机械设计螺纹连接

合集下载

机械设计基础第9章 螺纹连接

机械设计基础第9章 螺纹连接

ψ
Fa
11
重物下滑过程分析:
ψ
R
当ψ >ρ时
N
v
ρ
滑块在重力作用下会加速下滑
要使其匀速下滑,还要施加少
量的水平力F(F > 0)
F = Fa tan(ψ-ρ)
fN F
ψ
Fa
此时F 由驱动力变为阻力,而Fa由阻力变为驱动力
当ψ ≤ρ时
由于摩擦力过大,重物不能自行下滑,而在斜面上保持静止
要使其下滑需施加反向力, F ≤ 0,此时F 变为驱动力
tan S np d2 d2
ψ
4
二、螺纹的分类
普通螺纹 三角形
粗牙螺纹 一般连接 细牙螺纹 薄壁零件或微调装置
管 螺 纹 管路连接
牙 矩形 型 梯 形 传递运动或传力
锯齿形 (效率高)
牙顶较大圆角,旋合 后无径向间隙,英制
细牙螺纹
5
四种螺纹的牙侧角:
β=0° β=3°
β=15°
β=30°
螺纹旋向: 常用右旋,特殊要求时用左旋
一、螺旋线方向的判定
左(右)手自然展开成掌, 使拇指与螺纹轴线平行,若左 手四个指头的指向与螺纹牙走 向一致,则螺纹为左旋螺纹; 则螺纹为右旋螺纹。(见右图 中左旋螺纹的判定)
二、螺纹轴向力的判定
在螺母固定的情况下,旋动螺杆时,螺杆将沿轴线方 向前进或后退,这说明螺杆受到了一个沿运动方向的作用 力。该作用力方向的判定方法是对左、右旋螺纹分别采用 左、右手定则。具体做法如下:拇指伸直,其余四指握拳, 令四指弯曲方向与螺杆转动方向一致,拇指的指向即是螺 杆前进的方向。
此种现象称为“自锁”,自锁条件是: ψ ≤ρ
12
§9-2 螺纹副受力分析、效率和自锁

机械设计螺纹连接

机械设计螺纹连接

其中:d1、p 分别为螺纹小径和螺距。
[σ ] —— 许用应力,N / mm2 ,[σ ] = σs /[ Ss ] ,
见表6.3(P110)。
第28页/共57页
机械设计
螺纹连接 28
dc
4F
[ ]
(mm) —— 设计式
∵ 螺栓为标准件 ∴ 查标准,选螺栓
第29页/共57页
机械设计
螺纹连接 29
克服螺纹中阻力所需的转矩为:
T第1 8页F/共5d272页
d2 2
Q
tan
机械设计
螺纹连接
8
旋转螺母一周,输入的驱动功W1 = 2πT1 ,有效功W2 = Q S , 故螺旋副的效率为:
W2 W1
QS
2 T1
2
Q d2 tan
d2 Q tan
tan
tan
2
由上式知:λ↑,ρ↑ —→ η↑;当:λ= 45°-ρ/2 时 —→ ηmax
其相对运动相当于楔形滑块沿楔形槽斜
面移动。故非矩形螺纹的受力分析与矩形螺
纹的受力分析过程一样。由图知:
F = Q tan(λ +ρv ) 克服螺纹中阻力所需的转矩为:
T1
F
d2 2
d2 2
Q tan v
第10页/共57页
机械设计
螺纹连接 10
螺旋副的效率为:
W2 W1
QS
2 T1
2
Q d2 tan
1)直径 大径 d 、小径 d1 、中径 d2 大径 d : 公称直径。 小径 d1 :螺纹的最小直径。 中径 d2 :齿厚 = 齿槽宽处直径,几何计算用。 d2 ≈ (d + d1 )/2 M 20 —→ d = 20 mm

机械设计ch21螺纹连接

机械设计ch21螺纹连接

• 当量摩擦系数
f f tg cos
矩形螺纹与非矩形螺纹旳法向力
第一章 多媒体CAI课件设计基础
1)滑块沿斜面等速上升
• 驱动力
F Fa tg( )
• 驱动力矩
T
F
d2 2
Fa
d2 2
tg(
)
2)滑块沿非矩形螺纹等速下滑
• 平衡力
F Fa tg( )
• 平衡力矩
T
Fa
d2 2
第一章 多媒体CAI课件设计基础
螺旋线旳形成
2.螺纹旳分类
不同线数旳右旋螺纹
1)按照螺旋线方向分:左旋螺纹和右旋螺纹。
2)按位置分:外螺纹,如螺栓;内螺纹,如螺母。
3)按照螺旋线旳数目分:单线螺纹和等距排列旳多 线螺纹。
第一章 多媒体CAI课件设计基础
4)按照制式分:米制螺纹和英制螺纹。 5)按照母体形状分:圆柱螺纹和圆锥螺纹。 6)按照功能分:
1.矩形螺纹 1)滑块沿斜面等速上升,Fa为阻力,F 为驱动力。
F Fa tg( )
第一章 多媒体CAI课件设计基础
作用在螺旋副上旳相应驱动力矩
T Fd 2 2 Fa d 2 tg( ) 2
2)滑块沿斜面等速下滑,轴向力Fa变为驱动力,而F 变为维持滑块等速运动所需旳平衡力
F Fa tg( ) 作用在螺旋副上旳相应驱动力矩
传动旳螺纹,一般角也不不小于25°。
2.3 机械制造常用螺纹
• 三角螺纹 ——其牙形为等腰三角
形,主要有一般螺纹和管螺纹,其
当量摩擦角´大,自锁性好,且强
度高,主要用于联接。一般螺纹多 用于紧固联接,管螺纹则用于紧密 联接。
第一章 多媒体CAI课件设计基础

机械设计基础10联接(螺纹联接)

机械设计基础10联接(螺纹联接)

基本原理
螺纹联接的基本原理是通过螺纹的咬合来实现连接 和紧固。
设计要求
螺纹联接的设计要考虑螺纹的类型、尺寸、加工精 度、连接长度等因素。
螺纹联接的计算和选取方法
计算方法
螺纹联接的计算方法需要考虑载荷情况、材料性能、 螺纹类型等因素。
选取方法
螺纹联接的选取应考虑加载情况、工作环境、连接 性能要求等因素。
螺纹联接的制造和装术包括螺纹加工、表面处理等环节。
2
装配技术
螺纹联接的装配技术要注意正确的装配顺序、力矩控制等。
3
检测技术
螺纹联接的检测技术包括外观检查、力矩测试等方法。
螺纹联接的常见问题和解决方法
常见问题
螺纹联接中常见的问题包括松动、脱螺纹、过紧等。
解决方法
解决螺纹联接问题的方法包括增加紧固力、正确选择螺纹类型、使用螺纹锁紧剂等。
机械设计基础10联接(螺 纹联接)
欢迎来到机械设计基础系列第十讲!本讲将介绍螺纹联接,包括定义、分类、 特点、优点、应用领域、基本原理、设计要求等内容。
螺纹联接的定义和概念
螺纹联接是一种常用的紧固连接方式,通过螺纹的互相嵌合实现连接和紧固。 它由一个内螺纹和一个外螺纹构成,通过旋转使螺纹互相咬合达到紧固的效 果。
螺纹联接的分类和特点
分类
螺纹联接可以分为内螺纹联接和外螺纹联接两种 类型。
特点
螺纹联接具有承载能力强、可重复使用、连接牢 固等特点。
螺纹联接的优点和应用领域
1 优点
2 应用领域
提供均匀的紧固力、承载能力高、便于拆卸、 可重复使用等。
广泛应用于机械制造、汽车工程、航空航天、 建筑等领域。
螺纹联接的基本原理和设计要求

机械设计-螺纹连接

机械设计-螺纹连接

确定连接力矩
4
尺寸和参数。
根据连接件的材料和负载确定合适的 连接力矩。
螺纹连接的优缺点
• 优点:简便快捷、拆卸方便、承载能力高。 • 缺点:可能出现螺纹磨损、连接失效、腐蚀等问题。
应用案例
汽车制造
螺纹连接广泛应用于汽车底 盘、引擎和车身结构等部件 的装配与固定。
机械设备
螺纹连接被用于机械设备零 件的固定,如电机、减速器 等重要部件。
机械设计-螺纹连接
螺纹连接是一种常用的机械连接方式,通过螺纹的互相咬合来实现紧固与连 接。本演示将介绍螺纹连接的分类、构成、力学原理、设计方法,以及优缺 点和应用案例。
螺纹连接的分类
内螺纹连接
常见于螺母与螺杆的连接,通过内螺纹互相咬合实现固定。
外螺纹连接
常见于螺纹孔与螺纹螺栓的连接,通过外螺纹互相咬合实现固定。
螺纹连接可通过螺纹的剪切形变,实现力的传 递与承载。
由于螺纹的咬合,螺纹连接具有较高的阻拆力, 能够提高连接的稳定性。
如何设计一个螺纹连接
1
确定连接类型
根据连接件的形状和要求选择内螺纹
选择螺纹规格
2
连接或外螺纹连接。
根据连接件的负载和使用环境选择合
适的螺纹规格。
3
计算螺纹尺寸
根据连接件的要求和标准计算螺纹的
精密螺纹连接
采用更高精度的制造工艺,用于对连接要求更严格的领域。
螺纹连接的构成
螺母
用于咬合螺杆的螺纹连接件。
Hale Waihona Puke 螺杆用于与螺母互相咬合的螺纹连 接件。
螺纹
螺纹是螺母与螺杆的互相咬合 结构,实现紧固与连接。
螺纹连接的力学原理
张力力学原理 剪切力学原理 阻拆力学原理

机械设计基础10联接螺纹联接

机械设计基础10联接螺纹联接

T F
匀速下降:
Fd22=Fa·Ftga(φtg-(ρ′)
) d2
2
(10-6a)
T
F
d2 2
Fatg(
)
d2 2
自锁条件: φ ≤ρ′
(10-7)
(10-5b) (10-6b)
α (β )↑ ρ′ ↑ →
自锁性↑
φ ↑ → 自锁性↓
α
要自锁好→ α (β ) ↑ , φ ↓(单头)
β
三.效率:
max 25
要自锁好→α↑ φ ↓(单) ;要效率高→α↓φ↑(多)
§10-3 机械制造常用螺纹及标准
螺 联接(可靠) → 旋 →要自锁
ρ′↑ →α↑ φ ↓ →单线n=1
副 传动→ 效率高
ρ′↓→α↓ φ ↑→多线n>1
p.134
1.三角形/普通螺纹(M) →α=60°, β=30°
螺纹
→紧固→联接(单线、α大)(粗,细)
§10-5 螺纹联接的预紧和防松 P.140
(一)拧紧力矩T0 目的:→防止松动→提高可靠、强度、紧密性
T0 的大小: 拧紧时→ 锁紧力 螺栓→轴向拉力
→T0=T1+T2 FS
被联接件→轴向压力
螺纹阻力矩 T1 :(10-5b)
T1=F d2/2=Fa tg(φ +ρ’) d2 /2
T0
螺母支持面上的摩擦阻力矩T2
α (牙型角) ; β (牙側角) ;φ(升角)=?
d2
S (n p)
tgφ=n p/πd2
(10-1)
牙型:
60 ° 普通 α =60 ° β=30°
矩形 α =0 ° β=0°
30 ° 梯形
α =30 ° β=15°

05 机械设计作业_螺纹连接和螺旋传动

05 机械设计作业_螺纹连接和螺旋传动

05机械设计作业_螺纹连接和螺旋传动一、螺纹连接1.螺纹连接的概念螺纹连接是一种常用的机械连接方式,通过螺纹的相互螺合实现零件的固定和连接。

螺纹连接的主要特点是具有较强的可拆卸性,方便零件的拆卸和装配。

同时,螺纹连接还具有较高的连接强度和刚度,使得连接的零件能够承受一定的拉力和扭矩。

2.螺纹连接的类型螺纹连接主要分为内螺纹和外螺纹两种类型。

内螺纹一般为鞘形结构,用于接收外螺纹的螺纹连接。

外螺纹一般为柱形结构,用于与内螺纹相互螺合,实现连接和固定。

3.螺纹连接的应用螺纹连接广泛应用于机械设计中,特别是需要拆卸和装配的部件。

常见的应用包括螺纹连接螺杆和螺母、螺纹连接法兰和轴等。

4.螺纹连接的设计考虑因素螺纹连接的设计需要考虑以下因素:•强度和刚度:螺纹连接需要能够承受一定的拉力和扭矩,因此需要根据实际应用情况选择适当的螺纹尺寸和材料。

•可靠性:螺纹连接应设计为可靠的连接方式,即使在受到外部力的作用下也不易松动或脱落。

•拆卸性:螺纹连接需要方便零件的拆卸和装配,因此需要选择适当的螺纹类型和松紧方式。

•密封性:螺纹连接需要具有一定的密封性能,特别是在液压和气动系统中应用时,需要防止泄漏。

•耐磨性:螺纹连接需要具有一定的耐磨性能,特别是在高频率的拧紧和松开过程中。

二.螺旋传动1螺旋传动的概念螺旋传动是一种常用的动力传递方式,通过螺旋副的互相啮合传递动力。

螺旋传动的主要特点是具有较高的传递效率和承载能力,适用于大功率传动和重载工作。

2.螺旋传动的类型螺旋传动主要分为螺旋圆柱齿轮传动和螺旋锥齿轮传动两种类型。

螺旋圆柱齿轮传动适用于轴平行的传动,螺旋锥齿轮传动适用于轴倾斜或交叉的传动。

3.螺旋传动的优点螺旋传动相比其他传动方式具有以下优点:•传递效率高:螺旋传动具有较高的传递效率,一般可达到90%以上,适用于大功率传动。

•承载能力大:螺旋传动的螺旋副结构紧凑,齿轮之间的啮合面积大,能够承受较大的载荷。

•平稳运行:螺旋传动的齿轮啮合面积大,传动过程中啮合点多,运转平稳,减少振动和噪声。

机械设计基础10+螺纹连接与键连接

机械设计基础10+螺纹连接与键连接

螺钉无头,无螺母,直接拧入被连接 件中,通过拧紧使螺钉产生预紧力。
螺柱连接
由一端带孔的螺柱和两个螺母组成, 一个螺母固定在被连接件上,另一个 螺母拧紧使螺柱伸出端产生预紧力。
螺纹连接的预紧与防松
预紧
在装配时,通过拧紧螺母或螺钉 ,使螺栓、螺柱或螺钉产生预拉 力,以提高连接的刚性和紧密性 。
防松
为防止螺纹连接在承受外载荷时 松动,采取各种措施来阻止松动 。常用的防松方法有弹簧垫圈、 自锁螺母、开口销等。
坏或磨损现象。
润滑
定期对键连接进行润滑 ,以减少摩擦和磨损,
延长使用寿命。
紧固
对于松动的键连接,应 及时进行紧固,防止出
现意外事故。
更换
对于磨损严重的键连接 ,应及时进行更换,防
止出现安全事故。
05
螺纹连接与键连接的发展趋势
新型螺纹连接的开发与应用
自锁螺纹连接
这种新型螺纹连接具有自锁功能,能 够在无外力的情况下保持紧密,防止 松动。广泛应用于需要高稳定性的机 械装置。
02
键连接
键连接的类型与特点
平键连接
平键连接是最常见的键连接类型,主要用于传递扭矩和旋 转运动。它具有结构简单、工作可靠、装拆方便等优点, 但承受的载荷较小。
楔键连接
楔键连接主要用于固定轴的位置,并传递扭矩。楔键连接 具有较高的承载能力和定位精度,但装拆不太方便。
花键连接
花键连接是一种多齿的键连接,能够承受较大的载荷。花 键连接具有较高的承载能力和较高的效率,但制造较复杂 ,成本较高。
键连接在机械中的应用
固定轴与轮毂
键连接主要用于固定轴与轮毂之 间的连接,如汽车变速箱中的轴
和齿轮等。
传递扭矩
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档