W|B)=15.事件“试验成功”表示为RA∪RB,又事件RA与事件RB互斥,所以由概率的加法公式得P(RA∪RB)=P(RA)+P(RB)=P(R|A)·P(A)+P(R|B)·P(B)=1 2×710+45×310=59100.条件概率的解题策略分解计算,代入求值:为了求比较复杂事件的概率,一般先把它分解成两个(或若干个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用加法公式即得所求的复杂事件的概率.[再练一题]3.已知男人中有5%患色盲,女人中有0.25%患色盲,从100个男人和100个女人中任选一人.(1)求此人患色盲的概率;(2)如果此人是色盲,求此人是男人的概率.【解】设“任选一人是男人”为事件A,“任选一人是女人”为事件B,“任选一人是色盲”为事件C.(1)此人患色盲的概率P(C)=P(A∩C)+P(B∩C)=P(A)P(C|A)+P(B)P(C|B)=5100×100200+25100×100200=21800.(2)P(A|C)=P(AC)P(C)=520021800=2021.[构建·体系]1.已知P(B|A)=13,P(A)=25,则P(AB)等于()A.56 B.910 C.215 D.115【解析】由P(B|A)=P(AB)P(A),得P(AB)=P(B|A)·P(A)=13×25=215.【答案】 C2.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是()A.14 B.13 C.12D.1【解析】因为第一名同学没有抽到中奖券,所以问题变为3张奖券,1张能中奖,最后一名同学抽到中奖券的概率,显然是1 3.【答案】 B3.把一枚硬币投掷两次,事件A={第一次出现正面},B={第二次出现正面},则P(B|A)=________.【解析】∵P(AB)=14,P(A)=12,∴P(B|A)=12.【答案】1 24.抛掷骰子2次,每次结果用(x1,x2)表示,其中x1,x2分别表示第一次、二次骰子的点数.若设A={(x1,x2)|x1+x2=10},B={(x1,x2)|x1>x2}.则P(B|A)=________. 【导学号:97270037】【解析】∵P(A)=336=112,P(AB)=136,∴P(B|A)=P(AB)P(A)=136112=13.【答案】135.一个口袋内装有2个白球和2个黑球,那么(1)先摸出1个白球不放回,再摸出1个白球的概率是多少?(2)先摸出1个白球后放回,再摸出1个白球的概率是多少?【解】(1)设“先摸出1个白球不放回”为事件A,“再摸出1个白球”为事件B,则“先后两次摸出白球”为事件AB,“先摸一球不放回,再摸一球”共有4×3种结果,所以P(A)=12,P(AB)=2×14×3=16,所以P(B|A)=1612=13.所以先摸出1个白球不放回,再摸出1个白球的概率为13.(2)设“先摸出1个白球放回”为事件A1,“再摸出1个白球”为事件B1,“两次都摸出白球”为事件A1B1,P(A1)=12,P(A1B1)=2×24×4=14,所以P(B1|A1)=P(A1B1)P(A1)=1412=12.所以先摸出1个白球后放回,再摸出1个白球的概率为12.我还有这些不足:(1)(2)我的课下提升方案:(1)(2)学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=()A.18 B.14C.25 D.12【解析】∵P(A)=C22+C23C25=410,P(AB)=C22C25=110,∴P(B|A)=P(AB)P(A)=14.【答案】 B2.下列说法正确的是()A.P(B|A)<P(AB) B.P(B|A)=P(B)P(A)是可能的C.0<P(B|A)<1 D.P(A|A)=0【解析】由条件概率公式P(B|A)=P(AB)P(A)及0≤P(A)≤1知P(B|A)≥P(AB),故A选项错误;当事件A包含事件B时,有P(AB)=P(B),此时P(B|A)=P(B) P(A),故B选项正确,由于0≤P(B|A)≤1,P(A|A)=1,故C,D选项错误.故选B.【答案】 B3.(2014·全国卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【解析】已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P=0.60.75=0.8.【答案】 A4.(2016·泉州期末)从1,2,3,4,5中任取两个不同的数,事件A为“取到的两个数之和为偶数”,事件B为“取到的两个数均为偶数”,则P(B|A)等于()A.18 B.14 C.25 D.12【解析】法一:P(A)=C23+C22C25=25,P(AB)=C22C25=110,P(B|A)=P(AB)P(A)=14.法二:事件A包含的基本事件数为C23+C22=4,在A发生的条件下事件B包含的基本事件为C22=1,因此P(B|A)=1 4.【答案】 B5.抛掷两枚骰子,则在已知它们点数不同的情况下,至少有一枚出现6点的概率是()A.13 B.118 C.16 D.19【解析】设“至少有一枚出现6点”为事件A,“两枚骰子的点数不同”为事件B,则n(B)=6×5=30,n(AB)=10,所以P(A|B)=n(AB)n(B)=1030=13.【答案】 A二、填空题6.已知P(A)=0.2,P(B)=0.18,P(AB)=0.12,则P(A|B)=________,P(B|A)=________.【解析】P(A|B)=P(AB)P(B)=0.120.18=23;P(B|A)=P(AB)P(A)=0.120.2=35.【答案】23357.设A,B为两个事件,若事件A和B同时发生的概率为310,在事件A发生的条件下,事件B发生的概率为12,则事件A发生的概率为________. 【导学号:97270038】【解析】由题意知,P(AB)=310,P(B|A)=12.由P(B|A)=P(AB)P(A),得P(A)=P(AB)P(B|A)=35.【答案】3 58.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率是________.【解析】设事件A为“其中一瓶是蓝色”,事件B为“另一瓶是红色”,事件C为“另一瓶是黑色”,事件D为“另一瓶是红色或黑色”,则D=B∪C,且B与C互斥,又P(A)=C12C13+C22C25=710,P(AB)=C12·C11C25=15,P(AC)=C12C12C25=25,故P(D|A)=P(B∪C|A) =P(B|A)+P(C|A)=P(AB)P(A)+P(AC)P(A)=67.【答案】6 7三、解答题9.甲、乙两个袋子中,各放有大小、形状和个数相同的小球若干.每个袋子中标号为0的小球为1个,标号为1的2个,标号为2的n个.从一个袋子中任取两个球,取到的标号都是2的概率是1 10.(1)求n的值;(2)从甲袋中任取两个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率.【解】(1)由题意得:C2nC2n+3=n(n-1)(n+3)(n+2)=110,解得n=2.(2)记“其中一个标号是1”为事件A ,“另一个标号是1”为事件B ,所以P (B |A )=n (AB )n (A )=C 22C 25-C 23=17. 10.任意向x 轴上(0,1)这一区间内掷一个点,问: (1)该点落在区间⎝ ⎛⎭⎪⎫0,13内的概率是多少?(2)在(1)的条件下,求该点落在⎝ ⎛⎭⎪⎫15,1内的概率.【解】 由题意知,任意向(0,1)这一区间内掷一点,该点落在(0,1)内哪个位置是等可能的,令A =⎩⎨⎧⎭⎬⎫x |0<x <13,由几何概率的计算公式可知. (1)P (A )=131=13. (2)令B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪15<x <1,则AB =⎩⎨⎧⎭⎬⎫x |15<x <13,P (AB )=13-151=215.故在A 的条件下B 发生的概率为 P (B |A )=P (AB )P (A )=21513=25.[能力提升]1.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是( )A.14B.23C.12D.13【解析】 一个家庭中有两个小孩只有4种可能:(男,男),(男,女),(女,男),(女,女).记事件A 为“其中一个是女孩”,事件B 为“另一个是女孩”,则A ={(男,女),(女,男),(女,女)},B ={(男,女),(女,男),(女,女)},AB ={(女,女)}.于是可知P (A )=34,P (AB )=14.问题是求在事件A 发生的情况下,事件B 发生的概率,即求P(B|A),由条件概率公式,得P(B|A )=1434=13.【答案】 D2.(2016·开封高二检测)将3颗骰子各掷一次,记事件A表示“三个点数都不相同”,事件B表示“至少出现一个3点”,则概率P(A|B)等于()A.91216 B.518 C.6091 D.12【解析】事件B发生的基本事件个数是n(B)=6×6×6-5×5×5=91,事件A,B同时发生的基本事件个数为n(AB)=3×5×4=60.所以P(A|B)=n(AB)n(B)=6091.【答案】 C3.袋中有6个黄色的乒乓球,4个白色的乒乓球,做不放回抽样,每次抽取一球,取两次,则第二次才能取到黄球的概率为________.【解析】记“第一次取到白球”为事件A,“第二次取到黄球”为事件B,“第二次才取到黄球”为事件C,所以P(C)=P(AB)=P(A)P(B|A)=410×69=415.【答案】4 154.如图2-2-1,三行三列的方阵有9个数a ij(i=1,2,3,j=1,2,3),从中任取三个数,已知取到a22的条件下,求至少有两个数位于同行或同列的概率.()a11a12a13a21a22a23a31a32a33图2-2-1【解】事件A={任取的三个数中有a22},事件B={三个数至少有两个数位于同行或同列},则B={三个数互不同行且不同列},依题意得n(A)=C28=28,n(A B)=2,故P(B|A)=n(A B)n(A)=228=114,则P(B|A)=1-P(B|A)=1-114=1314.即已知取到a22的条件下,至少有两个数位13 14.于同行或同列的概率为。

人教B版选修2-3高中数学2.2《条件概率》说课稿课件

人教B版选修2-3高中数学2.2《条件概率》说课稿课件

五.教学过程分析:
3.理解概念 2.创设情境 1.复习提问
(1分钟左右) (10分钟左右)
6.巩固练习 5.应用举例 4.公式总结
(10分钟左右)
(10分钟左右)
(5分钟左右)
7.课堂小结 8.布置作业
(3分钟左右)
(三)理解概念: 目的:准确判断概率的类型对选择正确的概率公式起着决定性 的作用,而能否准确判断概率的类型完全取决于定义的准确理 解。 阅读教材,具体了解概念
P( A B) P( A) P( B | A) 一般乘法公式 如:
P( A1 A2 An ) P( A1 ) P( A2 | A1) P( A3 | A1 A2 ) P( An | A1 A2 An 1 )
、全概率公式,贝叶斯公式等等
2.重点和难点
(10分钟左右)
(10分钟左右)
(5分钟左右)
7.课堂小结 8.布置作业
(3分钟左右)
(一)复习提问:目的是为新知识的学习扫清障碍。
1.古典概型的特征: 有限性、等可能性 2.古典概型中P(A)=
事 件A包 含 的 基 本 事 件 数 试验的基本事件总数
五.教学过程分析:
3.理解全面掌握概念 充分表达观点,生生互助完善
五.教学过程分析:
3.理解概念 2.创设情境 1.复习提问
(1分钟左右) (10分钟左右)
6.巩固练习 5.应用举例 4.公式总结
(10分钟左右)
(10分钟左右)
(5分钟左右)
7.课堂小结 8.布置作业
(3分钟左右)
(四)公式总结:目的是将解题过程上升为一般情况。
(1分钟左右) (10分钟左右)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教B版选修2-3高中数学2.2.1《条件概率》w o r d导学案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
§2.2.1条件概率
学习目标
1.通过对具体情景的分析,了解条件概率的定义。

2.掌握一些简单的条件概率的计算。

3.通过对实例的分析,会进行简单的应用。

学习过程
【任务一】问题分析
问题1:抛掷红、蓝两颗骰子,设事件=
A“蓝色骰子的点数为3或6”,事件
B
=
“两颗骰子的点数之和大于8”,求:
(1)事件A发生的概率;
(2)事件B发生的概率;
(3)已知事件A发生的情况下,事件再B发生的概率。

问题2:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,思考:(1)三名同学中奖的概率各是多少是否相等
(2)若已知第一名同学没有中奖,那么第二名同学中奖的概率各是多少?
(3)在(1)和(2)中第二名同学中奖的概率是否相等为什么
【任务二】概念理解
1.条件概率:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,记作“)(A B P ”。

2.由事件A 和B 所构成的事件D ,称为事件A 和B 的交(或积),记作
3.条件概率计算公式:
)(A B P 数发生的条件下基本事件在包含的基本事件数发生的条件下在A B A =包含的基本事件数包含的基本事件数A B A =总数包含的基本事件数总数包含的基本事件数A B A =)
()(A P B A P = )0)((>A P 【任务三】典型例题分析
例1:抛掷一颗骰子,观察出现的点数
=A {出现的点数是奇数}=}531{,,
,=B {出现的点数不超过3}=}3,2,1{,若已知出现的点数不超过3,求出现的点数是奇数的概率。

例2:在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求:
(l )第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.
【任务四】课后作业
1.从一副不含大小王的52张扑克牌中不放回的抽取两次,每次抽一张,已知第一次抽到A,求第二次也抽到A的概率。

2.设 100 件产品中有 70 件一等品,25 件二等品,规定一、二等品为合格品.从中任取1 件,求 (1) 取得一等品的概率;(2) 已知取得的是合格品,求它是一等品的概率。

3.在一个盒子中有大小一样的20个球,其中10个红球,10个白球。

求第1个人摸出1个红球,紧接着第2个人摸出1个白球的概率。

相关文档
最新文档