干式变压器原理

干式变压器原理
干式变压器原理

干式变压器原理及运行维护

第一节干式变压器的发展简史

变压器发明于1886年,当时的变压器都是干式变压器(有时简称“干变”),限于当时绝缘材料的水平,这时的干变难于实现高电压与大容量。从19世纪末期起,人们发现采用变压器油可以大大提高变压器的绝缘和冷却性能,于是油浸变压器就逐步取代了干式变压器。二战后,世界经济得以恢复与重建,尤其是在欧洲与美国更有了迅猛的发展,-些大城市以极高的速度向着现代化迈进。随着城市供电负荷的不断增长,住宅的密集化以及高层建筑、地下建筑的增多,人们迫切需要一种既深入符合中心,又能防火、防爆且环保性能优越的变压器,于是干变又重新被重视和采用。

早期的干变都是浸渍式的,由于所用绝缘材料价格昂贵,加之防潮性能很差,因而它的绝缘水平较油变要低得多,故障率也较高,价格也较贵,从而影响它的广泛使用。应当认为是形势的发展迫使人们去研究更新型的干式变压器。从1964年德国AEG公司研制出第一台400kVA、20kV的环氧浇注式干变起,干式

变压器的发展就进入了一个新的阶段。在以后的第二年,德国TU公司又研制出了第一代B级绝缘的环氧浇注式干变,以后环氧浇注干变不断有新的发展,生产出许多新的类型的产品,迄今在世界上环氧浇注式干变已成为干式变压器的主流型式。尤其是到了20世纪70年代末期,由于考虑对环境的影响,在法律上禁止了聚氯联苯(PCBS)这种液体绝缘介质的使用,从而给发展环氧浇注干变提供了契机。在1970年代后期,美国也不断发展并改进了采用NOMEX纸作为绝缘材料的浸渍式H级干变。迄今为止,世界上的干式变压器主要是这两大类型。据最新统计,目前干式变压器在世界变压器市场中所占比例,如表1-1和表1-2所示。

第二节干式变压器的类型和特点

一、类型划分

目前世界上的干式变压器主要有浸渍式与环氧

树脂式(包括浇注式与绕包式)两大类型。

(一)浸渍式干变

浸渍式干变的结构与油浸变压器的结构非常相似,就像-个没有油箱的油浸变压器的器身。可以认为,早期的浸渍式干变结构,就是由油变演化而来的。它的低压绕组一般采用箔式绕组或圆筒式(层式)绕组,高压绕组-般为饼式绕组。由于空气的冷却能力要比变压器油差得多,为了保证适当数量的冷却空气吹入绕组,这种变压器要求轴向冷却空道宽度最小为6mm 。

浸渍式干变的制造工艺比较简单,通常用导线绕制完成的绕组浸渍以耐高温的绝缘漆,并进行加热干燥处理。根据需要可选用不同耐热等级的绝缘材料,分别制成B级、E级F级和H级(早期为B、E级),早期这种干变的绝缘材料及其处理工艺都不能满足制造高

性能干变的要求,使得这种类型的干变极易受潮,从而大大降低了运行可靠性,同时绝缘水平也较低。另外投运前还需要预先加热干燥,也使运行复杂化。所以,环氧树脂浇注干变正是为了克服这些缺点才应运

而生、得以大量发展的。

从20世纪80年代起,因为聚芳酰胶类绝缘材料的出现(其典型产品为NOMEX纸),用它来制造浸渍式干变可以提高其防潮性能,另外对线圈还可采用无溶剂树脂漆进行真空压力浸渍(通称VPI工艺),也可进一步提高绝缘系统的可靠性。此后,在欧、美等国相继出现了新一代的浸渍式干变,这种干变有时又称为非包封式干变或开敞通风式( OVDF)干变。

(二)环氧树脂类干式变压器

环氧树脂类干变指主要用环氧树脂做为绝缘材料的干式变压器,它又可分为浇注式与包绕式两类。在现有产品中,绝大多数都是环氧浇注式。

1.环氧树脂浇注干变

(1)概述。

环氧树脂是一种早就广泛应用的化工原料,它

不仅是一种难燃、阻燃的材料,且具有优越的电气

性能,后来逐渐为电工制造业所采用。自从1964年

德国制造出首台环氧浇注式干变后,这项技术在欧

洲发展得很快,并不断推出各种新的专利制造技

术,这些技术也不断推向世界。由于我国的干变制造技术主要是从德国等欧洲国家引进的,所以迄今全国生产的干式变压器中,绝大多数都是环氧浇注式。这里应当强调的是:由于环氧树脂比起空气和变压器油来具有很高的绝缘强度,加之浇注成型后又具有机械强度高以及优越的防潮、防尘性能,所以特别适合于制造干式变压器。早期的环氧浇注式干变为B级绝缘,目前国内产品大多数均为F级绝缘,也有少数为H级绝缘的。目前,从全面的技术经济性来看,世界上公认的环氧浇注式干变的最高电压为35kV(个别产品曾达66/77kV),最大容量为20MVA,基准冲击水平(BIL)不超过250kV o

(2)环氧挠注式干变的特点。

1)绝缘强度高:浇注用环氧树脂具有18~

22kV/mm的绝缘击穿场强,且与电压等级相同的油

浸变具有大致相同的雷电冲击强度。

2)抗短路能力强:由于树脂的材料特性,加之

绕组是整体浇注,经加热固化成型后成为一个刚体,所以机械强度很高,经突发短路试验证明,浇

注式变压器因短路而损坏的极少。

3)防灾性能突出:环氧树脂难燃、阻燃并能自行

熄灭,不致引发爆炸等二次灾害。

4)环境性能优越:环氧树脂是化学上极其稳定

的一种材料,防潮、防尘,即使在大气污秽等恶

劣环境下也能可靠地运行,甚至可在100% 温度下

正常运行,停运后无需干燥预热即可再次投运。可

以在恶劣的环境条件下运行,是环氧浇注式干变较

之浸渍式干变的突出优点之一。

5)维护工作量很小:由于有了完善的温控、温

显系统,目前环氧浇注式干变的日常运行维护

工作量很小,从而可以大大减轻运行人员的负担,并降低运行费用。

6)运行损耗低,运行效率高。

7)噪声低。

8)体积小、重量轻,安装调试方便。

9)不需单独的变压器室,不需吊芯检修,节

约占地面积,相应节省土建投资。

(3)环氧浇注式干变的类型及其相互比较。

环氧浇注式干变又称为注型式干变,这种产品的特点就是必须依靠模具并采用专用浇注设备,在真空状态下使绕组浇注并固化成型。目前国产环氧树脂干变也大多是这类产品。它又有下列类型:

1)厚绝缘。早期的环氧浇注式干变都是采用厚绝缘的浇注式绕组,在环氧树脂内加有石英粉作为填料,树脂层厚度一般为6mm ,也有厚达15mm的。耐热等级多为B级绝缘。高压绕组一般用玻璃丝包铝扁线绕制成分段圆筒式绕组,采用绝缘薄膜作为层间绝缘,绕组的两端用玻璃布板(条)作为绝缘端圈,绕好的分段圆筒式绕组在浸漆处理后装入模具,然后在真空状态下进行环氧树脂浇注。由于环氧树脂的热膨胀系数与导线的热膨胀系数不相同,所以当变压器运行后由于发热极易导致环氧浇注层的开裂,并形成小的空气隙,以致引发局部放电,这将严重威胁变压器的运行可靠性,加之由于局部放电所引起的电腐蚀还将大大缩短变压器的使用寿命。因此,如何防止开裂一直是早年困扰着这类干变的一项重要课题。

人们发现铜材的热膨胀系数为6×1O-6/℃,铝材的热膨胀系数为24×1O-6/℃,而以石英粉为填料的环氧树脂层的热膨胀系数则为40×1O-6/℃。由于铝的热膨胀系数与树脂较为接近,所以后期的厚绝缘干变一般都采用铝绕组,以减少热应力。但是,运行实践证明,即使采用这样的措施,也并不能完全防止开裂的产生。因而随着技术的进步,厚绝缘就逐步为薄绝缘所代替。

2)薄绝缘。为了解决上述树脂层的开裂问题,国外的一些厂家先后推出了F级薄绝缘的环氧树脂浇注式干变。目前我国的产品也基本上都是薄绝缘结构,其结构特点为:高、低压绕组导体都被玻璃纤维增强的薄层树脂所包封,当树脂内不加填料时绝缘层的厚度为1.5~2mm 。由于采用了玻璃纤维增强,因而大大加强了树脂包封层的机械强度,这种既韧又薄的树脂包封层富有弹性可随绕组一起膨胀和收缩,因而不再担心会发生开裂。另外,由于包封绝缘层的厚度很薄,既达到了包封的效果,又减少了包封层的温差,因而对改善浇注绕组的热传导是非常有益的。另外,薄绝缘结构还可以在绕组内设置轴向气道,这样就可以增加散热面,从而给制造大容量干式变压器提供了有利的条件。图1-1为薄绝缘环氧浇注式干变的外形。

图1-1 薄绝缘不带填料的环氧浇注干变的外型

薄绝缘树脂浇注变压器也可以做成是带填料的

结构,一般用石英粉作填料,这时绝缘层的厚度将增加为2.5~4mm(见图1 - 2)。由于填料的价格大大低于树脂的价格,加填料后可使变压器的制造成本降低,并对改善树脂的导热性能有利,而且,加填料后,变压器的外观也更加光洁。但是加填料必须在严恪的工艺与先进的工装下来进行。否则,如果搅拌不均匀或者在浇注过程中发生石英粉沉积现象,就可能使树脂的各部分膨胀系数不相同,这样的绕组在温度变化时就可能发生开裂,并使变压器的抗短路强度降低。为了增强这种结构的绕组的机械强度,一般在绕组浇注层内埋设有增强玻璃纤维网格布板。

3)浇注式变压器的绕组型式。浇注式变压器的绕组结构主要有下列三种类型:

①高、低压绕组均采用导线绕制的层式绕组,目前一般采用铜导线,低压一般为多层圆筒式、高压则为分段圆筒式,大容量浇注变均采用这种结构。

②高压为铜导线绕制的分段圆筒式绕组,低压采用铜箔或铝箔绕式绕组(见图1-1)。当低压采用箔式绕组时,目前一般在层间设置DMD预浸纸作为层间绝缘,

在箔绕机上绕好后只要加热固化成形即可,这样低压绕组就无需模具与浇注了。箔式绕组除了工艺性好,可提高生产效率之外,还可以降低横向漏磁从而使轴向电动力减小,相应提高了抗短路强度,降低了附加损耗。这种结构目前在干式配电变压器中采用较多。

图1-2 带填料的环氧浇注干变的外形

图1-3 高低压绕组均为箔式的带填料的

薄绝缘环氧浇注干变外形

③高、低压均为箔式(见图1-3)。高压做成箔式结构的分段圆筒式,而低压则为一般的箔式结构,这主要是为了更充分发挥波式结构的优点。这种结构对高压箔式而言,无论对材料、制造工艺等都有较高的要求,否则将降低变压器工作的可靠性。当采用箔式绕组时输出容量因受铜(铝)箔材料的尺寸所限制,目前一般不超过2500kVA,最大也不超过4000kVA。

2.绕包式(缠绕式)环氧树脂干变

这种结构的典型代表是ABB公司在20世纪70年代中期所开发出的“雷神”式变压器(RESI- BLOC)(见

图1 - 4)。这种变压器低压一般为箔式绕组,高压绕组则在绕线机上绕包,内模为环氧玻璃布筒。绕包时边绕导线,边绕玻璃纤维,再经过一树脂槽将浸好树脂的纤维缠绕在已绕好的导线上面。待整个绕组绕完后,再进烘箱加热固化,使之成为一个整体。绕包式结构的最大优点是无需专门的模具与专用浇注设备。但是由于树脂是常规条件下加入,而不是真空浇注的,难免在它的内部混有空气。这就容易引起局部放电从而降低其运行可靠性,所以为了可靠起见,往往把设计场强取得低一些,这又将使变压器的体积增大。另外,这种绕包式变压器所费的工时也较多。综上所述可知,它的成本将高于一般的浇注式变压器,同时运行可靠性也要差-些,因此这种缠绕式结构在国内仅少数厂家生产,在世界上的应用也远远没有浇注式多。

图1-4 绕包式(缠绕式)环氧树脂干变外形第三节环氧浇注式干变与浸渍

式干变的比较

如前所述,迄今在世界的干式变压器中,主要是环氧浇注式与浸渍式两大类型[图l-5为浸渍式敞开通风式(OVDT)干变外形],下面就这两种类型干式变压器的性能做一综合比较。

(1)从耐受短路的能力看,无疑环氧浇注式是最好的。由于它的绕组是在模具内进行整体浇注,经加热固化成型,从而形成一个机械强度很高的圆柱体,因而在结构上具有很高的幅向与轴向机械强度,无论从运行实践或突发短路试验结果都证实了这点。

(2)从耐受冲击过电压的特性以及绝缘特性看,也以环氧浇注式较好。由于浸渍类干式变压器主要采用饼式线圈,而作为饼间绝缘介质的空气其绝缘强度又大大低于环氧树脂,所以相对来说,浸渍式干变的尺寸较大(见面1- 6),因而相应的饼间电容较小,所以在冲击过电压作用下的过电压分布特性较差。根据美国的经验,即使采用NOMEX纸、VPI工艺的浸渍式

OVDT型干变,其BIL(基准冲击水平)值最高仅能达到150kV,即相应只能制造35kV级的干变,相反,国际公认的环氧浇注干变的BIL值可达250kV,即可以制造66/77kV级的干变。

图1-5 浸渍式敞开通风式(OVDT)干式变压器外形

(a)浸渍式绕组(b)环氧浇注式绕组(未浇注)

图1-6 浸渍OVDT型干变与环氧浇注式

干变绕组的外形尺寸比较

(3)从散热情况来看,由于环氧浇注式干变采用层式绕组,在沿其轴向可设置多个散热风道,故可以制造大容量干变,相反,如前所述,浸渍式干变由于采用饼式线圈,其散热通风情况较差。据目前国际公认,环氧浇注式干变的最大容量可达到20MVA,而浸渍式干变仅能达到8~10MVA 。

因此,要制造高电压、大容量干变,非环氧浇注式莫属。

(4)就运行时的过载能力而言,对此应进行具体的分析。首先,从理论上来说,干变的过载能力是与其热容量成正比、而与其负载损耗成反比的,再加以浸渍式干变的自身散热能力并不优于环氧浇注式干变,所以,绝对不能简单地说浸渍式干变的过载能力就一定优越于环氧浇注式干变。对浸渍式干变而言,只有当不仅线匝的绝缘采用NOMEX纸,而且所有绕组的绝缘件(如撑条、垫块等)也都采用NOMEX纸件来制造时,这样的浸渍式干变才具有较强的过载能力。这是由于,NOMEX纸是C级绝缘材料,其耐热温度可达

到220℃,故用它来制造H级(耐热温度为180℃)的干变。一开始就存在有20%左右的过载热裕度之故。但是,就现状而言,由于NOMEX纸的价格昂贵,我国目前生产浸渍式干变的厂家,往往都只是匝绝缘才用它。因而,这样的浸渍式干变就不能认为其过载能力优于环氧浇注式于变。

(5)从节能降耗来看,由于目前国内浸渍式干变的主流产品都是H级的,其损耗标准,将显著高于F 级的环氧浇注式干变。因此,采用H级浸渍式干变(即所谓OVDT干变),显然对节能不利。

(6)环氧树脂式干变的防潮及耐腐蚀性能特别好,尤其适用于在极端恶劣的环境条件下工作;相反,传统浸渍式干变的主要缺点就是防潮性能差,且容易吸尘,在投入运行前需要预热等。即使现今采用NOMEX纸以及真空压力浸漆(VP I)等新工艺后,虽然这些缺点得以在一定程度上被克服,但一些本质性的问题却依然存在。尤其是浸渍的质量在很大程度上将左右这类产品的可靠性与局放性能。

(7)在环保方面,无论环氧树脂或NOMEX纸都是有机材料,都不可能自然降解,在其运行寿命终结后都存在降解处理、回收与再生利用等问题。国外多年的经验证明,这两类干变在生产制造过程中均不污染

环境,并已实现工厂化的回收处理,在环保方面不存在什么问题。尤其是环氧浇注式干变的回收与处理方面,在欧洲各国早已有成熟的经验可借鉴。对此。

(8)浸渍式干变的最大优点是无需浇注设备与模具,初期投资可以大为节省。另外,产品设计的灵活性也较大,特别是油变厂转产这类产品较容易。

(9)环氧浇注干变在燃烧时所释放的能量较大。因而,从通过干式变压器的燃烧试验来看,OVDT类浸渍式产品较容易。另外,这类产品耐受热冲击的性能也较好。

(10)从运行、维护和检修来看,环氧树脂干变的运行维护工作量很小,相反浸渍式则工作量较大。而从产品的修理来看,则浸渍式较容易。

第四节干式变压器的现状与发展前景

一、干式变压器的应用场所

目前,干式变压器的应用场所有:

(1)城市及大型工矿区要求防火、防爆的场所,如高层建筑、地下建筑、机场、交通枢纽、通信与信息中心、重要市政设施,城市人口密集区、商业中心等处的6~lOkV配电变压器以及35kV电力变压器。

(2)火电厂、水电厂、核电厂的自用电变压器、发电机的励磁变压器。

(3)部分化工、冶金企业的整流变压器与冶金电炉变压器。

(4)地下铁道等的牵引变压器。

(5)其他不宜于采用油浸变压器的场所。

二、近年来干式变压器在盟内外的发展概况

近20年来,随着世界经济的发展,干变在全世界取得了迅猛的发展,尤其是在配电变压器中,干变所占的比例愈来愈大,据统计,在欧美等发达国家中,它已占到配变的40~50%。在我国,目前干式变压器在大、中城市中平均约占15%~20%,而在北京、上海、广州、深圳等城市,约占到50%左右。从产量上来看,我国自1989年第二次城网改造会议之后,干式变压器的产量有了显著的增长,从20世纪90年代起,每年大致以20%左右的速度递增,1999年的总产量已逼近10000MVA(该值已大大超过了10年前预测4500MVA),而2002年的总产量达20000MVA,2004年已达

32000MVA。这样的增速,在世界上也是前所未有的。

从上述数据可见,目前我国已成为世界上干式变产销量最大的国家之一,无论在工厂规模、产品的容

量、电压等方面均已处于世界领先水平。

三、干式变压器的市场发展前景展望

目前就世界范围来看,环氧浇注干变主要应用于欧洲以及亚洲的中国、日本、韩国以及东南亚等广大地区,而浸渍式干变则主要是美国应用较多,这与NOMEX纸的产地是美国等特殊国情有关。总的来说,就全世界而言,环氧树脂式干变的市场占有率要显著高于浸渍式干变。

在我国,干变的广泛采用与快速发展始于90年代初。这一方面是由于城网改造需要大量国产的无油化的防火、防爆干变。另外,也与当时引进欧洲先进的薄绝缘环氧浇注干变技术,从而克服了传统浸渍式干变的许多缺点,大大提升了干变的技术性能,并使干变的成本不断降低,生产效率大大提高等有关。如前所述,在整个90年代,干变产量始终维持着每年20%以上的高增长率,这在世界上是绝无仅有的。应当认为,我国在短短几年内能够顺利实现城网改造的无油化目标,环氧浇注式干变功不可没。

迄今,我国的环氧浇注式干变无论是工厂规模、产量或是技术水平都已达到世界先进水平,如前所述,2004年其总产量已达32000MVA,约占我国干变市

场份额的80%。欧洲一位哲学家曾有这样一句名言,“凡是存在的,都是合理的”。因此,从全世界来看,预期今后在相当一段时间内,这两大类型干变也都会存在,但由于我国这十多年来在环氧树脂干变制造技术上所取得的成就,以及它本身所固有的许多优点,并考虑到使用部门早已熟习了这类干变的运行维护,因而,从保证运行可靠性,减少备品、备件的品种以及提高运行、检修效率等方面来看,今后还是应继续大力推广使用环氧浇注式干变,这也与欧洲等发达国家的先例是完全一致的。

第五节环氧浇注式变压器

的常用铁心结构

环氧浇注式变压器的常用铁心结构有拉螺杆结构和拉板结构两种形式。图1-7为环氧浇注式变压器铁心的典型结构。

由图1-7可知,环氧浇注干式变压器铁心的主要构件为铁轭夹件、拉螺杆或拉板、铁芯绑扎、铁轭夹紧螺杆或铁轭拉带;铁心的绝缘件为夹件绝缘、螺杆绝缘或拉板绝缘等。

铁轭的夹紧主要由槽钢制成的夹件及夹紧螺杆

干式变压器安全操作规程

编号:SM-ZD-12919 干式变压器安全操作规程Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

干式变压器安全操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 发放范围:公司部门级留存 1. 目的:规范干式变压器操作程序,保障安全运行。 2. 范围 低压配电室两台400KVA的干式变压器。 3. 责任 运行部在操作干式变压器应遵循本规程内容操作。 安技部负责年度预防性试验计划、年度清扫计划安排工作。 4. 管理规程 干式变压器投入运行前应先履行相应的组织措施,确保组织措施完成情况下执行以下操作规程。 新投入运行的干式变压器运行前检查 检查所有的坚固件、连接件、标准件是否松动。

检查运输时拆卸的零部件安装是否妥当,并检查变压器是否有异物存在。 检查风机、温控设备以及其它辅助器件能否正常运行。 检查变压器、变压器外壳及铁芯是否可靠接地。 仔细检查在安装过程中有无金属或非金属异物掉入变压器中。 运行前的试验 变压器运行前应进行试验,试验前必须做以下处理: 温控传感器电缆必须从线圈中取出。 电流互感器二次输出端必须短接。 电压互感器二次输出端必须开路。 其他与变压器连接的电气元件必须断开。 试验完成后全部恢复到初始状态。 绕阻直流电阻的测试。 检查所有分接头的电压比。 检查变压器三相联结组别。 检查变压器和铁芯是否真正地接地,检查穿心螺杆的绝缘是否良好。

干式变压器热时间常数的计算和试验方法

干式变压器热时间常数的计算和试验方法 0概述 变压器短时过负荷(以下简称过载)运行是一种发热的过渡过程。过载某一时刻的绕组温升可按下式计算: θ=θ■+(θ■-θ■)(1-e■)(1) 式中t——过载时间,min; θ——过载时间为t所对应的绕组平均温升,K; θ■——t=0时绕组平均温升,即正常运行时绕组初始温升,K; θ■——过载稳定后绕组的平均温升,K,与变压器过载倍数有关; τ——在过载状态下的热时间常数,min。 干式变压器和油浸变压器不同的是没有油,因此在讨论干式变压器短时过负荷能力时仅需考虑干式变压器高、低压绕组的短时过负荷能力。由(1)可知,绕组短时过负荷能力的大小取决于绕组的热时间常数,而热时间常数和绕组的热容量、损耗水平以及额定温升等因素密切相关。 1热时间常数的计算 干式变压器的热时间常数(理想值)是指干式变压器在恒定负债条件下,温升达到变化值的63.2%所需经历的时间,也等于变压器从稳定温升状态下断开负载,在自然冷却状况下,温升下降63.2%所需的时间,对于干式变压器,其高低压相互独立,故计算时需分别处理。 根据IEEE C57.96-1999(R2005)IEEE Guide for Loading Dry-Type Distribution and Power Transformer中A.8.3提供的公式: τ■=■(2) 式中:τ■——额定负载下的热时间常数,min; C——比热容,W·min/K; Δθ■——额定负载下的稳定温升,K; θ■——铁心引起的温升对线圈的影响,对于内线圈,取20K,外线圈,取0K; P■——线圈的负载损耗,W。 对于比热容C的计算,通常采用以下公式: C=C■*m■+C■*m■(3) 式中:C■——导体的比热值,Cu取6.42(W·min)/(kg·K),Al取14.65(W·min)/(kg·K); m■——导体质量,单位kg; C■——绝缘材料的比热,对于树脂取24.5(W·min)/(kg·K); m■——绝缘材料质量,单位kg。 需要注意的是,在式(3)中的树脂比热值取24.5(W·min)/(kg·K)与IEEE C57.96-1999(R2005)IEEE Guide for Loading Dry-Type Distribution and Power Transformer中选用的6.35(W·min)/(kg·K)是有很大区别的,这是因为,在美国,应用最广泛的干式变压器主要还是敞开式的,而不是环氧浇注式的,其绝缘材料和组成也不一样。根据相关参考资料,环氧树脂的比热约2000J/kg·K=33.3(W·min)/(kg·K),环氧浇注干式变压器绕组中的主要填充材料为玻璃纤维的比热约为800J/kg·K=13.3(W·min)/(kg·K),绕组中树脂质量与玻璃纤维质量的

干式变压器有载分接开关控制器使用说明

YE-1型有载分接开关智能控制器使用说明书

山东优逸电气有限公司

目录 1. 概述 (1) 2. 工作环境 (2) 3. 技术参数 (2) 4. 安装与调整 (2) 5. 使用 (6) 6. 常见故障及检修 (6) 7. 产品代码含义 (7) 8. 通讯规约 (8) 9. 附录一:产品代码W0-07-2-1BR-09用户接线图 (10) 10.附录二:产品代码W0-07-2-1BR-15用户接线图 (11)

1.概述 1.1主要用途 YE-1型有载分接开关智能控制器(以下简称YE-1)主要用来控制有载分接开关,与有载调压变压器组成手动、自动调压系统。YE-1可以通过RS485通讯接口与上位机直接通讯,在多台运行时(最多8台),通过上位机的设置,将任意几台进行并联控制。而且YE-1还可以不通过上位机控制,在多台运行时(最多6台),通过RS485接口可直接将任意几台控制器进行并联控制。 1.2适用范围 YE-1通过有载分接开关内部的电动操作机构来控制有载分接开关的切换操作,以达到调压目的。 YE-1设有过电压速降和欠电压保护功能,以确保有载分接开关的安全操作。 YE-1可通过轻触按键进行目标电压值、区间延时、调节精确度、装置地址等参数的设置。 YE-1可显示取样电压(信号电压)、分接位置显示。 YE-1还具有可靠的二端电气限位。 YE-1具有多种远控输出接口,档位信号一一对应无源触点输出或档位信号BCD码无源触点输出(触电容量:1A/AC120V或2A/DC30V)及远方控制信号输入(升档、降档、停止动作指令必须提供无源触点),实现有载分接开关远方监视与控制,也可通过RS485通讯接口与上位机通讯进行遥测、遥控、遥信,实现有载分接开关的无触点的远程监视与控制,并可实现多台有载调压变压器的并联控制。

干式变压器的原理与维修

干式变压器的原理与维修 1、干式变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等的小容量变压器。在电力系统中,一般汽机变、锅炉变、除灰变、除尘变、脱硫变等都是干式变,变比为6000V/400V,用于带额定电压380V的负载。 2、干式变压器用横流式冷却风机是一种进、出风口均无导叶、专用于干式变压器冷却的横流式风机。其主要部件有:专用的单相或三相小功率感应异步电动机、横流式叶轮、机壳、导风装置。 3、干式变压器的温度控制系统 干式变压器的安全运行和使用寿命,很大程度上取决于变压器绕组绝缘的安全可靠。绕组温度超过绝缘耐受温度使绝缘破坏,是导致变压器不能正常工作的主要原因之一,因此对变压器的运行温度的监测及其报警控制是十分重要的,今对TTC-300系列温控系统作一简介。 (1)风机自动控制:通过预埋在低压绕组最热处的Pt100热敏测温电阻测取温度信号。变压器负荷增大,运行温度上升,当绕组温度达110℃时,系统自动启动风机冷却;当绕组温度低至90℃时,系统自动停止风机。 (2)超温报警、跳闸:通过预埋在低压绕组中的PTC非线性热敏测温电阻采集绕组或铁心温度信号。当变压器绕组温度继续升高,若达到155℃时,系统输出超温报警信号;若温度继续上升达170℃,变压器已不能继续运行,须向二次保护回路输送超温跳闸信号,应使变压器迅速跳闸。 (3)温度显示系统:通过预埋在低压绕组中的Pt100热敏电阻测取温度变化值,直接显示各相绕组温度(三相巡检及最大值显示,并可记录历史最高温度),可将最高温度以4~20mA模拟量输出,若需传输至远方(距离可达1200m)计算机,可加配计算机接口,1只变送器,最多可同时

树脂浇注绝缘干式变压器设计的计算

3树脂浇注绝缘干式变压器设计的计算 本章以树脂浇注干式变压器SCB10-1000/10的设计为例,详细列出了树脂浇注干式变压器的设计计算过程,以及每一步计算所涉及到的公式和原理。该变压器具有以上所述的树脂浇注干变的各项优点,是树脂浇注干变设计的典型实例。 3.1变压器设计计算的任务 变压器设计计算的任务是使产品设计符合国家标准,或者用户在合同中提出的标准和要求。在合同中通常包括以下一些技术规范: a.变压器的型式:相数、绕组数、冷却方式、调压方式、耦合方式。 b.额定容量,各绕组的容量,不同冷却方式下的容量。 c.变压器额定电压、分接范围。 d.额定频率。 e.各绕组的首末端的绝缘水平。 f.变压器的阻抗电压百分值。 g.绕组结线方式及连接组标号。 h.负载损耗、空载损耗、空载电流百分值。 i.安装地点海拔高度。 此外,用户可能还有一些特殊参数。 变压器计算的任务,就是根据上述技术规范,按照国家标准,如《电力变压器》、《三相油浸式电力变压器技术参数和要求》、《高压输变电设备的绝缘配合及高电压试验技术》和其它专业标准,确定变压器电磁负载,几何尺寸、电、热、机械方面的性能数据,以满足使用部门的要求。对方案进行优化计算,在满足性能指标前提下,具有良好的工艺性和先进的经济指标。 3.2变压器设计计算步骤 以下主要针对电力变压器而言,特种变压器的计算基本与之相同,只需考虑特殊要求和自身特点即可。 1)根据技术合同,结合国家标准及有关技术标准,决定变压器规格及相应 的性能参数,如额定容量、额定电压、联结组别、短路损耗、负载损耗、

空载损耗及空载电流等。 2)确定硅钢片牌号及铁心结构形式,计算铁心柱直径,计算心柱和铁轭截 面。 3)根据硅钢片牌号,初选铁心柱中磁通密度,计算每匝电势。 4)初选低压匝数,凑成整匝数,根据此匝数再重算铁心柱中的磁通密度及 每匝电势、再算出高压绕组额定分接及其他各分接的匝数。 5)根据变压器额定容量及电压等级,计算或从设计手册中选定变压器主、 从绝缘结构。 6)根据绕组结构形式,确定导线规格,进行绕组段数、层数、匝数的排列, 计算出段数、层数、总匝数及每层的匝数、每段匝数。 7)计算绕组的轴向高度及辐向尺寸。计算绕组几何高度、电气高度及窗高。 8)计算绝缘半径,确定变压器中心距M0,高、低压绕组平均匝长L。 9)初算短路阻抗无功分量,大型变压器无功分量值应与短路阻抗标准值接 近。 10)计算绕组负载损耗,算出短路阻抗有功分量(主要指中小型变压器), 检查短路阻抗是否符合标准规定值。 11)计算绕组对油温升,不合格时,可调整导线规格、或调整线段数及每段 匝数的分配,当超过规定值过大时,则需要调整变更铁心柱直径。 12)计算短路机械力及导线应力,当超过规定值时,应调整安匝分布或加大 导线截面。 13)计算空载性能及变压器总损耗,计算变压器重量。 3.3树脂浇注干式变压器设计的详细计算 本毕业设计主要任务为设计SCB10-1000/10B变压器。 3.3.1技术条件 产品型号:SCB10-1000/10 额定容量:1000kVA 电压比:(10±5%)/0.4kV 频率:50Hz

变压器温升.pdf

1.变压器的温度与周围空气温度的差叫变压器的温升。 2.在变压器寿命上,引起绝缘老化的主要原因是温度。由于变压器内部热量传播不均匀, 故变压器各部位的温度差别很大,因此需要对变压器在额定负荷时,各部分温度的升高做出规定,这是变压器的允许温升。一般油浸变压器采用A级绝缘,最高允许温度105℃。 各部分允许温升为:线圈允许温升65℃。以A级绝缘105℃为基础,当环境温度为40℃时,105℃-40℃=65℃。由于变压器的温度一般比绕组低10℃,故变压器油的允许温升为55℃。为防止油的老化,上层油面的温升不得超过45℃。这样无论周围空气如何变化,只有温升不超过允许值,就能够保证变压器在规定的使用年限内安全运行。 3.变压器上层油温,变压器线圈温度要比上层油温高10℃。国标规定:变压器绕组的极限 工作温度为105℃;(即环境温度为40时℃),上层温度不得超过95℃,通常以监视温度(上层油温)设定在85℃及以下为宜。 变压器异常运行主要表现在:声音不正常,温度显著升高,油色变黑,油位升高或降低,变压器过负荷,冷却系统故障及三相负荷不对称等。当出现以上异常现象时,应按运行规程规定,采取措施将其消除,并将处理经过记录在异常记录簿上。. q0 Q3 }2 `/ P8 U 在正常负荷和正常冷却条件下,变压器上层油温较平时高出10℃以上,或变压器负荷不变而油温不断上升,则应认为变压器温度异常。变压器温度异常可能是下列原因造成的: 1)变压器内部故障。如绕组匝间短路或层间短路,绕组对围屏放电,内部引线接头发热,铁芯多点接地使涡流增大而过热等。这时变压器应停电检修 2)冷却装置运行不正常。如潜油泵停运,风扇损坏停转,散热器阀门未打开。此时,在变压器不停电状态下,可对冷却装置的部分缺陷进行处理,或按规程规定调整变压器负荷至相应值。 变压器的温升: 变压器的温度与周围空气温度的差叫变压器的温升。 回答这个问题要提到变压器的允许温升,它的规定和依据? 在变压器寿命上,引起绝缘老化的主要原因是温度。由于变压器内部热量传播不均匀,故变压器各部位的温度差别很大,因此需要对变压器在额定负荷时,各部分温度的升高做出规定,这是变压器的允许温升。一般油浸变压器采用A级绝缘,最高允许温度105℃。各部分允许温升为: 线圈允许温升65℃。以A级绝缘105℃为基础,当环境温度为40℃时,105℃-40℃=65℃。由于变压器的温度一般比绕组低10℃,故变压器油的允许温升为55℃。 为防止油的老化,上层油面的温升不得超过45℃。这样无论周围空气如何变化,只有温升不超过允许值,就能够保证变压器在规定的使用年限内安全运行。 一般变压器的主要绝缘是A级绝缘,规定最高使用温度为105度,变压器在运行中绕组的温度要比上层油温高10—15度。如果运行中的变压器上层油温总在80-90度左右,也就是绕组经常在95-105度左右。 如果变压器长时间在温度很高的情况下运行,会缩短内部绝缘纸板的寿命,使绝缘纸板变脆,容易发生破裂,失去应有的绝缘作用,造成击穿等事故;绕组绝缘严重老化,并加速绝缘油的劣化,影响使用寿命。所以能避免高温尽量避免,实在不行,时间也不宜太长。

干式变压器安装使用说明书

; 三相树脂绝缘干式变压器安装使用说明书 ~

目录 > 一、适用范围 (2) 二、环氧树脂浇注干式变压器的特点 (2) 三、使用条件 (2) 四、产品主要规格型号 (2) 五、产品结构概述及主要技术原理 (3) 六、产品主要技术参 数....................................................... (6) 七、运输和起 吊 (10) 八、验收、保管和储存 (11) 九、产品安 装 (12) 十、现场交接试 验 (13) 十一、! (15) 十二、变压器试运行 十三、变压器的维 护 (18) 十四、安全注意事

项 (18) 一、适用范围 " 本说明书适用于我公司生产的额定容量20000kVA及以下,电压等级为35kV及以下无励磁和有载调压环氧树脂浇注薄绝缘干式变压器的装卸、运输、仓储保管、安装、使用及维护。 二、环氧树脂浇注干式变压器的特点 环氧树脂浇注干式变压器具有低损耗、低局放、防爆、难燃、环保无污染、免维护、抗短路能力强等特点。 三、使用条件 1.环境温度不高于40℃,海拔高度不超过1000m,若环境温度高于40℃或海拔超过1000m时,应按GB6450的有关规定作适当的定额调整。 2.外壳防护等级有IP20、IP23等型式。The protection degree of enclosure is IP20、IP2 3. 3.冷却方式有空气自冷(AN)和强迫风冷两种。对空气自冷(AN)

和强迫风冷(AF)的变压器,均需保证变压器的安装环境具有良好的通风能力,当变压器安装在地下室或其他通风能力差的环境时,须增设散热通风装置,通风量按1kW损耗(P O+P K)需4m3/min风量选取。 四、产品主要规格型号 1.对于单相干式变压器产品,型号主要有:DC(B)9、DC(B)10等系列。 型号所表示的意义如下:(以“DC(B)10型变压器”为例)The 2.对于三相干式变压器产品,型号主要有:SC(B)9、SC(B)10等系列。 , 型号所表示的意义如下:(以“SC(B)10型变压器”为例)

干式变压器绕组温升计算方法分析

干式变压器绕组温升计算方法分析 傅华强 2003 1发热与散热的平衡—绕组的稳定温升 绕组上的损耗功率是绕组温升的热源,这是比较好算的.而绕组的散热则是一个比较复杂的问题.在绕组内部热量通过传导的方式传到绕组的表面,在表面则通过对流和幅射的方式传到外界环境中去.当绕组的发热与散热达到平衡时,就是绕组的稳定温升。 绕组的散热是一个复杂过程。影响绕组散热的主要因素:绕组温度;绝缘层厚;绕组外包绝缘厚:绕组外包绝缘材料的散热性能;散热气道的宽度和长度;气流速度;铁芯和相邻绕组散热的影响等。因而绕组温升计算随其所用绝缘材料和结构的不同而不同。 2 绕组温升计算的数学模型 绕组的稳定温升一般用一个简化的公式进行计算,不同的结构和绝缘材料的绕组所用系数是不同的。公式运用的温度范围也是有限定的。如: τ= K Q X Q = W/S S=∑ αi S i 式中:τ—绕组温升; K—系数; X—与散热效果有关的系数,散热越好X的值越小; Q— 绕组的单位热负荷 W/m2 W—参考温度下的绕组损耗功率 W S— 等效散热面 m2 S i— 绕组散热面 m2 αi— 散热系数 2.1 不同结构型式的变压器所用的计算公式是不同的。 2.2 干式变压器的散热主要是对流和幅射完成的,非包封变压器的传导温升

所占比例很小,因而有些计算公式将层绝缘与外绝缘造成的传导引起的温升计算省略了,有些公式还要加上传导引起的温升,如西欧树脂绝缘干式变压器的计算公式。 2.3 黑体面的热量幅射与绝对温度的4次方成比例的,在一个不大的温度段,对流和幅射对散热的综合影响造成的温升式中系数X—与散热效果有关的系数,散热越好X的值越小.如油浸变压器层式绕组温升X值取0.8,而强迫油循环时X取0.7,饼式绕组X取0.6。一般干式变压器X值取0.8,当温升在80K 左右时,由于温度高时散热效率高,在一些计算公式中X取0.75,因而当温升在100—125K时,X的取值应该再小些。 2.4 当温升范围较大时,用一个计算公式会首尾不能兼顾,需要用两个以上的公式,它们的X值不同,即斜率不同。实际上是由几条直线组成的近似曲线。 2.5 绕组的单位热负荷Q 是指在无遮盖的单位散热面上的功率(W/m2),有气道的散热面,则要确定气道的散热系数。 2.6如果计算所得温升离参考温度很远,由于计算所用绕组损耗功率离实际功率差得太大而误差很大,则应调整计算绕组损耗功率所用的参考温度。 3 确定数学模型的工厂方法 最实用的确定数学模型的方法是通过典型变压器的温升试验。无气道绕组的温升是最基本的,如绕在厚绝缘筒上的外线圈。线圈外部的面积大小就是有效散热面,先算出热负荷Q值,由试验所得温升与Q值在双对数座标纸上打点,最少要有3个试验数据,即可在对数坐标纸上连成一条合理的直线,从这条直线上确定公式的两个系数K和X。 τ= K Q X τ1 K = ———— Q1 X Lgτ2 - Lgτ1Lgτ2/τ1 X =———————— = ———— Lg Q2 - Lg Q1Lg Q2/Q1 式中:

干式变压器运行及实验(借鉴分享)

六、变压器维护 1、一般在干燥清洁的场所,每年或更长时间进行一次检查;在其他场合(灰尘较多的场合),每三到六个月进行一次检查。 2、检查时,如发现较多的灰尘集聚,则必须清除,以保证空气流通和防止绝缘击穿,特别要注意清洁变压器的绝缘子、下垫块凸台处,并使用干燥的压缩空气吹净灰尘。如变压器带温控及风冷系统,可设置其每天自动吹一次(10-30分钟),以清除灰尘。 3、检查各紧固件是否有松动,导电零件有无生锈、腐蚀痕迹,还需要观察绝缘表面有无爬电、碳化痕迹。 第二节干变试验 一、试验目的 为确保干式变压器的顺利生产,确保试验数据的准确无误,考核该产品结构采取的工艺、材料和操作技术、制造质量是否能满足标准要求,通过对试验数据的分析,为改进结构、提高产品质量性能提供依据。 二、适用范围 适用于干式电力变压器。 三、试验内容 1、试验现场环境条件 1.1、试验区的环境温度为10~40℃,相对湿度小于85%。 1.2、试品的位置离周围物体应有足够的距离,不得有影响测量结果的物品在试验场地。 1.3、设备的布置应避开高电场、强磁场或足以影响仪表读数的振动源,以保证测量精度。 2、试验依据标准 GB1094.11—2007 《电力变压器第11部分:干式变压器》 GB/T10228-2008《干式电力变压器技术参数和要求》 GB7354-2003《局部放电测量》 JB/T501-2006《电力变压器试验导则》 四、直流电阻试验

1、试验目的: 直流电阻测量时检查线圈内部导线、引线与线圈焊接质量,线圈所用导线的规格是否符合设计要求,以及分节开关、套管等载流部分的接触是否良好,三相电阻是否平衡,并为变压器的出厂报告提供最终数据。 2、测量方法: 采用直流电阻测试仪进行测量。试验前按照仪器接线端子接线,将两根测量线中的电流、电压线分别接入对应端子,然后将两根线对应接到变压器测量端,根据实际测试绕组所有分接的电阻。测量时环境温度应变化不大,直流电阻随温度变化每升高10度,电阻值升高1.3倍。 3、试验标准: 试验标准:电阻三相不平衡率允许误差符合国标GB1094.1-1996及技术协议的规定。 容量在1600KVA及以下变压器三相测得值最大差值相间应小于平均值的4%,线间应小于2%,2000KVA及以上的变压器相间应小于平均值的2%、线间应小于1%,验收试验与出厂值相比较(同一温度下)相应变化不应大于2%。 根据GB10228-2008《干式电力变压器技术参数和要求》5.3中:对于2500KVA及以下的配电变压器,其绕组直流电阻不平衡率:相为不大于4%,线为不大于2%;对于630KVA及以上的电力变压器,其绕组直流电阻不平衡率:相(有中性点引出时)为不大于2%,线(无中性点引出时)为不大于2%。如果由于线材及引线结构等原因而使绕组直流电阻不平衡率超过上述值时,除应在例行试验记录中记录实测值外,尚应写明引起这一偏差的原因。使用单位应与同温度下的例行试验实测值进行比较,其偏差应不大于2%。 五、电压比及联结组标号测定 1、试验目的: 电压比试验是验证各相应接头电压比与铭牌相比不应有明显差别且符合规律,接线组别与设计要求、铭牌上标记与外壳上符号相符。 2、测量方法: 试验前按照仪器接线端子指示接线,仪器高压侧接线柱上的黄、绿、红三根线分别接至变压器高压侧A、B、C上,低压侧接线柱上的

LDB10干式变压器温度控制器

LD-B10-B220系列干式变压器温度控制器 使 用 说 明 书 2007年12月

目录 1、概述-----------------------------------------------4 2、技术指标-------------------------------------------4 3、工作原理-------------------------------------------5 4、型号与功能分类-------------------------------------6 5、面板-----------------------------------------------7 6、传感电缆总成---------------------------------------7 7、操作与显示-----------------------------------------8 8、功能模块-------------------------------------------9 9、B10-B220E电流输出型-------------------------------14 10、B10-B220F通讯型-----------------------------------14 11、现场故障处理小常识-------------------------------16 12、接线端子定义-------------------------------------16 附录 ----------------------------------------19

干式变压器检修维护手册

中广核太阳能光伏电站干式变压器 检修维护手册 一、干式变压器的作用及意义 干式变压器是光伏电站中重要的电气设备,光伏方阵中的干式变压器在电站发电期间,它将逆变器所发交流电升压为一定电压等级的交流电,送至电站汇集升压站;而在逆变器待机状态下,它将电网与逆变器进行有效的电气连接,为逆变器检测电网信号(部分干变作为逆变器电源),提供有效介质途径。 此外,电站站用变压器绝大多数也采用干式变压器,为电站生产、生活用电提供可靠的电源保障,因此保障干式变压器安全、稳定、可靠运行是光伏电站运维的一项重要任务。 二、干式变压器的结构及技术参数 公司大多投产及新建电站的干式变压器多为明珠电气及特变电工生产,具体结构可参考如下结构图。

以青铜峡光伏电站为例,干变主要技术参数如下表所示。 该型号干变过负荷能力如下表所示:

环境温度为20℃时过负荷能力曲线如下: 三、干式变压器投运前的运维 1、干变投运前的本体检查 检查所有紧固件、连接件是否松动,并重新紧固一边。 检查运输时拆下的零部件是否重新安装妥当(对照干变安装手册及施工图),并检查变压器是否有异物存在,特别是变压器底部冷却器及下垫块。 检查风机、温度控制器、温度显示仪及其他附件能否正常运行工作(特别是温控器接线勿在干变本体缠绕)。 检查干变本机、附件及箱体清洁无杂物。 2、干变投运前的试验 测量所有分接下的电压比,连接组别。最大电压比误差应小于0.5%。 线圈绝缘电阻的测试:一般情况下(温度20~40℃,湿度90%),高压对低压及地≥300MΩ,低压对高压及地≥100MΩ(2500V兆欧表测量)。但是如果变压器遭受异常潮湿发生凝露现象,则无论其绝缘电阻如何,在其进行耐压试验

干式变压器技术标 技术参数

3.2.2.5 武钢冷轧新脱脂机组项目 10kV干式变压器 招标技术附件 二0一一年三月

目录 1 概述及通用说明 2 技术资格 3 技术规格 4 供货范围 5 设计、制造、检验标准 6 资料交付 7 设备监制及验收 8 设备制造进度和保证措施 9 功能指标、保证值和考核方法 10 技术服务

1.概述及通用说明 本招标技术附件涉及武钢冷轧新脱脂机组配套用SCB10-10和ZSCB10-10系列环氧树脂浇注干式电力变压器和整流变压器。其各项性能指标均应符合GB、IEC、DIN、ZBK等最新标准。 该产品应具有下述特点: ●阻燃能力强,不会污染环境。 ●防腐、防潮性好,可在100%湿度下正常运行,定运后不需处理即可再 次进网运行。 ●局部放电量小于8Pc(对SCB8),SCB10应好于此值。 ●空载损耗比国际ZBK41003技术条件组I所规定的数值下降10%(对 SCB8)以上,SCB10应好于此值,散热性能好,过载能力强,强迫风冷 时可使额定容量提高50%。 ●低压采用铜箔绕组,匝间电容增大,安匝分布平衡,抗短路、耐雷电冲 击性好。 ●高压绕组须在真空状态下进行浇注,浇注后线圈无气泡,不会因温度骤 变导致线圈开裂,机械强度高。 ●体积小,质量轻,安装方便,经济性能好。 SCB10-10和ZSCB10-10系列环氧树脂浇注干式电力变压器和整流变压器应好于上述性能指标。 所有干式变压器采用F级绝缘,一次、二次均采用电缆进/出线,采用标准的附件和安装材料,制造和试验按照GB和IEC标准,(若有标准不一致时,取高值)。要求损耗小,过载能力强,环保性能好,具有防潮和抗环境温度突变的能力,运行可靠,维护方便。 2.技术资格 2.1卖方应具有生产干式变压器设备的经验和能力。 2.2卖方应提交其过去参加和已建厂的厂名、厂址、性能指标,包括可靠性 和可用性的数据,以及其提供设备实际所具有的特性指标和保证数值的证书,并具有切实可行的质量体系及管理制度。 2.3卖方应提供所投标设备的生产(制造)的许可证。

变压器试验基本计算公式

变压器试验基本计算公式 一、电阻温度换算: 不同温度下的电阻可按下式进行换算:R=R t (T+θ)/(T+t) θ:要换算到的温度;t:测量时的温度;R t:t温度时测量的电阻值; T :系数,铜绕组时为234.5,铝绕组为224.5。 二、电阻率计算: ρ=RtS/L R=(T+θ)/(T+t)电阻参考温度20℃ 三、感应耐压时间计算: 试验通常施加两倍的额定电压,为减少励磁容量,试验电压的频率应大于100Hz,最好频率为150-400Hz,持续时间按下式计算: t=120×f n /f, 公式中:t为试验时间,s;f n 为额定频率,Hz;f为试验频率, Hz。 如果试验频率超过400 Hz,持续时间应不低于15 s。 四、负载试验计算公式: 通常用下面的公式计算:P k =(P kt +∑I n 2R×(K t 2-1))/K t 式中:P k 为参考温度下的负载损耗; P kt 为绕组试验温度下的负载损耗; K t 为温度系数; ∑I n 2R为被测一对绕组的电阻损耗。 三相变压器的一对绕组的电阻损耗应为两绕组电阻损耗之和,计算方法如下:“Y” 或“Y n ”联结的绕组:P r =1.5I n 2R xn =3 I n 2R xg ; “D”联结的绕组:P r =1.5I n 2R xn =I n 2R xg 。 式中:P r 为电阻损耗; I n 为绕组的额定电流; R xn 为线电阻; R xg 为相电阻。 五、阻抗计算公式: 阻抗电压是绕组通过额定电流时的电压降,标准规定以该压降占额定电压的百分数表示。阻抗电压测量时应以三相电流的算术平均值为准,如果试验电流无法达到额定电流时,阻抗电压应按下列公式折算并校准到表四所列的参考温度。e kt = (U kt ×I n )/(U n ×I k )×100%, e k =1) - (K ) /10S (P e2 2 N kt 2 kt % 式中:e kt 为绕组温度为t℃时的阻抗电压,%; U kt 为绕组温度为t℃时流过试验电流I k 的电压降,V; U n 为施加电压侧的额定电压,V; I n 为施加电压侧的额定电流,A; e k 为参考温度时的阻抗电压,%; P kt 为t℃的负载损耗,W;S n 为额定容量,kVA; K t 为温度系数。案例1:

干式变压器安装维护使用说明书(中文)

干式变压器 安 装 维 护 使 用 说 明 书 福州天宇电气股份有限公司 FUZHOU TIANYU ELECTRIC CO.,LTD.

1.适用范围 本说明书适用于本公司生产的额定容量在20000kV A及以下,电压等级35kV及以下的无励磁调压和有载调压干式变压器。 2.使用条件 2.1海拔不超过1000m,环境温度不超过40°C。若环境温度高于40°C或海拔超过1000m时,应按GB6450的规定作适当的调整。 电源电压的波形近似于正弦波。 三相变压器所连接的电源电压近似对称。 2.2外壳防护等级有IP00、IP20、IP30等型式。 2.3冷却方式有空气自冷(AN)和强迫风冷(AF)两种。要求变压器室必须具有良好的通风能力,每1kW损耗所需要的空气流量不小于4m^3/min。 3.产品装卸 3.1装卸时严格按国家标准及装卸规程操作。 3.2装卸设备可采用起重机、汽车吊或叉车等起吊设备。 3.3产品吊装可采用以下三种方式进行。 A:同时使用变压器上的所有吊板起吊,吊升时吊索与垂线的角度不超过30°。调整吊索的长度使吊钩正对变压器重心。如图a。 B:若因吊高限制不能符合条件,应在包装箱底板的四角垫木处(滑木倒角处附近)挂吊索,同时保证吊索与垂线的角度不超过30°。调整吊索的长度使吊钩正对变

压器重心。如图b。 C:带外壳的变压器,除可以采用图b所示的应用包装箱底板垫木处挂吊索起吊外,还可以采用变压器上的吊板起吊,方法是先打开包装箱顶盖,可以看到如图c所示的变压器顶窗,打开顶窗,将吊索伸入变压器外壳,如图d,并按方法A起吊。 有载调压变压器若有载开关与变压器连接在一起整体包装,仅采用变压器上 的所有吊板起吊。 3.4用户应采用开箱专用工具或合适的工具(钉锤、扳手、螺丝刀等)将包装箱打开,不可用金属物或其它工具撞击包装箱,以免损坏产品。 3.5干式变压器除温控箱外一般为整体运输,温控箱按原包装固定在变压器本体包装箱内。 3.6若因运输或结构等原因将整台变压器拆卸成几部分并分别包装时,打开包装箱后,用户应按装箱单和拆卸一览表核对附件是否完整,留下记录。 3.7出厂时配有小车轮的变压器,其小车轮可以转向90°,用户可根据需要调整。 3.8产品装卸过程中,应小心轻放。 4.检查验收。 4.1客户收到变压器打开包装箱后,应立即按国家标准及运行规程进行变压器检查。 4.2检查产品的铭牌数据与订货合同是否相符,如产品型号、额定容量、额定电压、联结组标号、阻抗电压等。 4.4检查出厂文件是否齐全。 4.5检查包装箱内零部件是否与装相单相符。 4.6检查产品运输过程中有无损伤,产品零部件是否损伤、移位,接线是否松动、

干式变压器施工方案

目录 第一章概述2 1.1工程建设简况2 1.2现场施工条件3 1.3编制依据3 第二章主要工作量5 2.1主要工作量简介5 第三章人员组织措施5 3.1 作业组织管理机构5 3.2 作业人员要求及资格5 3.3 作业活动的分工和责任5 3.4施工人员计划6 第四章资源准备6 4.1施工工器具准备6 第五章施工作业流程7 5.1 干式变压器施工作业流程7 第六章施工进度安排7 6.1干式变压器安装7 6.2变压器安装前的准备工作及安装要点7 6.3装卸作业8 6.4设备就位8 6.5设备安装8 6.6干式变压器安装的质量技术要求9 6.7安全注意事项10 6.8安全风险分析10

第一章概述 1.1工程建设简况 新建哈密南±800kV换流站位于哈密市的南偏西的山上平原,地形较为平坦开阔,距离哈密市约24km,站址西侧1.5km、3.5km为大南湖乡道及S235省道(哈罗公路),站址西南距大南湖村约3km,站址南侧约2.3km为在建的哈密~罗布泊铁路,全站占地面积24.36万平方M。本期6回500kV出线均连接至周围电厂。站址位于山上平原,局部分布有微丘,目前场地为戈壁滩,地表覆盖一层碎石,无植被生长。场地西侧为昭诺尔河。 直流双极额定输送功率为8000MW。±800kV 直流双极线路一回、接地极出线1回。换流变压器:全站24 台工作换流变压器,4 台备用换流变,共计28 台。平波电抗器:每极平波电抗器电感值按300mH 考虑。平波电抗器为干式绝缘,每极设6台平波电抗器,采用“分置于极母线与中性母线”安装方式,每台平抗电感值50mH。直流滤波器:按每极2组双调谐直流滤波器组并联考虑,两组直流滤波器高低压侧均共用一台隔离开关。750kV交流出线:远期6回,其中至750kV哈密变2回、750kV吐鲁番变2回、750kV哈密南变2回;本期4回,其中750kV哈密变2回、750kV哈密南变2回。交流500kV出线:远期6回(不堵死远景扩建2回的可能性)、本期6回,均为电源进线。交流750kV和交流500kV之间设两台750/500kV联络变压器,每台联络变压器容量为2100MVA。500kV交流滤波器及高压并联电容器:500kV交流滤波器及高压并联电容器总容量3880Mvar,分为4大组、16小组,其中,5小组为并联电容器、11小组为滤波器(4小组BP11/13、4小组HP24/36、3小组HP3),电容器每小组容量270Mvar, 滤波器每小组容量230Mvar。高压并联电抗器:远期在每回至吐鲁番750kV出线侧预留1×420Mvar高压并联电抗器位置,本期在换流站母线配置1×420Mvar 750kV高压并联电抗器。低压无功补偿:远期在每台联络变压器低压侧预留4组低抗和4组电容器位置。本期在每台联络变低压侧装设2×120Mvar低压电抗器和3组120Mvar低压电容器。站用电源:全站考虑三回独立电源,其中在站内设置二台63kV/10kV站用降压变,分别接入每台750/500kV联络变压器低压侧母线。另外一回从位于换流站西北侧的银河路220kV 变电站35kV配电装置引接。 电气B包建设内容为: 1、极1换流变系统(包括区域设备及支架、接地、降噪、换流变滤油等),极1换流变区域汇流母线及其构架,换流变套管洞口的正式和临时封堵; 2、500kV交流配电装置(GIS设备、交流出线设备)及构支架(与包C的接口在GIS套

干式变压器标准

前言 根据中国工程建设标准化协会(98)建标协字第20号文《关于下达年第三批推荐性标准编制计划的函》的要求,为规范干式电力变压器选用、验收、运行及维护等方面工作,制定本规程 本规程是根据国家现行有关标准,结合国内近年来的使用经验和国外资料等进行编制的 根据国家计委计标[1986]1649号文<关于请中国工程建设标 准化委员会负责组织推荐性工程建设标准试点工作的通知>的要 求现批准协会标准干式电力变压器选用验收运行及维护规程编号为推荐给工程建设设计施工和使用单 位采用本规程由中国工程建设标准化协会电气工程委员会归口 管理北京广安门外南滨河路号电力建设研究所内邮编 并负责解释在使用中如发现需要修改和补充之处请 将意见和资料径寄解释单位 主编单位中国工程建设标准化协会电气工程委员会 国家电力公司电力建设研究所 沈阳变压器研究所 主要起草人马长瀛朱英浩史有德焦西明 陈叔涛夏业勤张仲波董振亚 中国工程建设标准化协会 年月日

目次 1 总则 2 干式电力变压器的选用 2.1适用场所 2.2基本要求 2.3额定容量选择 2.4调压温控和风机装置 3 设备检验及安装验收 3.1设备检验 3.2安装 3.3验收及试运行 4 干式电力变压器的运行及维护 4.1运行的基本条件 4.2维护 4.3不正常运行和处理 4.4预防性试验 本规程用词说明 1 总则 1.0.1 为了使干式电力变压器的选用、安装验收、运行及维护做到经济合理、技术先进、供电可靠、确保安全运行,制定本规程 1.0.2 本规程适用于交流电压3---35KV干式电力变压器的新建、

扩建工程建设及设备运行、维护工作。干式电抗器、干式接地变压器和干式消弧线圈等同类设备;高于35KV的干式电力变压器可参照本规程使用 1.0.3 干式电力变压器产品应符合国家现行技术标准的要求,并 应优先选用经国家鉴定、技术先进、节能、符合环保规定的定型产品。 1.04 干式电力变压器的选用、验收、运行及维护除应符合本规 程外,尚应符合国家现行有关技术标准的规定。 2 干式电力变压器的选用 2.1适用场所 2.1.1 干式电力变压器的选用,应根据负荷状况、工程特点、场所环境、发展规划等因素,合理确定容量和台数。 2.1.2 在防火要求较高的场所、人员密集的重要建筑物内(如地铁、高层建筑、剧院、商场、候机大楼等)和企业主体车间的无油化配电装置中(如电厂、钢厂、石化等)应选用干式电力变压器 2.1.3 当场地较小时,如技术经济指标合理,宜选用干式电力变 压器 2.1.4 计及初期投资和油浸电力变压器附设的排油设施、防爆隔墙、废油处理,以及运行维护和损耗等费用,经技术经济比较合理时,宜选用干式电力变压器。 2.1.5 与居民住宅连体的和无独立变压器室的配电站,宜选用于

干式变压器安装使用说明书

干式变压器安装使用说明书

————————————————————————————————作者:————————————————————————————————日期: ?

三相树脂绝缘干式变压器安装使用说明书

目录 一、适用范围 (2) 二、环氧树脂浇注干式变压器的特点 (2) 三、使用条件 (2) 四、产品主要规格型号…………………………………………………… 2 五、产品结构概述及主要技术原理 (3) 六、产品主要技术参 数................................................................................. 6 七、运输和起吊 (10) 八、验收、保管和储存……………………………………………..……11 九、产品安装.................................................................... (12) 十、现场交接试验 (13) 十一、变压器试运行………………………………………………….……15 十二、变压器的维护 (1) 十三、安全注意事项 (18)

一、适用范围 本说明书适用于我公司生产的额定容量20000kV A及以下,电压等级为35kV及以下无励磁和有载调压环氧树脂浇注薄绝缘干式变压器的装卸、运输、仓储保管、安装、使用及维护。 二、环氧树脂浇注干式变压器的特点 环氧树脂浇注干式变压器具有低损耗、低局放、防爆、难燃、环保无污染、免维护、抗短路能力强等特点。 三、使用条件 1.环境温度不高于40℃,海拔高度不超过1000m,若环境温度高于40℃或海拔超过1000m时,应按GB6450的有关规定作适当的定额调整。2.外壳防护等级有IP20、IP23等型式。The protection degreeof enclosure isIP20、IP23. 3.冷却方式有空气自冷(AN)和强迫风冷两种。对空气自冷(AN)和强迫风冷(AF)的变压器,均需保证变压器的安装环境具有良好的通风能力,当变压器安装在地下室或其他通风能力差的环境时,须增设散热通风装置,通风量按1kW损耗(P O+P K)需4m3/min风量选取。 四、产品主要规格型号

干式变压器温升试验

干式变压器温升试验之“模拟负载法” 1.试验方法:模拟负载法。 2.试验原理:通过短路试验和空载试验的组合来确定的。 3.试验目的:是验证变压器冷却能力,能否将由总损耗所产生的热量散发出去,达 到热平衡时使变压器绕组(平均)高于冷却介质的温升不超过规定的限值,同时还要通过红热扫描观测电路联结点、铁心及结构件、绕组等是否有局部过热。 4.试验接线图: 5.试验过程:在额定电压下连续进行的空载试验应一直持续到绕组和铁心的稳定状态, 然后测量各个线圈的温升Δθe;立即进行短路试验,此时一个线圈由开路变成短路,另一 个线圈输入额定电流,直到绕组和铁心稳定为止,然后测量各个线圈的温升Δθc。(试验顺序可以互换) 绕组温升:Δθc(Δθe)=R2/R1(T+θ1)-( T+θ2) 各个线圈的总温升: Δθc’=Δθc [1+(Δθe /Δθc)1/k1]k1 式中:Δθc’--绕组总温升;Δθc—短路试验下的绕组温升; Δθe—空载试验下的绕组温升;T—温度系数,铜时为:235铝时为:225 R1、R2、θ1、θ2—冷态电阻、热态电阻、冷电阻环温、热电阻环温; k1—对于自冷式为0.8;对于风冷式为0.9。 备注:由于某种原因,施加电流没有达到额定电流时折算: I r Δθr=Δθ×(-)q I t 式中:Δθr、Δθt-额定电流下、试验电流下的绕组温升; I r、I t-额定电流、试验电流;(I t >0.9I r) q-AN:1.6、AF:1.8。 首先要测冷电阻并准确的记录绕组温度,接线方式分别同空载试验和负载试验。负载状态下试验的电流应尽可能接近额定持续电流,并不小于此值的90%,电流应持续直到变压器 任何部分每小时的温度上升少于2K。测量高、低压热电阻并准确的记录绕组温度,记录数 据并计算结果。检验绕组的温升是否符合设计要求。 6.温升试验分接位置的选择: a. 对分接范围在±5%以内,且额定容量不超过2500kVA的变压器,如无特殊要求,温 升试验选在主分接上进行。 b. 对分接范围超过±5%,或额定容量大于2500kVA的变压器,温升试验选在最大电流分接上进行。 7.海拔与温升限值的关系: 变压器运行高度超过海拔1000米,但试验场地是正常海拔,温升限值应递减,变压器运行高度低于海拔1000米,但试验场地高于海拔1000米,温升限值应递增,海拔超过1000米每500米为一级, AN:2.5% AF:5% 8.温升稳定的判断方法: 铁芯、绕组温升持续三小时且每小时不超过1K时,变压器视为稳定。 国家标准对温升限值的要求: 部位绝缘系统温度℃最高温升K 线圈 A 105 60 (电阻法) E 120 75 B 130 80

相关文档
最新文档