关于全站仪放样精度的分析
全站仪施工放样测量的精度探讨

上式的最后两项的平方根均小于 10 - 3 mm ,故可忽略
不计 。则 :
m
2 h
=
m
2 s
sin2α
+
S2
cos2α
mα
ρ
+
S2 2R
2
cos4αm
2 K
+
m
2 i
+
m
2 l
(6)
放样高程点时 ,一般能够使 α角较小 ,测距误差
m s 对测定高差的影响与竖直角 α的大小有关 ,但这
种影响很小 。采用精确对中 ,仪器高和棱镜高的测量
ρ
2
+
m
2 sΒιβλιοθήκη (1)其中 ,测角误差 mα 包含了仪器整平对中误差 、 目标偏心误差 、照准误差 、仪器本身的测量误差以及
外界影响产生的误差等 。假定所使用的全站仪的测
角标称精度为 2″,考虑到以上诸多误差因素 ,参照导 线测量的主要技术要求 ,取一测回测角中误差 mα =
±8″。由于实际操作中 ,角 α只测半个测回 ,故取 :
2) 在 A P′方向上放样长度 S ,确定出要放样的点
P的位置 。
放样点 P的点位误差 m 由测角误差 mα 引起的
横向误差 m u 和测距误差 m s 引起的纵向误差 m t 以及 P点标定误差 、已知点 A 的点位误差共同构成 。如果
忽略后两项误差影响 ,则 :
m2
=
m
2 u
+
m
2 t
=
smα
±2″仪器 ,方向归零差不得超过 ±12″。
影响大 ;丘陵 、山地难以实施等 。采用全站仪三角高
7) 实际操作中 ,为控制三角高程精度 ,一般放样 程放样高程点 ,可以达到较高的放样精度 。
全站仪坐标放样注意事项

全站仪坐标放样注意事项
1. 嘿,一定要检查全站仪的设置啊!就像你出门得先确认带没带钥匙一样,要是全站仪的设置错了,那后面的工作不就全乱套啦!比如上次我和小李一起干活,就差点因为这个出大错呢!
2. 注意棱镜常数要设置对呀!这可不是能随便乱来的,不然就像跑步比赛你跑错了赛道,能到达正确终点吗?我记得有一回就是因为这个常量没设置对,浪费了好多时间重新来过。
3. 测站点坐标可千万不能弄错哟!这就好比你要去一个地方,地址都搞错了,还能找对地方吗?上次我们组的小王就是因为这个弄错了,被领导狠狠批了一顿!
4. 放样的时候角度得看准喽!就像射箭得瞄准靶子一样,稍有偏差那可就谬之千里啦!那次我自己放的时候就不小心偏了一点点,还好及时发现修正了。
5. 别忘了随时复核啊!这多重要呀,就像走楼梯得时常回头看看走得对不对。
有一次我就偷懒没复核,结果差点出大问题!
6. 天气不好的时候更要小心啊!大风大雨的,全站仪也会受影响呀,就像人在恶劣环境下也会不舒服一样。
记得那次下暴雨的时候,我们硬是等雨小了才继续。
7. 仪器要爱护好呀!这可是我们的宝贝,要是弄坏了可不好办了。
就像你爱惜你的手机一样,得好好对待全站仪。
我可是每次用完都小心翼翼地放好呢!
总之,全站仪坐标放样一定要认真仔细,每个环节都不能马虎!。
全站仪放样精度探讨

(1)
而 测 角 a 的 误 差 m a包 含 了 仪 器 整 平 对 中 误 差 、目 标 偏 心 误 差 、照 准 误 差 、仪 器 本 身 的 测 角 精 度 以 及 外 界 的 影 响 等 。假 定 所 使用的全站仪的标称精度为2″,考虑以上 诸多误差因素,参照导线测量的主要技术 要 求 , 取 一 测 回 测 角 中 误 差 m a= 8 ″ 。由 于 实 际操作过程中,a角只测半个测回,故取ma =√2 ×8"=11"。在 高 速 铁 路 桥 梁 基 础 施 工 中,使用的全站仪测距标称精度为± ( 2 m m + 2 p p m·D ) , 取 放 样 的 平 均 距 离 为 2 0 0 m,测站上控制放样距离的(读数)误差为 2.5mm,则:
(6)每测站结束时,应检查后视方向归 零差,不得超过土12"(2"全站仪)。
公路沿线布设的导线控点间距一般在 500m左右,离路线的距离50~150m,那么, 要是在每个导线点上都设站,放样距离最 大 也 不 会 超 过 3 0 0 m 。这 样 , 不 仅 充 分 发 挥 了 导线点的控制作用,更重要的是使中线点 位 精 度 得 到 了 保 证 。路 基 施 工 放 样 , 放 样 距 离可控制在500m以内,精度亦可适当放低; 构造物和路面施工放样,适当控制放样距 离不超过300m是必要的,精度亦需严加控 制 。如 果 放 样 点 作 为 加 密 中 桩 的 控 制 桩 , 则 必须严格控制放样距离,确保放样精度。
广大师生征集优秀稿件。
投稿须知 1.稿件应具有科学性、先进性和实用性,论点鲜明、论据充分、数据真实、逻辑严谨、文字准确、语句通顺。 2.文章以2200~2700字为宜;文章标题字数在20字以内;摘要、关键词、参考文献(按引用的先后顺序列于文末)等要素齐全。 3.计量单位以国家法定计量单位为准;统计学符号须按国家标准《统计学名词及符号》的规定书写;标点符号使用准确;表格设计合
全站仪精度分析资料全

全站仪精度分析资料全全站仪数字测图在城市测量中的误差估计随着现代高新技术的发展与运用,促使测绘工作正从传统的测绘技术手段向现代数字测绘过渡,全站仪在现代测绘工作中的应用比例也越来越大。
因此,有必要对全站仪在使用过程中的误差产生及大小做分析。
全站仪是全站型电子速测仪的简称,它集电子经纬仪、光电测距仪和微电脑处理器于一体,因此,它也兼具经纬仪的测角误差和光电测距仪的测距误差性质。
本文分别对这两项误差在城市测量中的大小进行分析,然后综合两方面的影响对地面点的点位误差进行分析与估算。
最后单独分析全站仪的高程误差。
、全站仪测图点位中误差分析1、全站仪测角误差分析检验合格的全站仪水平角观测的误差来源主要有:①仪器本身的误差(系统误差)。
这种误差一般可采用适当的观测方法来消除或减低其影响,但在全站仪测图中对角度的观测都是半测回,因此,这里还是要考虑其对测角精度的影响。
分析仪器本身误差的主要依据是其厂家对仪器的标称精度,即野外一测回方向中误差M标,由误差传播定律知,野外一测回测角中误差M i测= M标,野外半测回测角中误差M半测= M i测=2M标。
②仪器对中误差对水平角精度的影响,仪器对中误差对水平角精度的影响在《测量学》教材中有很详细的分析其公式为M中=p X S AB/S 1S2其中e为偏心距,熟练的仪器操作人员在工作中的对中偏心距一般不会超过3mm,这里取e=3mm。
S i在这里取全站仪测图时的设站点(图根点)至后视方向是(另一通视图根点)之间的距离,S2取全站仪设站点至待测地面点之间的规范限制的最大距离。
由公式知,对中误差对水平角精度的影响与两目标之间的距离S AB成正比,即水平角在180时影响最大,在本文讨论中只考虑其最大影响。
③目标偏心误差对水平角测角的影响,《测量学》教材推导出的化式为m偏=p /2 XV(e i/S i)2+(e2/S 2)2,S i、S2的取法与对中误差中的取法相同,e i取仪器设站时照准后视方向的误差,此项误差一般不会超过5mm,取e i=5mm ,e2取全站仪在测图中的照准待测点的偏差。
全站仪在工程测量中的精度和可靠性分析

全站仪在工程测量中的精度和可靠性分析随着工程测量精度的要求逐渐提高,精密全站仪在施工工程测量中广泛应用于平面和高程测量。
本文以Leica TS30全站仪为例,通过实验验证了精密全站仪在工程测量定位的精度,证明了通过采取一定的观测措施精密全站仪可以达到亚毫米级的精度。
标签:工程测量测角误差测距误差全站仪1引言随着工程技术的发展,各种大型工程建构筑物的出现,对测量的精度要求越来越高,常规的光学仪器很难满足高精度工程的施工要求。
因此各种高精度的仪器应运而生,它具有常规测量仪器无法比拟的优点,避免了人工操作、记录等过程中差错率较高的缺陷。
对精密全站仪进行性能测试,研究影响其精度的各种因素,是提高精密全站仪测量精度的前提。
2全站仪测量误差分析全站仪测量的主要要素有方位角、垂直角、水平距离等,因此测角误差和测距误差是全站仪测量定位的主要误差来源,此外,受外界环境因素的影响,光线、温度、测站稳定性、仪器对中误差、照准误差以及观测人员的专业素质等,对全站仪的测量定位结果也会带来一定影响,下面针对各种观测因素对观测结果的影响进行分析。
2.1测角误差的影响全站仪的测角误差主要由仪器自身测量误差和照准误差引起。
当进行高精度观测时,可以采用正倒镜观测,进一步提高测角精度。
测量工作中测距误差忽略不计,我们可以通过一定的公式计算测角误差对测量定位结果的影响,假定观测距离固定为20m,我们可以通过公式计算不同测角误差引起的测量定位误差,详细信息如表1。
从表中可以看出,测角误差对测量结果的影响是比较显著的,尤其是在长距离测量定位中,测角误差对测量结果的影响显著增大,因此在精密工程测量和变形监测中,对于长边的观测,一定要想办法减小测角误差。
2.2测距误差的影响全站仪的测距误差包括固定误差和比例误差。
仪器测距的固定误差包括测距周期误差、加乘常数误差等。
测距周期误差和加乘常数误差具有相对稳定性和重复性,采取一定的观测方法可以相互抵消可不予考虑。
全站仪配合RTK放样方法应用及精度分析

全站仪配合RTK放样方法应用及精度分析测绘院张雷李永亮摘要:RTK技术进行工程放样,速度快、精度高,但是应用范围受自然条件限制。
全站仪是自动化程度很高的野外测量仪器,精度高、应用广,但是受通视条件、测量距离等因素限制。
若采用RTK与全站仪联合作业,使两者的优势互补,可大幅度提高放样速度。
经过理论推导,得到此方法的精度计算公式,并经实验证明该方法满足放样的精度要求。
关键词:放样全站仪RTK精度分析全站仪因其能够方便精确地测量出角度(水平角和垂直角)、距离(平距和斜距)以及点的平面坐标和高程,在施工放样测量中已经被广泛应用。
但是如果施工现场环境复杂不能通视,地面起伏太大,附近没有或只有一个控制点时,就需要建立施工控制网。
建网程序繁琐,且速度较慢,放样一个设计点往往需要来回移动目标,要2至3人同时相互配合,大大降低了劳动效率。
RTK技术的出现使施工放样有了突破性的发展,不但克服了传统放样法和坐标放样法的缺点,而且具有观测时间短,精度高、无须通视、现场给出精确坐标等优点,特别适合道路等大批量设计点位的放样工作,尤其是道路边桩、征地范围线等放样。
不需沿途布设图根控制点,从而减少了施工控制网的布设密度,节约经费,节省时间,提高了工作效率。
然而,在对天通视困难的特殊地区,RTK失锁较严重,放样效果往往不理想。
因此,作业时一般用RTK施测较为宽阔地带的放样点,而在RTK失锁较严重和放样精度效果不理想区,用全站仪施测放样点。
这样既避免了RTK测量所发生的特殊地区精度不能满足要求的情况,又避免了常规的全站仪放样的低效,使得两种仪器在实际测量中相得益彰,有效地提高了作业效率。
1全站仪配合RTK放样的方法如图1所示,放样点C位于对天通视困难的区域,使用RTK放样精度达不到要求,A、B两点位于宽阔地带,是由RTK实施放样的点位,精度可以达到要求。
然而对于C点,卫星信号严重失锁,无法进行RTK放样,所以此时全站仪测量的精度高和稳定性好的优点就得以展示。
全站仪点放样实验报告(5篇)

全站仪点放样实验报告(5篇)学生现在学习的内容是为以后的进展奠定根底,是丰富自己的文化学问,是自己能够成为一个对社会,对国家有用的人才,但是现在我们所学的学问大多只是理论上的东西,为此我们应当将理论和实际联系起来,积极参与实际工程,这次为期20天的实习教会了我们如何将自己所学的学问应用于实际工程工程之中,懂得了解决一些实际问题的k“ href=“/Special/xuexifangfa/“ target=“_blank“方法,对增加自己的生活和工作经受有很大益。
同时也可以说这次工作是对同学的一次考念,在实习过程中有的同学虽然生病但是依旧坚持工作,可以说着种精神是相当名贵的。
通过这次野外工程实习,加强了自身把握数字测图外业数据采集方法与内业作图方法,更加深刻的理解了数字测图在野外的运用,数字测图带来的不但是数据采集速度的提高,工作效率的增加,更加减轻了工作人员的工作强度;明白了在数据采集过程中应当留意的问题,使自己在课堂上学到的学问得到了在实际中的运首先,通过实习,让我发觉我在平常学习中存在的许多学问漏洞。
课本上介绍仪器使用的学问都比拟抽象,到了真正实践中的时候,我们未能很好把书本学问应用到实践中,还需要教师再次进展指导。
在近距离的接触这些实物,能我更坚固的把握相关的学问点;也能令我提高对仪器的操作的娴熟、精准程度(比方能够快速对中整平)。
全站仪点放样试验报告二首先感谢学校和教师给以了我这次参与工程实践的时机,在这次20多天的实习过程中,经过这次实习,无论在心理上还是在生理上都得到了很好的熬炼,全站仪测量实习报告。
学生现在学习的内容是为以后的进展奠定根底,是丰富自己的文化学问,是自己能够成为一个对社会,对国家有用的人才,但是现在我们所学的学问大多只是理论上的东西,为此我们应当将理论和实际联系起来,积极参与实际工程,这次为期20天的实习教会了我们如何将自己所学的学问应用于实际工程工程之中,懂得了解决一些实际问题的方法,对增加自己的生活和工作经受有很大好处,实习报告《全站仪测量实习报告》。
全站仪放样精度探讨

式中 :
一
常数 :
户关 注 的焦点 , 特别 是高 速铁 路 的建设 , 精 其
度要 求高 ,有 必要对 全站 仪测 设 过程精 度 进
行探 讨 。
X一 直接 观测 值 。 其 中误 差 为 埘 ,现在 求 观测 值 函数
的中误差 mz 。 计算 得 :
差 因素 , 照导 线测量 的主要 技术 要求 , 参 取一
测 回测 角 中误 差 ma8 。 由于 实 际操作 过程 =
中 , 角 只测 半个 测 回 ,故 取 / 、 × ” a / = / 8= 7 1” 1。在高 速铁路 桥梁 基础 施工 中 . 使用 的全 站 仪 测 距 标称 精 度 为 + 2 (mm+ p m ・ , 2 p D) 取 放 样 的平 均距 离 为 2 0 0 m,测 站上 控 制 放样
O. Xn
上式 是误 差传播 定律 的一般 形式 ,其余 ( ) ( ) ( ) 都 可看 做是 ( ) 的 的特例 。 1 、2 、 3 式 4式
4 极点 坐标 放样 中线 的精 度估 算
度 合 不 大 ±箫 2 =0假 闭 差 应 于 ×P 3( × ±,
定放 样点 间距 为 2 0 。 0 m)
53m 。. =m 5
将 m / 人 式 ( ) m = 8 、 J代 T 5得 ± mm, 2 取
倍 的 中误 差作 为限差 , 对放样 点位 进行 检查 。 直 线段 最大 偏差 不 应大 于 ± .c 曲线 段角 15 m:
蔷 埘 蔷 埘+ 2. 2一
() 4
( L )・ z埘
・
测 量技术 ・
全 站 仪放 样 精 度探 讨
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于全站仪放样精度的分析
摘要:全站仪广泛用于工程测量实践中.根据全站仪极坐标法放样的原理,对其精度进行了分析,阐述了放样过程中产生误差的因素及注意事项。
关键词:全站仪放样误差精度
目前,随着科学技术的发展,全站仪已经相当普及而且不断向智能化方向发展,全站仪以其高度自动化和准确快捷的定位功能在目前工程测量中广泛应用。
许多新技术运用到全站仪的制造和使用当中,如无反射棱镜测距、目标自动识别与瞄准、动态目标自动跟踪、无线遥控、用户编程、联机控制等。
为了使全站仪在实际生产中更好地运用,现结合工程测量理论,对全站仪在施工测量放样中的误差及其注意事项进行探讨。
1仪器精度的选择
为了能够满足施工中测量精度,应该严格按照有关规范和设计技术文件规定的测角和测距精度要求匹配的原则进行仪器选用:
式中mβ、mγ为相应等级控制网的测角中误差、方向中误差(″);ms为测距中误差m;S为测距边长m;ρ为常数,ρ=206265″。
例如:使用的测距仪标称精度为±(5mm+5×10-6S),平均测距长度S为按500m计,按照精度匹配原则有:mγ=ms/S×ρ=5/500000×206265=2″,因此,当使用的测距仪标称精度为±(5mm+5×10-6S)时,应选用测角精度为2″级经纬仪。
2全站仪在施工放样中坐标点的精度估算
全站仪极坐标法放样点点位中误差MP由测距边边长S(m)、测距中误差ms(m)、水平角中误差mβ(″)和常数ρ=206265″共同构成,其精度估算公式为:
(1)
而水平角中误差mβ(″)包含了仪器整平对中误差、目标偏心误差、照准误差、仪器本身的测角精度以及外界的影响等。
由式(1)可得(2)
顾及
因此(3)
式(3)表明,对一定的仪器设备,采用相同的方法放样时,误差相等的点分布在一个圆周上圆心为测站A。
因此对每一个放样控制点A,可以根据点位放样精度m计算圆半径S,在半径范
围内的放样点都可由此控制点放样。
由式(1)可看出,放样点位误差中,测距误差较小,主要是测角误差。
因此,操作中应时注意提高测角精度。
3全站仪三角高程的精度估算
设仪器高为i,棱镜高度为l,测距仪测得两点间的斜距为S,竖直角α,则AB两点的高差为:
hAB=Ssinα+i–l(4)
式(4)是假设的水平面来起算的,实际上,高程的起算面是平均海水面。
因此,在较长距离测量时要考虑地球曲率和大气折光对高差的影响,在高差计算中加两差改正,即:
(5)
式中R为地球曲率半径,取6371km,h球、h气为大气折光系数。
一般来说,两差改正很小,当两点间的距离小于400m时,可以不考虑。
由式(5)可知:
(6)
由于α角一般比较大,因此,测距误差ms对测定高差的影响不是主要的,若采用对中杆,仪器和棱镜高的测量误差mi,ml大约为1mm,竖直角的观测误差mα对高差测定的影响与距离成正比,大气折光系数误差mk与距离的平方成正比,这正是影响高差测定精度的两项主要误差。
因此,除了要保证一定的竖直角观测精度外,更要采取克服大气折光影响的措施,并限制一次传递高程的距离。
如图1所示,三角高程测量的传统方法为:设A,B为地面上高度不同的两点。
已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA+HAB 得到B点的高程HB。
图1传统三角高程测量原理
图中D为A、B两点间的水平距离;а为在A点观测B点时的垂直角;i为测站点的仪器高;t为棱镜高HA为A点高程,HB为B点高程;V为全站仪望远镜和棱镜之间的高差(V=Dtanа)。
首先假设A,B两点相距不太远,不考虑大气折光的影响。
为了确定高差HAB,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B两点间的水平距离为D,
则HAB=V+i-t。
故HB=HA+Dtanа+i-t(7)
三角高程测量的新方法为:假设B点的高程已知,A点的高程为未知,这里要通过全站仪测定其它待测点的高程。
首先由
(7)式可知:
HA=HB-(Dtanа+i-t)(8)
上式除了Dtanа即V的值可以用仪器直接测出外,i,t都是未知的。
但有一点可以确定即仪器一旦置好,i值也将随之不变。
同时选取跟踪杆作为反射棱镜,假定t值也固定不变。
从(8)可知:
HA+i-t=HB-Dtanа=P(9)
由(9)可知,基于上面的假设,HA+i-t在任一测站上也是固定不变的,而且可以计算出它的值P。
具体操作过程如下:
(1)仪器任一置点,但所选点位要求能和已知高程点通视。
(2)用仪器照准已知高程点,测出V的值,并算出P的值(此时与仪器高程测定有关常数如测站点高程,仪器高,棱镜高均为任一值。
施测前不必设定)。
(3)将仪器测站点高程重新设定为P,仪器高和棱镜高设为0即可。
(4)照准待测点测出其高程。
下面从理论上分析一下这种方法是否正确。
结合式(7),(9),
HB′=P+D′tanа′(10)
式中HB′为待测点的高程;P为测站中设定的测站点高程;D′为测站点到待测点的水平距离;а′为测站点到待测点的观测垂直角。
从(10)可知,不同待测点的高程随着测站点到其的水平距离或观测垂直角的变化而改变。
将(9)代入(10)可得:
HB′=HA+i-t+D′tanа′(11)
按三角高程测量原理可得:
HB′=P+D′tanа′+i′-t′(12)
将(9)代入(12)可得:
HB′=HA+i-t+D′tanа′+i′-t′(13)
这里i′,t′为0,所以:
HB′=HA+i-t+D′tanа′(14)
由(11),(14)可知,两种方法测出的待测点高程在理论上是一致的。
4测量操作注意事项
采用电磁波三角高程测量,应重点提高竖直角测量精度,尽量控制测距边长在规范规定的有效距离以内。
为提高放样精度,在操作中应注意如下事项:
(1)放样之前应对点位进行检查,检查点位位置是否正确,检查点位坐标资料是否正确,将实测的导线点距离和角度与计算值比较。
(2)仪器整平对中要仔细、认真,要用光学对点器对中,整平误差以长水准泡偏离不超过1格为限差。
(3)后视点和放样点立棱镜杆要平、稳、正,尽量使用三角架立棱镜,现在放样一般都用棱镜对中杆(强制对中杆),其上有圆水准器,照准目标测角时,尽量瞄准目标的下部。
(4)距离测量应加气象等改正,计算值应加高斯投影等改正,还要保证实测值与计算值之差在范围内;选择测距边时,应顾及所用测距仪的最佳测程,一般测线长度不得超过测距仪的有效测程。
在特别困难的地区,可按《国家三角测量和精密导线测量规范》的有关规定进行分段观测;测线应高出地面或远离障碍物,一等边为6m,二等边为2m;测线与35kV以上的高压输电线平行时,测线应远离高压输电线50m以外,测站不应设在有磁场影响的范围内。
(5)阳光对着镜头照射时,成像视差较大,要尽量调节物镜与目镜焦距使得视差较小,应尽量避免视线过低、视线跨塘和沿线地形严重不对称等情况;光电测距的最佳观测时间与大气稳定度、空气中的能见度、地形条件、地面覆盖物、气象因素等有关,一般最佳观测时间段为日落前2~0.5h,或日出后1~2.5h;在全阴天可放宽观测时间,一般连续观测时间上午不超过2h,下午不超过3h,在
气温突变及恶劣天气时,应停止观测。
(6)每测站结束时,应检查后视方向归零差,不得超过±12″(2″经纬仪)。
实际操作中,考虑同时控制三角高程精度,一般情况下放样距离控制在仪器的有效范围之内。
5结束语
在施工区域内要合理、均匀地进行控制点加密工作。
这样,不仅充分发挥了加密控制点的控制作用,更重要的是使放样点精度得到了保证。
一般点的放样,精度亦可适当放低;但涉及到结构控制点施工放样,应该适当控制放样距离,精度亦需加以控制。
如果放样点作为重要结构部件尺寸的放样点,则必须严格控制放样距离,确保放样精度。
参考文献:
[1]中华人民共和国行业标准《公路勘测规范》(编号JTJ061-99).
[2]陈永奇《工程测量学》,测绘出版社.。