二次函数复习课件.ppt
合集下载
二次函数图像与性质复习课件PPT课件一等奖新名师优质课获奖比赛公开课

方程的 方程 ax2+bx+c=0(a≠0)有两个相等的实数根;
关系 3.当 b2-4ac<0 时 抛物线与 x 轴___没__有_____交点,
方程 ax2+bx+c=0(a≠0)没有实数根.
中考解读
考点聚焦
中考探究
当堂检测
第12课时┃ 二次函数旳图象与性质
考点 5 二次函数 y=ax2+bx+c(a≠0)的图象特征与 a、b、 c 之间的关系
皖考解读
考点聚焦
皖考探究
当堂检测
第12课时┃ 二次函数旳图象与性质
解 可设所求二次函数的解析式为 y=a(x-1)2-1(a≠0), ∵抛物线过原点(0,0), ∴a(0-1)2-1=0,解得 a=1, ∴该函数解析式为 y=(x-1)2-1,即 y=x2-2x.
皖考解读
考点聚焦
皖考探究
当堂检测
第12课时┃ 二次函数旳图象与性质
二次函 待定系数法确定二次函数的解析式分三种情况:
数解析 1.已知抛物线上任意三个点的坐标时,选用一般形式;
式的 2.已知抛物线顶点坐标时,选用顶点式;
确定 3.已知抛物线与 x 轴两个交点的坐标时,选用交点式.
中考解读
考点聚焦
中考探究
当堂检测
第12课时┃ 二次函数旳图象与性质
考点4 二次函数与一元二次方程
数)的图象与 x 轴的一个交点为(1,0),则关于 x 的一元二次
方程 x2-3x+m=0 的两实数根是
(B )
A.x1=1,x2=-1 B.x1=1,x2=2
C.x1=1,x2=0 D.x1=1,x2=3
解 析 由于二次函数 y=x2-3x+m(m 为常数)的图 象与 x 轴的一个交点为(1,0),即 x=1 是一元二次方程 x2 -3x+m=0 的根,代入得 12-3+m=0,m=2,原方程 为 x2-3x+2=0,解得 x1=1,x2=2,故选 B.
二十二-二次函数复习课PPT课件

一般式: 解: 设所求的二次函数为 y=a(x+1)(x-1)
y=ax2+bx+c
由条件得:
y
两根式: y=a(x-x1)(x-x2)
点M( 0,1 )在抛物线上
所以:a(0+1)(0-1)=1
x o
顶点式: y=a(x-h)2+k
得: a=-1 故所求的抛物线解析式为 y=- (x+1)(x-1)
.
23
4.求抛物线解析式的三种方法
例题精讲
例1.已知一个二次函数的图象过点(-1,10)、
(1,4)、(2,7)三点,求这个函数的解析式?
一般式: 解: 设所求的二次函数为 y=ax2+bx+c
y=ax2+bx+c
两根式: y=a(x-x1)(x-x2)
由条件得: a-b+c=10 a+b+c=4 4a+2b+c=7
有两个相等的
解
x1=x2=
b 2a
没有实数根
O
x
19
基础练习:
1.不与x轴相交的抛物线是(D )
A y=2x2 – 3
B y= - 2 x2 + 3
C y= - x2 – 3x D y=-2(x+1)2 - 3
2.若抛物线y=ax2+bx+c,当 a>0,c<0时,图象与x
轴交点情况是( C )
(1)抛物线经过(2,0)(0,-2)(-1,0)三
点。
yx2 x2
(2)抛物线的顶点坐标是(6,-2),且与X轴
的一个交点的横坐标是8。
y1(x6 )221x26x 1 6
中考数学专题《二次函数》复习课件(共18张PPT)

(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
二次函数(复习课)课件

详细描述
伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。
伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。
二次函数复习课件PPT

个单位,再向 平移
个单位可
得到抛物线 y=3(x+2)2 -3.
16、将函数y=-3(x-1)2-1的图象 (1) 沿y轴翻折后得到的函数解析式_____. (2) 沿X轴翻折后得到的函数解析式_____. (3) 沿原点旋转180°后得到的函数解析式
_____. (4) 沿顶点旋转180°后得到的函数解析式
解: y ax2 bx c
a x2 b x c 提取二次项系数
a x2
a a
b x b 2 b 2 a 2a 2a
c a
配方:加上再减去一 次项系数绝对值一 半的平方
a
x
b 2a
2
4ac b2 4a2
整理:前三项化为平方形 式,后两项合并同类项
a x
y的 最值
增减性
在对称 在对称 轴左侧 轴右侧
y=ax2
a>0 向上 y轴
(0,0)
最小值 是0
y随x的增 y随x的增 大而减小 大而增大
a<0 向下
y轴
(0,0)
最大值 y随x的增 是0 大而增大
y随x的增 大而减小
y=ax2+c
a>0 向上 a<0 向下
y轴 y轴
(0,c)
最小值 是C
y随x的增 y随x的增 大而减小 大而增大
4a
➢当a>0时,抛物线的开口向上,顶点 是抛物线上的最低点;
➢当a<0时,抛物线的开口向下,顶点 是抛物线上的最高点.
二次函数关系式的常见形式:
一般式:y=ax2+bx+c 顶点式:y=a(x+m)2+k
交点式:y=a(x-x1)(x-x2)
确定二次函数的解析式时,应该根据 条件的特点,恰当地选用一种函数表达式.
二次函数图像和性质复习PPT课件

二次函数复习
.
1
1.二次函数的定义:
形如y=ax2+bx+c (a,b,c是常数, a≠0)的函数叫做二次函数
自变量x的取值范围是:任意实数
注意:当二次函数表示某个实际问题时,还必
须根据题意确定自变量的取值范围.
.
2
2.二次函数的表达式:
(1 )二次函数的一般形式:函数y=ax2+bx+c(a≠0)
解这个方程组得
a 1
b
4
c 3
∴这个函数的解析式是:y=x2-4x+3
.
10
练习:根据下列已知条件, 求二次函数的解析式:
(1)抛物线过点(0,2),(1,1),(3,5)
(2)抛物线顶点为M(-1,2)且过点N(2,1)
(3)抛物线过原点,且过点(3,-27)
(4)已知二次函数的图象经过点(1,0), (3,0),(0,6)求二次函数的解析式。
∴ PQ=CO=3, ∴ |y|=3,
-1 B0
∴ 3= -x2+2x+3, ∴x1=0,x2=2 。
P
3 Q Ax
∴p(2,3)
或-3= -x2+2x+3, x2_2x-6=0
x=1±√7,∴p(1+√7,-3),p. (1-√7 ,-3)
12
在对称轴右侧,y随x的增大而. 减小
y x
y x
4
1、下列函数中,是二次函数的是 ① ② ③ ⑦ .
① yx2 4x1 ② y 2x2
③ y1(x1)24
2
④ y 4 ⑤ ym2xnxp ⑥ y 3x
⑦
x
⑧
y 3(x2)x (1)
y(x1)2x2
.
1
1.二次函数的定义:
形如y=ax2+bx+c (a,b,c是常数, a≠0)的函数叫做二次函数
自变量x的取值范围是:任意实数
注意:当二次函数表示某个实际问题时,还必
须根据题意确定自变量的取值范围.
.
2
2.二次函数的表达式:
(1 )二次函数的一般形式:函数y=ax2+bx+c(a≠0)
解这个方程组得
a 1
b
4
c 3
∴这个函数的解析式是:y=x2-4x+3
.
10
练习:根据下列已知条件, 求二次函数的解析式:
(1)抛物线过点(0,2),(1,1),(3,5)
(2)抛物线顶点为M(-1,2)且过点N(2,1)
(3)抛物线过原点,且过点(3,-27)
(4)已知二次函数的图象经过点(1,0), (3,0),(0,6)求二次函数的解析式。
∴ PQ=CO=3, ∴ |y|=3,
-1 B0
∴ 3= -x2+2x+3, ∴x1=0,x2=2 。
P
3 Q Ax
∴p(2,3)
或-3= -x2+2x+3, x2_2x-6=0
x=1±√7,∴p(1+√7,-3),p. (1-√7 ,-3)
12
在对称轴右侧,y随x的增大而. 减小
y x
y x
4
1、下列函数中,是二次函数的是 ① ② ③ ⑦ .
① yx2 4x1 ② y 2x2
③ y1(x1)24
2
④ y 4 ⑤ ym2xnxp ⑥ y 3x
⑦
x
⑧
y 3(x2)x (1)
y(x1)2x2
二次函数图像和性质复习课件精选全文
例4 已知抛物线 y x2 k 4 x k 7,
①k取何值时,抛物线经过原点; ②k取何值时,抛物线顶点在y轴上; ③k取何值时,抛物线顶点在x轴上; ④k取何值时,抛物线顶点在坐标轴上。
解:①抛物线经过原点,则当x=0时,y
=0,所以 0 02 k 4 0 k 7,所以k=
-7,所以当k=-7时,抛物线经过原点;
在对称轴右侧,y随x的增大而减小
y x
y x
4.二次函数 y ax2 bx c 的性质:
(1)顶点坐标
b 2a
,
4ac 4a
b2
;
(2)对称轴是直线 x b
2a
(3)开口方向:当 a>0时,抛物线开
口向上;当 a<0时,抛物线开口向下。
(4)最值:
如果a>0,当 x
b 2a
②抛物线顶点在y轴上,则顶点横坐标为0,
即
b
k 4
0
,所以k=-4,所
2a
21
以当k=-4时,抛物线顶点在y轴上。
③抛物线顶点在x轴上,则顶点纵坐标为0,
即 4ac b2 4 1 k 7 k 42 0 ,整理得
4a
4 1
k2 4k 12 0 ,解得:k1 2, k2 6 ,所 以当k=2或k=-6时,抛物线顶点在x轴 上。 ④由②、③知,当k=-4或k=2或k=-6 时,抛物线的顶点在坐标轴上。
2a
①若b=0对称轴为y轴,
②若a,b同号对称轴在y轴左侧,
③若a,b异号对称轴在y轴右侧。
5.抛物线y=ax2+bx+c中a,b,c的作用。 (3)c的大小决定抛物线y=ax2+bx+c与y轴 交点的位置。 当x=0时,y=c,∴抛物线y=ax2+bx+c 与y轴有且只有一个交点(0,c), ①c=0抛物线经过原点; ②c>0与y轴交于正半轴; ③c<0与y轴交于负半轴。
初三数学复习《二次函数》(专题复习)PPT课件
面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上
二次函数阶段专题复习课件ppt
详细描述
根据二次函数的单调 性,判断函数在某个 区间的单调性;
根据二次函数的奇偶 性,判断函数的奇偶 性并求出函数的对称 轴;
根据二次函数的周期 性,求函数的周期并 观察图像的变化规律 。
综合练习题及答案
详细描述
根据二次函数与实际问题的综合 应用,解决实际问题并求出最优 解;
总结词:二次函数与其他知识点 的综合应用
求二次函数的最大值或最小值的方法是:先确定函数的对称 轴,再根据a的符号确定最大值或最小值的坐标,最后代入函 数解析式计算最大值或最小值。
02
知识点详解
二次函数的表达式及求解
表达式
$y = ax^{2} + bx + c$
求法
通过已知的三个点或顶点及对称轴可求得 $a$、$b$、$c$的值,进而得到二次函数 的表达式
2023
二次函数阶段专题复习课 件ppt
目 录
• 知识点概述 • 知识点详解 • 经典例题解析 • 易错点及应对策略 • 练习题及答案
01
知识点概述
什么是二次函数
1
二次函数是指形如`y = ax^2 + bx + c`(其中a 、b、c为常数,且a≠0)的函数。
2
二次函数的图像是一个抛物线,其顶点坐标为(b/2a,c-b^2/4a),对称轴为x=-b/2a。
二次函数与实际问题的结合
要点一
总结词
要点二
详细描述
了解二次函数与实际问题的联系,能 够建立数学模型并解决实际问题。
二次函数与实际问题结合广泛,如最 优化问题、经济问题、物理问题等。 通过对实际问题的分析,可以更好地 理解二次函数的应用价值。
要点三
示例题目
第1讲二次函数的图象和性质复习课件(共39张PPT)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
第二种是在瑞典本国流行的说法.在诺贝尔立遗嘱期 间,瑞典最有名望的数学家就是米塔格·勒弗列尔,诺贝尔 很明白,如果设立数学奖,这项奖金在当时必然会授予这位 数学家,而诺贝尔很不喜欢他.所以诺贝尔不设立数学奖.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
从函数图象中获取信息 a的作用:决定开口的方向和大小. (1)a>0开口向上,a<0开口向下; (2)a越大,抛物线的开口越小. b的作用:决定顶点的位置. 左(对称轴在y轴左边) 同(a,b同号) 右(对称轴在y轴右边) 异(a,b异号) c的作用:决定抛物线与y轴交点的位置. 上(抛物线与y轴的交点在y轴正半轴)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ①∵图象与x轴的交点A,B的横坐标分别为-1,3, ∴AB=4, ∴对称轴 x=-2ba=1, 即2a+b=0, 故①错误; ②根据图示可知,当x=1时,y<0,即a+b+c<0, 故②错误; ③∵点A的坐标为(-1,0), ∴a-b+c=0,且b=-2a, ∴a+2a+c=0,即c=-3a, 故③正确;
大师导航 归类探究 自主招生交流平台 思维训练
第一章 二次函数
第1讲 二次函数的图象和性质
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
诺贝尔为什么没有设数学奖 诺贝尔奖在全世界有很高的地位,许多科学家梦想着能 获得诺贝尔奖.数学被誉为“科学女皇的骑士”却得不到每年由 瑞典科学院颁发的诺贝尔奖,过去没有,将来也不会有.因为 瑞典著名化学家诺贝尔留下的遗嘱中没有提出设立数学奖.对 此,外界流传着两种说法. 第一种是在法国和美国流行的说法.与诺贝尔同时期的 瑞典著名数学家米塔格·勒弗列尔曾是俄国彼得堡科学院的外 籍院士,后来又是前苏联科学院的外籍院士.米塔格·勒弗列 尔曾侵犯过诺贝尔的夫人,诺贝尔对他非常厌恶.为了对他所 从事的数学研究进行报复,所以诺贝尔不设立数学奖.
大师导航 归类探究 自主招生交流平台 思维训练
第二种是在瑞典本国流行的说法.在诺贝尔立遗嘱期 间,瑞典最有名望的数学家就是米塔格·勒弗列尔,诺贝尔 很明白,如果设立数学奖,这项奖金在当时必然会授予这位 数学家,而诺贝尔很不喜欢他.所以诺贝尔不设立数学奖.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
从函数图象中获取信息 a的作用:决定开口的方向和大小. (1)a>0开口向上,a<0开口向下; (2)a越大,抛物线的开口越小. b的作用:决定顶点的位置. 左(对称轴在y轴左边) 同(a,b同号) 右(对称轴在y轴右边) 异(a,b异号) c的作用:决定抛物线与y轴交点的位置. 上(抛物线与y轴的交点在y轴正半轴)
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ①∵图象与x轴的交点A,B的横坐标分别为-1,3, ∴AB=4, ∴对称轴 x=-2ba=1, 即2a+b=0, 故①错误; ②根据图示可知,当x=1时,y<0,即a+b+c<0, 故②错误; ③∵点A的坐标为(-1,0), ∴a-b+c=0,且b=-2a, ∴a+2a+c=0,即c=-3a, 故③正确;
大师导航 归类探究 自主招生交流平台 思维训练
第一章 二次函数
第1讲 二次函数的图象和性质
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
诺贝尔为什么没有设数学奖 诺贝尔奖在全世界有很高的地位,许多科学家梦想着能 获得诺贝尔奖.数学被誉为“科学女皇的骑士”却得不到每年由 瑞典科学院颁发的诺贝尔奖,过去没有,将来也不会有.因为 瑞典著名化学家诺贝尔留下的遗嘱中没有提出设立数学奖.对 此,外界流传着两种说法. 第一种是在法国和美国流行的说法.与诺贝尔同时期的 瑞典著名数学家米塔格·勒弗列尔曾是俄国彼得堡科学院的外 籍院士,后来又是前苏联科学院的外籍院士.米塔格·勒弗列 尔曾侵犯过诺贝尔的夫人,诺贝尔对他非常厌恶.为了对他所 从事的数学研究进行报复,所以诺贝尔不设立数学奖.