伺服系统的分类及主要特点

合集下载

伺服系统

伺服系统

加减速时间设定
加减速用加减速时间的长短来设定,加减速时间越短,速度变化大, 系统易引起振荡;反之,系统的响应性变慢。加减速有线性加减速和指 数加减速。在线性加减速中,加速度有突变,应根据负载惯量核算最大 可达到的加速度,从而确定加速到最大速度所需要的时间;在指数加减 速中,加速度变化无突变,速度变化平稳,必须设定加减速总时间和加 减速升降速时间。
以移动部件的位置和速度作为控制量的 自动控制系统。
伺服系统
伺服系统组成
机电一体化技术
伺服系统组成
位置控制 + 位置控制 调节器 — 速度控制
+

--
位置 指令
速度控制 调节器
功率 驱动
机械传动机构
实际速度反馈 速度检测 电机 实际位置反馈 位置检测
伺服系统
伺服系统组成
机电一体化技术
基本工作原理
伺服系统
伺服系统参数
机电一体化技术
v、a v a
v、a
v
a
O t O
ta
t1
ta
t2
t
线性加减速
指数加减速
伺服系统
伺服系统参数
机电一体化技术
阻尼
运动中的机械部件易产生振动,其振幅取决于系统的阻尼和固有频率, 系统的阻尼越大,振幅越小,且衰减越快。运动副(特别是导轨)的摩擦阻 尼占主导地位,实际应用中一般将摩擦阻尼简化为粘性摩擦阻尼。系统的粘 性摩擦阻尼越大,系统的稳态误差越大,精度越低。对于质量大、刚度低的 机械系统,为了减小振幅,加速衰减。可增大粘性摩擦阻尼。
位置检测装置将检测到的移动部件的实 际位移量进行位置反馈,与位置指令信号进 行比较,将两者的差值进行位置调节,变换 成速度控制信号,控制驱动装置驱动伺服电 动机以给定的速度向着消除偏差的方向运动,

什么是伺服驱动系统?伺服驱动系统的基本概念及其组成分类

什么是伺服驱动系统?伺服驱动系统的基本概念及其组成分类

什么是伺服驱动系统?伺服驱动系统的基本概念及其组成分类伺服驱动系统是一种以机械位置或角度作为控制对象的自动控制系统,例如数控机床等。

伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量(机电系统中的伺服电机的转动惯量较大,为了能够和丝杠等机械部件直接相连,也为了得到极高的响应速度,伺服电机有一种专门的小惯量电机。

但这类电机的过载能力低,当使用在进给伺服系统中时,必须加减速装置。

转动惯量反映了系统的加速度特性,在选择伺服电机时,系统的转动惯量不能大于电机转动惯量的3倍。

)较大等特点,这类专用的电机称为伺服电机。

当然,其基本工作原理和普通的交直流电机没有什么不同。

该类电机的专用驱动单元称为伺服驱动单元,有时简称为伺服,一般其内部包括电流、速度和/或位置闭环。

伺服驱动系统的基本概念伺服系统是数控机床的重要组成部分,是连接数控装置(计算机)和机床之间的关键桥梁,伺服系统的性能在很大程度上决定了数控机床的性能,如数控机床的定位精度、跟踪精度、最高移动速度等重要指标。

建议我们先来学习一些基础概念,再学习各种进给伺服系统的控制方式。

深刻理解掌握这部分知识,会对更好的学习后面的数控加工工艺有一定的帮助。

1、进给伺服系统
(1)组成
进给伺服系统是以机床移动部件(如工作台)的位置和速度作为控制量的自动控制系统,通常由伺服驱动装置、伺服电机、机械传动机构及执行部件组成。

见图1所示。

(2)作用
接受数控装置发出的进给速度和位移指令信号,由伺服驱动装置作一定的转换和放大后,经伺服电机(直流、交流伺服电机、功率步进电机等)和机械传动机构,驱动机床的工作台等执行部件实现工作进给或快速运动。

第4章 数控机床伺服系统

第4章 数控机床伺服系统
图4-7 永磁直流伺服电动机
第4章 数控机床伺服系统
第4章 数控机床伺服系统 工作原理:假设是单三拍通电工作方式。 (1)A 相通电时,定子A 相的五个小齿和转子对 齐。此时,B 相和 A 相空间差120,含 1 120/9 = 13 齿 3 2 A 相和 C 相差240,含240/ 9 = 26 个 3 齿。所以,A 相的转子、定子的五个小齿对 齐时,B 相、C 相不能对齐,B相的转子、 定子相差 1/3 个齿(3),C相的转子、定 子相差2/3个齿(6)。
mz2 k
式中:n —转速(r/min); f —控制脉冲频率,即每秒输入步进电动机的脉冲数; 由上式可知:工作台移动的速度由指令脉冲的频率所控制。
第4章 数控机床伺服系统 特点:
(1)来一个脉冲,转一个步距角。
(2)控制脉冲频率,可控制电机转速。
(3)改变脉冲顺序,改变方向。
种类:
有励磁式和反应式两种。两种的区别在于励磁式步进电机的转 子上有励磁线圈,反应式步进电机的转子上没有励磁线圈。
第4章 数控机床伺服系统
计算机数控系统 机床 I/O 电路和装置 操作面板 键盘 输入输出 设备 机 床
PLC
计算机 数 装 控 置
主轴伺服单元
主轴驱动装置
进给伺服单元 测量装置
进给驱动装置
主进辅 运给助 传控 动 动制 机机机 构构构
数控机床的组成
第4章 数控机床伺服系统
第4章
数控机床伺服系统
第4章 数控机床伺服系统
360o s mz2 k
第4章 数控机床伺服系统
每个步距角对应工作台一个位移值,这个位移值称为脉 冲当量。 因此,只要控制指令脉冲的数量即可控制工作台移动的 位移量。步距角越小,它所达到的位置精度越高,因此实际 使用的步进电动机一般都有较小的步距角。 步进电动机的转速公式为:n 60 f

伺服系统的分类及其工作原理和性能特点分析

伺服系统的分类及其工作原理和性能特点分析

伺服系统的分类及其工作原理和性能特点分析2011-12-19 17:16:32| 分类:默认分类|字号大中小订阅伺服系统是输入控制输出的一种自动控制系统,它可以严格的现实输出变量精确地跟随或复现输入变量,一般情况下,它的控制对象为机械位置或角度,现在的工业控制中,很多大的设备设施都需要现实自动控制和精确高精度的控制,这样就导致其得到了十分广泛应用。

一般有三种基本控制方式,即位置、速度、力矩控制方式。

通常位置和速度控制用得比较多。

在伺服系统中,控制电路十分关键,它直接影响到系统的性能品质。

由于上面的分析可以看出,它对于工业控制、自动化、自动控制、工控等领域,使用的频率还是很高的。

下面我们来深入的分析一下什么是伺服系统,伺服系统的分类,并分析各种伺服系统的工作原理和性能及特点比较,通过总结这些基础知识,希望能给大家的学习带来帮助和参考。

伺服系统的分类、原理和特点(1) 按调节理论分类A、开环--即无位置反馈的系统,其驱动元件主要是功率步进电机或液压脉冲马达。

它的结构简单、易于控制,但缺点是精度差,低速不平稳,扭矩小。

一般用于轻载负载变化不大或经济型数控机床上。

在这种系统中,如果是大功率驱动时,用步进电机作为执行元件。

驱动电路的主要任务是将指令脉冲转化为驱动执行元件所需的信号。

B、闭环---误差控制随动随动系统。

数控机床进给系统的误差,是CNC输出的位置指令和机床工作台实际位置的差值。

闭环系统运动执行元件不能反映运动的位置,因此需要有位置检测装置。

由于是反馈控制,反馈测量装置精度很高,所以系统传误差可得到补偿,提高了跟随精度和定位精度。

主要由执行元件、检测单元、比较环节、驱动电路和机床5部分组成。

比较环节的作用是将指令信号和反馈信号进行比较,两者的差值作为伺服系统的跟随误差,经驱动电路,控制执行元件带动工作台继续移动,直到跟随误差为零。

C、半闭环---半闭环和闭环系统的控制结构是一致的,不同点只是闭环系统环内包括较多的机械传动部件,传动误差均可被补偿。

数控机床的种类及其特点

数控机床的种类及其特点

金属切削机床:对金属材料的坯料或工件,用切削、特种加工等方法进行加工,使之获得要求的几何形状、尺寸精度和表面质量的机器。

1952年,试制成功世界上第一台数控机床试验性样机。

它是由大型立式仿型铣床改装而成的三坐标数控铣床,其数控装置采用电子管元件,体积庞大,可作直线插补。

1957年投入使用。

1959年,美国克耐·杜列克公司(Keaney & Trecker)首次成功开发了加工中心(Machining Center-MC)。

数控机床主要由以下七个基本部分组成:介质:数控机床加工零件所需的控制信息和数据的载体(1)控制,即用来存放加工程序的载体,也称程序载体;早期用穿孔带、穿孔卡、磁带或磁盘制成。

(2)输入装置:将程序载体上的控制代码转换成电平信号,送数控装置的内部存储器。

如光电阅读机、磁带机、软驱、MDI、计算机输入(3)数控装置:NC机床的核心部件,它将输入的电信号译码和寄存,进行数据的运算和处理,实现刀具运动轨迹的插补运算,输出机床动作的控制指令。

主要包括运算器、控制器、存储器等,早期由逻辑元件的固定硬接线电路组成。

(4)强电控制装置:接受NC内部PLC输出的M、S、T信号,经功率放大驱动执行部件。

是介于数控装置和机床机械、液压部件之间的辅助控制系统。

(5)伺服系统:接受数控装置输出的进给指令脉冲,经转换和功率放大,带动机床的移动部件或执行部件产生指令规定的运动,是一个位置控制系统,要求准确的控制机床刀具或工作台的位置。

由伺服驱动装置(位置和速度控制单元)、伺服电机和检测反馈装置组成。

它是整个数控系统的执行部分。

(6)检测反馈装置:测量运动部件的实际位移和速度,并转换成数字反馈信号后送回NC装置,从而构成机床伺服控制的闭合路径。

通常安装在机床的工作台或丝杠上。

(7)机床:主轴、床身、立柱、导轨、滚珠丝杠、工作台、刀架(库)等机床的机械构件。

1.2.1 按工艺用途分类1、普通数控机床 NC:包括:切削类.成型类.特种加工类.测量绘图类等2、数控加工中心机床 Machining Center-MC:结构:普通NC机床+刀库和自动换刀装置(ATC)特点:一次装夹后能完成多个工序,又称多工序数控机床3、多坐标数控机床:结构特点:可以进行多坐标轴的联动控制,常用4~6轴,多则可达24轴4、计算机群控: Direct Numerical Control -DNC即直接数控1.2.2 按运动方式分类1.点位控制数控机床点位控制NC机床能控制工件相对于刀具运动,从一个位置精确地移动到另一个位置,在移动过程中不进行任何切削加工。

伺服电机 基础知识

伺服电机 基础知识

伺服电机基础知识
伺服电机是一种能够将输入的脉冲信号转换为相应的角位移或线性位移的装置,具有快速响应、精确控制和稳定性高等特点。

以下是伺服电机的基础知识:
1. 工作原理:伺服电机内部通常包括一个电机(如直流或交流电机)和一个编码器。

当输入一个脉冲信号时,电机会产生一定的角位移或线性位移,同时编码器会反馈电机的实际位置。

驱动器根据反馈值与目标值进行比较,调整电机转动的角度或距离,以达到精确控制的目的。

2. 分类:伺服电机主要分为直流伺服电机和交流伺服电机两大类。

此外,根据有无刷之分,直流伺服电机又可以分为有刷伺服电机和无刷伺服电机。

3. 特点:
精确控制:伺服电机能够精确地跟踪和定位目标值,实现高精度的位置和速度控制。

快速响应:伺服电机具有快速的动态响应,能够在短时间内达到设定速度并快速停止。

稳定性高:伺服电机具有较高的稳定性,能够连续工作而不会出现较大的误差。

噪声低:交流伺服电机通常采用无刷设计,运行时噪声较低。

维护方便:伺服电机的结构和维护都比较简单,便于使用和维护。

4. 应用领域:伺服电机广泛应用于各种需要精确控制和快速响应的场合,如数控机床、包装机械、纺织机械、机器人等领域。

5. 选型原则:在选择伺服电机时,需要考虑电机的规格、尺寸、转速、负载等参数,以及实际应用场景和工作环境等因素。

6. 日常维护:为了保持伺服电机的良好性能和使用寿命,需要定期进行清洁和维护,如检查电机表面是否有灰尘、油污等,检查电机的接线是否牢固等。

以上是关于伺服电机的基础知识,如需了解更多信息,建议咨询专业人士。

伺服系统的分类

伺服系统的分类主轴驱动系统→主轴的旋转运动进给驱动系统→进给轴直线运动直流驱动系统交流驱动系统伺服系统(组成)伺服电机(M)驱动信号控制转换电路电力电子驱动放大模块电流调解单元,速度调解单元检测装置数控机床的伺服系统是指以机床移动部件的位移和速度作为控制系统,它是执行CNC装置所发出命令的执行机构。

因为电动机拖着一个重量很重的工作台,而且摩擦力随着季节、新旧程度、润滑状态等因素而变化,控制了一个稳定速度,精确定位,可以想象其难度之大位置环也称为外环,其输入信号是计算机给出的指令和位置检测器反馈的位置信号。

这个反馈是负反馈,也就是说与指令信号相位相反。

指令信号是相位置环送去加数,而反馈信号是送去减数。

位置环的输出就是速度环的输入位置检测器可以是光电编码器、旋转变压器,也可能是光栅尺、感应同步器或磁栅尺等。

但是,它的作用就是检测位置的,有时可能是直接检测位置的,有时可能是直接检测位置,但也有时是间接检测位置机床进给伺服系统高精度快响应宽调速范围低速大转矩对主轴传动提出下述要求:1、主传动电动机应有(2.2~250)KW的功率范围;2、要有大的无级调速范围,如能在1:100~1000范围内进行恒转矩速度和1:10的恒功率调速3、要求主传动有四项限的驱动能力4、为了满足螺纹车削,要求主轴能与进给实行同步控制5、在加工中心上为了自动换刀,要求主轴能进行高精度定向停位控制,甚至要求主轴具有角度控制功能等。

主轴驱动变速目前主要有两种形式:一是主轴电动机带齿轮换挡,目的在于降低主轴转速,增大传动比,放大主轴功率以适应切削的需要;二是主轴电动机通过同步齿形带或皮带驱动主轴,该类主轴电动机又称宽域电动机或强切削电动机,具有恒功率宽的特点FANUC公司主轴驱动系统主要采用交流主轴驱动系统S H P 三个系列(1.5~37、1.5~22、3.7~37KW)SIEMENS 公司主轴驱动系统直流主轴电机1GG5、1GF5交流主轴电机1PH5、1PH6主轴伺服系统的故障形式及诊断方法故障形式诊断方法速度调节器的输入作为电流调节器的给定信号来控制电动机的电流和转矩。

伺服系统的概念与分类


伺服系统的分类
(3)按照控制方式分类——开环伺服系统
组成原理图如图所示:
伺服系统的分类
(3)按照控制方式分类——半闭环伺服系统
半闭环伺服系统不对控制对象的实际位置进 行检测,而是用安装在伺服电机轴端上的速度、 角位移测量元件测量伺服电机的转动,间接地测 量控制对象的位移,角位移测量元件测出的位移 量反馈回来,与输入指令比较,利用差值来校正 伺服电机的转动位置。
机电伺服系统
以电动机作为动力驱动元件的伺服系统。
02 伺服系统的分类
伺服系统的分类
分类方法
按照驱动方式分类 按照功能特征分类 按照控制方式分类
伺服系统的分类
(1)按照驱动方式分类
伺服系统的分类
(1)按照驱动方式分类
电气 伺服
直流伺服 系统
交流伺服 系统
小惯量直流伺服电动机 永磁直流伺服电动机 交流异步伺服电动机 永磁同步伺服电动机
伺服系统的分类
(3)按照控制方式分类——半闭环伺服系统
组成原理图如图所示:
伺服系统的分类
(3)按照控制方式分类——闭环伺服系统
闭环伺服系统带有检测装置,可以直接 对工作台的位移量进行检测。在闭环伺服系 统中,速度、位移测量元件不断地检测控制 对象的运动状态。
伺服系统的分类
(3)按照控制方式分类——闭环伺服系统
伺服系统的分类
(2)按照功能特征分类
伺服系统的分类
(3)按照控制方式分类
伺服系统的分类
(3)按照控制方式分类——开环伺服系统
开环伺服系统没有速度及位置测量元件,伺 服驱动元件为步进电机或电液脉冲马达。由于这 种控制方式对传动机构或控制对象的运动情况不 进行检测与反馈,输出量与输入量之间只有前向 作用,没有反向联系,故称为开环伺服系统。

伺服系统的分类和基本组成形式

伺服系统的分类和基本组成形式伺服系统是一种能够将电压信号转化为转矩和转速以驱动控制对象的电机系统。

它的主要特点是具有机电时间常数小、线性度高、始动电压等特性,可将所收到的电信号转换成电动机轴上的角位移或角速度输出。

伺服电机分为直流和交流伺服电动机两大类,其转速随着转矩的增加而匀速下降。

在自动控制系统中,伺服电机常用作执行元件。

数控机床伺服系统的作用在于接受来自数控装置的指令信号,驱动机床移动部件跟随指令脉冲运动,并保证动作的快速和准确。

其中,进给伺服控制对伺服系统的要求更高,而主运动的伺服控制要求相对较低。

因此,数控机床的精度和速度等技术指标往往主要取决于伺服系统的质量。

伺服系统按其驱动元件和控制方式划分,有步进式伺服系统、直流电动机伺服系统、交流电动机伺服系统、开环伺服系统、闭环伺服系统和半闭环伺服系统等。

其中,开环系统主要由驱动电路、执行元件和机床3大部分组成,常用的执行元件是步进电机;闭环系统主要由执行元件、检测单元、比较环节、驱动电路和机床5部分组成,常见的检测元件有旋转变压器、感应同步器、光栅、磁栅和编码盘等。

根据进入比较环节信号的形式以及反馈检测方式,闭环(半闭环)系统可分为脉冲比较伺服系统、相位比较伺服系统和幅值比较伺服系统3种。

在闭环系统中,检测元件将机床移动部件的实际位置检测出来并转换成电信号反馈给比较环节,比较环节的作用是将指令信号和反馈信号进行比较,两者的差值作为伺服系统的跟随误差,经驱动电路,控制执行元件带动工作台继续移动,直到跟随误差为零。

半闭环伺服系统的精度要比闭环伺服系统的精度低一些,这是由于丝杠和工作台之间传动误差的存在所导致的。

因此,伺服系统的分类和基本组成形式对于机床的性能和精度有着至关重要的影响,需要在实际应用中根据具体需求进行选择和配置。

执行元件在伺服系统中扮演着重要的角色,其作用是将电信号转化为机械位移,以实现控制信号的跟随。

直流宽调速电动机和交流电动机是常用的执行元件,不同的执行元件需要不同的驱动电路。

数控机床伺服系统的分类

数控机床伺服系统的分类数控机床伺服系统按用途和功能分为进给驱动系统和主轴驱动系统;按控制原理和有无检测反馈环节分为开环伺服系统、闭环伺服系统和半闭环伺服系统;按使用的执行元件分为电液伺服系统和电气伺服系统。

1.按用途和功能分:(1)进给驱动系统:是用于数控机床工作台坐标或刀架坐标的控制系统,控制机床各坐标轴的切削进给运动,并提供切削过程所需的力矩。

主要关心其力矩大小、调速范围大小、调节精度高低、动态响应的快速性。

进给驱动系统一般包括速度控制环和位置控制环。

(2)主轴驱动系统:用于控制机床主轴的旋转运动,为机床主轴提供驱动功率和所需的切削力。

主要关心其是否有足够的功率、宽的恒功率调节范围及速度调节范围;它只是一个速度控制系统。

2.按使用的执行元件分:(1)电液伺服系统其伺服驱动装置是电液脉冲马达和电液伺服马达。

其优点是在低速下可以得到很高的输出力矩,刚性好,时间常数小、反应快和速度平稳;其缺点是液压系统需要供油系统,体积大、噪声、漏油等。

(2)电气伺服系统其伺服驱动装置伺服电机(如步进电机、直流电机和交流电机等)。

其优点是操作维护方便,可靠性高。

其中,1)直流伺服系统其进给运动系统采用大惯量宽调速永磁直流伺服电机和中小惯量直流伺服电机;主运动系统采用他激直流伺服电机。

其优点是调速性能好;其缺点是有电刷,速度不高。

2)交流伺服系统其进给运动系统采用交流感应异步伺服电机(一般用于主轴伺服系统)和永磁同步伺服电机(一般用于进给伺服系统)。

优点是结构简单、不需维护、适合于在恶劣环境下工作;动态响应好、转速高和容量大。

3.按控制原理分(1)开环伺服系统系统中没有位置测量装置,信号流是单向的(数控装置→进给系统),故系统稳定性好。

开环伺服系统的特点:1. 一般以功率步进电机作为伺服驱动元件。

2. 无位置反馈,精度相对闭环系统来讲不高,机床运动精度主要取决于伺服驱动电机和机械传动机构的性能和精度。

步进电机步距误差,齿轮副、丝杠螺母副的传动误差都会反映在零件上,影响零件的精度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伺服系统按其驱动元件划分,有步进式伺服系统、直流电动机(简称直流电机)伺服系统、交流电动机(简称交流电机)伺服系统。

按控制方式划分,有开环伺服系统、闭环伺服系统和半闭环伺服系统等,实际上数控系统也分成开环、闭环和半闭环3种类型,就是与伺服系统这3种方式相关。

主要特点
1.精确的检测装置:以组成速度和位置闭环控制。

2.有多种反馈比较原理与方法:根据检测装置实现信息反馈的原理不同,伺服系统反馈比较的方法也不相同。

目前常用的有脉冲比较、相位比较和幅值比较3种。

3.高性能的伺服电动机(简称伺服电机):力辉用于高效和复杂型面加工的数控机床,伺服系统将经常处于频繁的启动和制动过程中。

要求电机的输出力矩与转动惯量的比值大,以产生足够大的加速或制动力矩。

要求伺服电机在低速时有足够大的输出力矩且运转平稳,以便在与机械运动部分连接中尽量减少中间环节。

4.宽调速范围的速度调节系统,即速度伺服系统:从系统的控制结构看,数控机床的位置闭环系统可看作是位置调节为外环、速度调节为内环的双闭环自动控制系统,其内部的实际工作过程是把位置控制输入转换成相应的速度给定信号后,再通过调速系统驱动伺服电机,实现实际位移。

数控机床的主运动要求调速性能也比较高,因此要求伺服系统为高性能的宽调速系统。

相关文档
最新文档